JP3122856B2 - Air-fuel ratio detection device failure detection device and engine control device - Google Patents
Air-fuel ratio detection device failure detection device and engine control deviceInfo
- Publication number
- JP3122856B2 JP3122856B2 JP03330421A JP33042191A JP3122856B2 JP 3122856 B2 JP3122856 B2 JP 3122856B2 JP 03330421 A JP03330421 A JP 03330421A JP 33042191 A JP33042191 A JP 33042191A JP 3122856 B2 JP3122856 B2 JP 3122856B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- ratio sensor
- sensor
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y02T10/47—
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はエンジンの空燃比を目標
空燃比にフィードバック制御するための空燃比検出装置
の故障検出に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fault detection of an air-fuel ratio detecting device for feedback-controlling an air-fuel ratio of an engine to a target air-fuel ratio.
【0002】[0002]
【従来の技術】エンジンの空燃比制御では、例えば燃料
噴射量による空燃比制御の場合、エンジンの吸入空気量
およびエンジン回転数に応じた基本噴射量を演算し、こ
の基本噴射量をエンジン水温等に応じて補正し、また、
排気ガス中の酸素濃度を検出するO2センサ等の検出信
号に基づいてフィードバック補正を行い、最終噴射量を
設定する。そして、この最終噴射量に応じた噴射パルス
によってインジェクタを駆動し空燃比を目標空燃比に収
束させる。このような空燃比フィードバック制御によれ
ば、エンジンの空燃比を例えば理論空燃比に制御するこ
とができるため、排気通路に三元触媒等を配設して排気
ガス浄化を効率良く行うことが可能となる。ここで、空
燃比センサは一般に触媒の上流側に設けられる。2. Description of the Related Art In air-fuel ratio control of an engine, for example, in the case of air-fuel ratio control based on a fuel injection amount, a basic injection amount according to an intake air amount of an engine and an engine speed is calculated, and the basic injection amount is calculated based on an engine water temperature and the like. Correction according to
Feedback correction is performed based on a detection signal from an O 2 sensor or the like for detecting the oxygen concentration in the exhaust gas, and the final injection amount is set. Then, the injector is driven by the injection pulse corresponding to the final injection amount to make the air-fuel ratio converge to the target air-fuel ratio. According to such air-fuel ratio feedback control, the air-fuel ratio of the engine can be controlled to, for example, a stoichiometric air-fuel ratio, so that a three-way catalyst or the like can be disposed in the exhaust passage to efficiently purify the exhaust gas. Becomes Here, the air-fuel ratio sensor is generally provided on the upstream side of the catalyst.
【0003】上記のようにエンジンの排気通路に触媒を
配設し、空燃比を例えば理論空燃比に制御するようフィ
ードバック制御系を構成する場合に、空燃比センサの出
力特性のばらつきとか経時的な劣化を補償するため、触
媒の下流側に第2の空燃比センサを設けて、上流側の空
燃比センサの出力がリッチ信号からリーン信号に、また
リーン信号からリーン信号に変化した時の遅延処理の設
定時間をこの下流側空燃比センサの出力に応じて補正す
るダブルO2センサシステムとすることが従来から提案
されている。また、例えば特開昭61−234241号
公報に記載のものでは、このようにダブルO2センサシ
ステムとしたものにおいて、上流側空燃比センサの劣化
による応答性の低下(制御周波数の低下)を最小限にす
るため、上流側空燃比センサによる空燃比制御のスキッ
プ値(P値)を下流側空燃比センサの出力によりフィー
ドバック補正するようにした所謂P値フィードバック制
御を行っている。この場合、下流側空燃比センサの出力
特性の変化は上流側空燃比センサの劣化度合を反映する
ものであり、したがって、下流側空燃比センサの出力に
よって上流側空燃比センサの故障(劣化)検出が行え
る。As described above, when a catalyst is disposed in an exhaust passage of an engine and a feedback control system is configured to control an air-fuel ratio to, for example, a stoichiometric air-fuel ratio, a variation in output characteristics of an air-fuel ratio sensor or a lapse of time. A second air-fuel ratio sensor is provided downstream of the catalyst to compensate for deterioration, and a delay process is performed when the output of the upstream air-fuel ratio sensor changes from a rich signal to a lean signal and from a lean signal to a lean signal. It has been conventionally proposed to provide a double O 2 sensor system that corrects the set time of the sensor according to the output of the downstream air-fuel ratio sensor. Further, for example, in Japanese Patent Application Laid-Open No. 61-234241, in such a double O 2 sensor system, a decrease in responsiveness (a decrease in control frequency) due to deterioration of the upstream air-fuel ratio sensor is minimized. In order to limit the skip value, a so-called P value feedback control is performed in which a skip value (P value) of the air-fuel ratio control by the upstream air-fuel ratio sensor is feedback-corrected by the output of the downstream air-fuel ratio sensor. In this case, the change in the output characteristics of the downstream air-fuel ratio sensor reflects the degree of deterioration of the upstream air-fuel ratio sensor. Therefore, the failure (deterioration) of the upstream air-fuel ratio sensor is detected based on the output of the downstream air-fuel ratio sensor. Can be performed.
【0004】ところで、触媒の上流側に配設されたO2
センサ等空燃比センサの劣化の形態には、制御中心がリ
ーン側にずれるリーンシフト劣化と、制御中心が逆にリ
ッチ側にずれるリッチシフト劣化と、応答性の悪化によ
り出力波形の反転回数すなわち周波数が小さくなる周波
数劣化の三通りあることが知られている。このうち、リ
ーンシフト劣化およびリッチシフト劣化は、P値フィー
ドバック制御により設定された空燃比フィードバック制
御のスキップ値(P値)が異常レベル(しきい値)に達
したかどうかで検出される。一方、周波数劣化は、上流
側空燃比センサの周波数と下流側空燃比センサの周波数
との比が大きくなることにより検出される。By the way, O 2 disposed upstream of the catalyst is
The deterioration of the air-fuel ratio sensor such as a sensor includes a lean shift deterioration in which the control center shifts to the lean side, a rich shift deterioration in which the control center shifts to the rich side, and an inversion frequency of the output waveform, that is, It is known that there are three types of frequency degradation in which is small. Among them, lean shift deterioration and rich shift deterioration are detected based on whether or not the skip value (P value) of the air-fuel ratio feedback control set by the P value feedback control has reached an abnormal level (threshold). On the other hand, the frequency deterioration is detected by increasing the ratio between the frequency of the upstream air-fuel ratio sensor and the frequency of the downstream air-fuel ratio sensor.
【0005】上記ダブルO2センサシステムにおけるP
値フィードバック制御は触媒の劣化検出にも利用され
る。この場合、上流側および下流側の空燃比センサの周
波数比を検出値として、検出特性に基づいて劣化状態
(浄化率)を判定し、また、所定のM.F(マルファンク
ション)レベルによって異常状態を判定する。In the double O 2 sensor system, P
The value feedback control is also used for detecting deterioration of the catalyst. In this case, using the frequency ratios of the upstream and downstream air-fuel ratio sensors as detection values, a deterioration state (purification rate) is determined based on the detection characteristics, and an abnormal state is determined based on a predetermined MF (malfunction) level. Is determined.
【0006】[0006]
【発明が解決しようとする課題】空燃比フィードバック
制御のため触媒の上流側に配設したO2センサ等空燃比
センサの周波数劣化を検出するのに、上記のようにダブ
ルO2センサシステムにおける両センサの周波数の比を
見るようにした場合、空燃比センサの応答性が悪くなり
リッチおよびリーンの判定時間が長くなると、ついには
空燃比の振れが大きくなって触媒のウインドウを大巾に
外れ、触媒のO2ストレージ効果が得られなくなって、
下流側センサの出力は触媒が劣化した場合と同じような
波形を示すようになる。そのため、上記従来の方法で
は、触媒が劣化している場合に空燃比センサは正常であ
るにも拘わらず故障と判定してしまうことになるといっ
た問題があった。To detect a INVENTION Problems to be Solved] frequency deterioration of the O 2 sensor or the like the air-fuel ratio sensors disposed upstream of the catalyst for the air-fuel ratio feedback control, both in the double O 2 sensor system, as described above When looking at the ratio of the sensor frequencies, when the response of the air-fuel ratio sensor deteriorates and the determination time of rich and lean becomes longer, finally the swing of the air-fuel ratio becomes large and the window of the catalyst deviates greatly, The O 2 storage effect of the catalyst can no longer be obtained,
The output of the downstream sensor has a waveform similar to that when the catalyst is deteriorated. Therefore, in the above-described conventional method, there is a problem that when the catalyst is deteriorated, the air-fuel ratio sensor is determined to have failed even though the air-fuel ratio sensor is normal.
【0007】また、ダブルO2センサシステムで上記の
ようにP値フィードバック制御を行うものにおいては、
上流側の空燃比センサの劣化により空燃比が触媒のウイ
ンドウから外れると、そのずれの方向を下流側センサの
出力信号により検出してP値を補正するが、P値のセン
タ(平均値)が収束して空燃比センサの劣化が吸収され
るまでにはある程度時間がかかるため、この間に触媒の
劣化検出を行うと、空燃比センサの劣化が吸収されない
状態で劣化検出が行われ、誤判定を生ずるといった問題
もあった。In the double O 2 sensor system which performs the P value feedback control as described above,
When the air-fuel ratio deviates from the catalyst window due to deterioration of the upstream air-fuel ratio sensor, the direction of the deviation is detected by the output signal of the downstream sensor to correct the P value. Since it takes some time to converge and absorb the deterioration of the air-fuel ratio sensor, if the deterioration of the catalyst is detected during this time, the deterioration is detected in a state where the deterioration of the air-fuel ratio sensor is not absorbed, and an erroneous determination is made. There was also a problem that occurred.
【0008】本発明は上記問題点に鑑みてなされたもの
であって、エンジンの空燃比フィードバック制御のため
に触媒上流側に配設した第1空燃比センサの劣化検出を
触媒下流側に配設した第2空燃比センサの出力を用いて
行うものにおいて、触媒の劣化と空燃比センサの劣化の
混同を防止し、第1空燃比センサの劣化を正確に検出で
きるようにすることを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a deterioration detection of a first air-fuel ratio sensor disposed upstream of a catalyst for air-fuel ratio feedback control of an engine is disposed downstream of the catalyst. An object of the present invention is to use the output of the second air-fuel ratio sensor to prevent the deterioration of the catalyst and the air-fuel ratio sensor from being confused and to accurately detect the deterioration of the first air-fuel ratio sensor. .
【0009】[0009]
【課題を解決するための手段】この出願の請求項1に係
る発明は上記目的を達成するための空燃比検出装置の故
障検出装置に係るものであり、図1はその全体構成図で
ある。この発明は、触媒上流側の空燃比センサ(第1空
燃比センサ)が劣化して応答性が悪くなるに伴い、空燃
比の振れが大きくなるために触媒下流側の空燃比センサ
(第2空燃比センサ)の出力波形の周波数が小さくなる
が、そのような現象は特にオフアイドル(有負荷)時に
顕著となるものであって、アイドル時のように吸入空気
量の少ない領域では、もともと空燃比変動の周期が長い
ために第1空燃比センサの応答性劣化による影響が小さ
く、一方、触媒が劣化した場合は、アイドル,オフアイ
ドルにかかわらずO2ストレージ効果が得られなくなる
ので、上記のように第2空燃比センサの周波数が小さく
なる現象はアイドル時でも現れることを見いだしたこと
によるものであり、その構成は、エンジンの排気通路に
おいて排気ガス浄化のための触媒の上流側に配設され、
エンジンに供給される混合気の空燃比を目標空燃比にフ
ィードバック制御するため空燃比制御手段に空燃比信号
を出力する第1空燃比センサと、前記触媒の下流側に配
設された第2空燃比センサと、これら第1空燃比センサ
と第2空燃比センサとの出力を受け、両空燃比センサの
出力の周波数比に基づいて第1空燃比センサの故障を検
出するセンサ故障検出手段とを備えた空燃比検出装置に
おいて、エンジンの吸入空気量に関連するパラメータを
検出する吸入空気量検出手段の出力を受け、吸入空気量
が設定値以上の時に第2空燃比センサの出力の周波数に
対する第1空燃比センサの出力の周波数の比が略1とな
り、かつ、吸入空気量が設定値以下の時に第2空燃比セ
ンサの出力の周波数に対する第1空燃比センサの出力の
周波数の比が所定値以上となった場合に、第1空燃比セ
ンサの故障と判定するようセンサ故障検出手段を構成し
たことを特徴とする。上記吸入空気量検出手段として
は、たとえば、スロットル弁全閉を検知するアイドルス
イッチが利用できる。Means for Solving the Problems According to claim 1 of the present application.
The present invention relates to a failure detection device for an air-fuel ratio detection device for achieving the above object, and FIG. 1 is an overall configuration diagram thereof. According to the present invention, the air-fuel ratio sensor (first air-fuel ratio sensor) on the upstream side of the catalyst deteriorates and the responsiveness deteriorates, and the fluctuation of the air-fuel ratio increases. Although the frequency of the output waveform of the fuel ratio sensor becomes small, such a phenomenon is particularly remarkable during off-idling (with a load). The effect of deterioration of the response of the first air-fuel ratio sensor is small because the cycle of the fluctuation is long. On the other hand, when the catalyst deteriorates, the O 2 storage effect cannot be obtained regardless of idle or off-idle. The fact that the phenomenon that the frequency of the second air-fuel ratio sensor decreases becomes apparent even at the time of idling, and this configuration is used for purifying exhaust gas in the exhaust passage of the engine. Is disposed upstream of the catalyst,
A first air-fuel ratio sensor that outputs an air-fuel ratio signal to air-fuel ratio control means for feedback-controlling the air-fuel ratio of the air-fuel mixture supplied to the engine to a target air-fuel ratio; and a second air-fuel ratio sensor disposed downstream of the catalyst. Fuel ratio sensor and these first air-fuel ratio sensors
And the output of the second air-fuel ratio sensor,
An air-fuel ratio detection device having sensor failure detection means for detecting a failure of the first air-fuel ratio sensor based on an output frequency ratio.
Oite receives the output of the intake air amount detecting means for detecting a parameter related to the intake air amount of the engine, the frequency of the output of the second air-fuel ratio sensor when the intake air amount <br/> is equal to or greater than the set value
When the ratio of the frequency of the output of the first air-fuel ratio sensor to that of the first air-fuel ratio sensor becomes substantially 1 and the intake air amount is equal to or less than the set value, the second air-fuel ratio sensor
Of the output of the first air-fuel ratio sensor to the frequency of the sensor output
The sensor failure detecting means is configured to determine that the first air-fuel ratio sensor has failed when the frequency ratio becomes equal to or greater than a predetermined value. As the intake air amount detecting means, for example, an idle switch for detecting that the throttle valve is fully closed can be used.
【0010】[0010]
また、この出願の請求項2に係る発明は、The invention according to claim 2 of the present application is:
エンジンの排気通路において排気ガス浄化のための触媒Catalyst for purifying exhaust gas in the engine exhaust passage
の上流側に配設され、エンジンに供給される混合気の空Of the mixture supplied to the engine
燃比を目標空燃比にフィードバック制御するため空燃比Air-fuel ratio for feedback control of fuel ratio to target air-fuel ratio
制御手段に空燃比信号を出力する第1空燃比センサと、A first air-fuel ratio sensor that outputs an air-fuel ratio signal to the control unit;
触媒の下流側に配設された第2空燃比センサと、これらA second air-fuel ratio sensor disposed downstream of the catalyst;
第1空燃比センサと第2空燃比センサとの出力を受け、Receiving outputs of the first air-fuel ratio sensor and the second air-fuel ratio sensor,
両空燃比センサの出力の周波数比に基づいて第1空燃比The first air-fuel ratio based on the frequency ratio of the outputs of the two air-fuel ratio sensors
センサの故障を検出するセンサ故障検出手段と、これらSensor failure detecting means for detecting a sensor failure;
第1空燃比センサと第2空燃比センサとの出力を受け、Receiving outputs of the first air-fuel ratio sensor and the second air-fuel ratio sensor,
両空燃比センサの出力の周波数比に基づいて触媒の劣化Deterioration of catalyst based on frequency ratio of output of both air-fuel ratio sensors
を検出する触媒劣化検出手段を備えたエンジンの制御装Control device equipped with catalyst deterioration detecting means for detecting
置において、センサ故障検出手段は、エンジンの吸入空In this case, the sensor failure detection means
気量に関連するパラメータを検出する吸入空気量検出手Intake air amount detection method for detecting parameters related to air volume
段の出力を受け、吸入空気量が設Receiving the output of the stage,
定値以下の時に、第2When the value is below the fixed value, the second
空燃比センサの出力の周波数に対する第1空燃比センサFirst air-fuel ratio sensor for output frequency of air-fuel ratio sensor
の出力の周波数の比が所定値以上の場合は、前記第1空If the ratio of the output frequencies is equal to or greater than a predetermined value,
燃比センサの故障と判定するものとし、触媒劣化検出手It is determined that the fuel ratio sensor has failed.
段は、エンジンの吸入空気量に関連するパラメータを検The stage detects parameters related to the engine intake air volume.
出する吸入空気量検出手段の出力を受け、吸入空気量がReceiving the output of the intake air amount detection means
設定値以下の時に、第2空燃比センサの出力の周波数にWhen the frequency is equal to or less than the set value, the output frequency of the second air-fuel ratio sensor
対する第1空燃比センサの出力の周波数の比が所定値以The ratio of the frequency of the output of the first air-fuel ratio sensor to the
上の場合は、触媒の劣化検出を非実行とするものとしたIn the above case, detection of catalyst deterioration was not performed.
ことを特徴とする。It is characterized by the following.
【0011】[0011]
【作用】この出願の請求項1に係る発明によれば、エン
ジンの空燃比は触媒の上流側に配設された第1空燃比セ
ンサの出力に基づいて目標空燃比にフィードバック制御
される。また、アイドル時等のエンジンの吸入空気量が
設定値以下の領域において、センサ故障検出手段が作動
し、上記第1空燃比センサと触媒装置下流側の第2空燃
センサの出力の周波数比に基づいて第1空燃比センサの
劣化を検出する。According to the first aspect of the present invention, the air-fuel ratio of the engine is feedback-controlled to the target air-fuel ratio based on the output of the first air-fuel ratio sensor disposed upstream of the catalyst. Further, in an area where the intake air amount of the engine at the time of idling or the like is equal to or less than the set value, the sensor failure detecting means operates, and the frequency ratio between the output of the first air-fuel ratio sensor and the output of the second air-fuel sensor downstream of the catalytic converter is reduced. The deterioration of the first air-fuel ratio sensor is detected based on the detection.
【0012】 図2は上記発明の作用を説明するタイムチ
ャートであり、(a)はアイドル,オフアイドルを含む
車速モードを示し、(b)は第1空燃比センサの正常時
の出力波形を、(c)は第1空燃比センサの劣化時の出
力波形を、(d)は第1空燃比センサ劣化時の第2空燃
比センサの出力波形を、(e)は第1空燃比センサ正常
時の第2空燃比センサの出力波形を、(f)は触媒劣化
時の第2空燃比センサの出力波形をそれぞれ模式的に示
している。この図に見るように、第1空燃比センサが劣
化すると、その波形は吸入空気量の多いオフアイドルに
おいて周波数が小さくなる。一方、第2空燃比センサの
方は、第1空燃比センサが劣化することによりオフアイ
ドル時の周波数が大きくなって第1空燃比センサとの周
波数比が1に近づくが、吸入空気量の少ないアイドル時
には正常時の波形とさほど変わらない。また、第2空燃
比センサの波形は、触媒が劣化した時にも周波数が大き
くなるが、この場合は吸入空気量の少ないアイドル等の
領域でも周波数が大きくなる。よって、上記のようにア
イドル時等においてセンサ劣化検出が行われることによ
り、触媒の劣化と空燃比センサの劣化の混同が防止さ
れ、第1空燃比センサの劣化が正確に検出される。FIGS. 2A and 2B are time charts for explaining the operation of the present invention. FIG . 2A shows a vehicle speed mode including idle and off-idle, and FIG. 2B shows an output waveform of the first air-fuel ratio sensor in a normal state. (C) shows the output waveform of the first air-fuel ratio sensor when it deteriorates, (d) shows the output waveform of the second air-fuel ratio sensor when the first air-fuel ratio sensor deteriorates, and (e) shows when the first air-fuel ratio sensor is normal. And (f) schematically shows the output waveform of the second air-fuel ratio sensor when the catalyst is deteriorated. As shown in this figure, when the first air-fuel ratio sensor deteriorates, its waveform decreases in off-idle with a large intake air amount. On the other hand, in the case of the second air-fuel ratio sensor, the frequency at the time of off-idle becomes large due to the deterioration of the first air-fuel ratio sensor, and the frequency ratio with the first air-fuel ratio sensor approaches 1, but the intake air amount is small. At idle, the waveform is not much different from the normal waveform. The frequency of the waveform of the second air-fuel ratio sensor also increases when the catalyst has deteriorated. In this case, the frequency also increases in an idle region where the amount of intake air is small. Therefore, by performing sensor deterioration detection during idling or the like as described above, confusion between catalyst deterioration and air-fuel ratio sensor deterioration is prevented, and deterioration of the first air-fuel ratio sensor is accurately detected.
【0013】[0013]
また、この出願の請求項2に係る発明によFurther, according to the invention of claim 2 of the present application.
れば、吸入空気量が設定値以下の時に、第2空燃比センIf the intake air amount is equal to or less than the set value, the second air-fuel ratio
サの出力の周波数に対する第1空燃比センサの出力の周Of the output of the first air-fuel ratio sensor with respect to the frequency of the
波数の比が所定値以上の場合は、触媒の劣化検出が非実If the wave number ratio is equal to or higher than a predetermined value, detection of catalyst deterioration is
行とされる。Line.
【0014】[0014]
【実施例】図3はこの出願に係る発明の一実施例を示す
全体システム図である。図において1はエンジン本体を
示す。エンジン本体1の吸気側には気筒毎の独立吸気通
路2aが設けられ、これら独立吸気通路2aはサージタ
ンク2bを経て上流側吸気通路2cに接続されている。
そして、上流側吸気通路2cには、先端にエアクリーナ
3に接続され、エアクリーナ3との接続部に近い上流位
置にはエアフローメータ4が、また、サージタンク2b
の入口に近い下流位置にはスロットル弁5が配設されて
いる。また、エンジン本体1の排気側には排気通路6が
接続され、排気通路6には触媒7が配設されている。FIG. 3 is an overall system diagram showing an embodiment of the invention according to this application. In the drawing, reference numeral 1 denotes an engine body. An independent intake passage 2a for each cylinder is provided on the intake side of the engine body 1, and these independent intake passages 2a are connected to an upstream intake passage 2c via a surge tank 2b.
The upstream side intake passage 2c is connected to the air cleaner 3 at the tip, and the air flow meter 4 is located at an upstream position near the connection with the air cleaner 3, and the surge tank 2b
A throttle valve 5 is provided at a downstream position near the entrance of the throttle valve. An exhaust passage 6 is connected to the exhaust side of the engine body 1, and a catalyst 7 is disposed in the exhaust passage 6.
【0015】 各気筒の独立吸気通路2aには燃料噴射用
のインジェクタ8が配設されている。これらインジェク
タ8はマイクロコンピュータ等で構成されたコントロー
ルユニット9によって制御される。そして、このインジ
ェクタ9による燃料噴射量の制御によってエンジンの空
燃比が制御される。そのため、コントロールユニット9
には、上記エアフローメータ4から吸入空気量信号が入
力され、クランク角センサ10からクランク角信号が、
水温センサ11からエンジン水温信号が、また、スロッ
トル弁5に付設されたアイドルスイッチからアイドルス
イッチ信号が入力される。また、排気通路6には、触媒
7の上流側に第1空燃比センサ(O2センサ)12が、
下流側に第2空燃比センサ(O2センサ)13がそれぞ
れ配設され、これら第1および第2の空燃比センサ1
2,13の検出信号が上記コントロールユニット9に入
力される。 [0015] and the injector 8 for fuel injection is disposed on the independent intake passages 2a of each cylinder. These injectors 8 are controlled by a control unit 9 composed of a microcomputer or the like. The air-fuel ratio of the engine is controlled by controlling the fuel injection amount by the injector 9. Therefore, the control unit 9
, An intake air amount signal is input from the air flow meter 4, and a crank angle signal is output from the crank angle sensor 10.
An engine water temperature signal is input from the water temperature sensor 11, and an idle switch signal is input from an idle switch attached to the throttle valve 5. In the exhaust passage 6, a first air-fuel ratio sensor (O 2 sensor) 12 is provided upstream of the catalyst 7.
A second air-fuel ratio sensor (O 2 sensor) 13 is disposed on the downstream side, and the first and second air-fuel ratio sensors 1
The detection signals 2 and 13 are input to the control unit 9.
【0016】 コントロールユニット9は、周知のよう
に、エアフローメータ4によって検出された吸入空気量
Qaをクランク角信号から演算したエンジン回転数Ne
で割った値に定数Kを掛けて燃料の基本噴射量T0を設
定し、これをエンジン水温等によって補正する。そし
て、さらに触媒7上流の第1空燃比センサ12によって
検出された空燃比と目標空燃比との偏差に基づいたフィ
ードバック補正量CFBを加えて最終噴射量Tを設定
し、この最終噴射量Tに相当するパルス巾の噴射パルス
を上記インジェクタ8に出力する。これによって、エン
ジンの空燃比は例えば理論空燃比(14.7)に制御さ
れる。 As is well known, the control unit 9 calculates an intake air amount Qa detected by the air flow meter 4 from an engine rotation speed Ne calculated from a crank angle signal.
Is multiplied by a constant K to set a basic fuel injection amount T 0 , which is corrected by the engine coolant temperature or the like. Further, a feedback correction amount CFB based on the difference between the air-fuel ratio detected by the first air-fuel ratio sensor 12 upstream of the catalyst 7 and the target air-fuel ratio is added to set a final injection amount T. An injection pulse having a corresponding pulse width is output to the injector 8. As a result, the air-fuel ratio of the engine is controlled to, for example, the stoichiometric air-fuel ratio (14.7).
【0017】 上記フィードバック補正量CFBは、第2
空燃比センサ13の出力に基づいたP値フィードバック
制御によって補正される。図4はこのP値フィードバッ
ク制御を説明するタイムチャートであり、(a)は第1
空燃比センサの信号波形を、(b)は第2空燃比センサ
の信号波形を、(c)は空燃比がリッチサイドからリー
ンサイドに移行したときのCFBのP値(スキップ値)
であるCGPFRLを、(d)は空燃比がリーンサイド
からリッチサイドに移行したときのCFBのP値である
CGPFLRを、(e)は補正されたCFBをそれぞれ
示している。 [0017] The feedback correction amount CFB is, the second
The correction is made by P value feedback control based on the output of the air-fuel ratio sensor 13. FIG. 4 is a time chart for explaining the P value feedback control, and FIG.
The signal waveform of the air-fuel ratio sensor, (b) is the signal waveform of the second air-fuel ratio sensor, and (c) is the P value (skip value) of CFB when the air-fuel ratio shifts from rich side to lean side.
(D) shows CGPFLR, which is the P value of CFB when the air-fuel ratio shifts from the lean side to rich side, and (e) shows the corrected CFB.
【0018】 第2空燃比センサ13の出力は、P値フィ
ードバックをしなければリッチ側あるいはリーン側にほ
ぼ張り付いた形となる。また、P値フィードバックをし
た場合には、空燃比の振れが大きくなって触媒の浄化ウ
インドウから外れやすくなるため、第2空燃比センサ1
3は変動波形を示すようになる。この第2空燃比センサ
13の波形は、第1空燃比センサ12が正常であれば変
動周期の長い波形となり、第1空燃比センサ12が劣化
するとその周期が短くなる。P値フィードバック制御
は、この第1空燃比センサの劣化を検出してCFBのP
値を補正するものであって、第2空燃比センサ13の出
力がリッチ側に張り付いている間は単位時間(例えば
8.2ms)毎に微小割合ΔSKIP(例えば0.2%)
ずつCGPFRLを小さくしてCGPFLRを大きく
し、第2空燃比センサ13の出力がリーン側に張り付い
ている間はやはりΔSKIPずつCGPFRLを大きく
してCGPFLRを小さくする。これにより、CGPF
LRおよびCGPFRLのセンタ(平均値)は第1空燃
比センタ12の劣化度合に応じた値に収束し、劣化が吸
収される。 The output of the second air-fuel ratio sensor 13 is substantially adhered shape to the rich side or the lean side to be the P value feedback. Further, when the P-value feedback is performed, the fluctuation of the air-fuel ratio becomes large, and the air-fuel ratio easily deviates from the purification window of the catalyst.
3 shows a fluctuation waveform. The waveform of the second air-fuel ratio sensor 13 has a long fluctuation cycle when the first air-fuel ratio sensor 12 is normal, and the cycle becomes short when the first air-fuel ratio sensor 12 is deteriorated. The P value feedback control detects the deterioration of the first air-fuel ratio sensor and detects the PB of the CFB.
The value is corrected, and while the output of the second air-fuel ratio sensor 13 is stuck on the rich side, the minute ratio ΔSKIP (for example, 0.2%) every unit time (for example, 8.2 ms)
The output of the second air-fuel ratio sensor 13 is attached to the lean side, and the CGPPFRL is also increased by ΔSKIP to decrease the CGPFLR. Thereby, the CGPF
The centers (average values) of LR and CGP FRL converge to a value corresponding to the degree of deterioration of the first air-fuel ratio center 12, and the deterioration is absorbed.
【0019】 コントロールユニット9は、また、第1空
燃比センサ12の周波数劣化を判定し、劣化判定信号を
出力する。第1空燃比センサ12が周波数劣化すると、
その出力波形の周波数はオフアイドル時において小さく
なり、一方、第2空燃比センサ13の周波数はオフアイ
ドル時に大きくなって第1空燃比センサ12との周波数
比が1に近づく。ただし、第2空燃比センサ13の周波
数が大きくなる現象は触媒7の劣化時にも同様に現れ
る。また、第2空燃比センサ13の周波数はアイドル時
には第1空燃比センサ12の劣化の影響をあまり受けな
い。そこで、まず、オフアイドル時の両センサ12,1
3の周波数比を見て、その周波数比がほぼ1になれば、
次いで、アイドル時の周波数比を見て、これがしきい値
を越えれば第1空燃比センサ12の周波数劣化と判定す
る。ここで、アイドル時およびオフアイドル時の判定は
アイドルスイッチ信号によって行う。 The control unit 9 determines whether the first air-fuel ratio sensor 12 has deteriorated in frequency and outputs a deterioration determination signal. When the frequency of the first air-fuel ratio sensor 12 deteriorates,
Frequency of the output waveform is reduced Oite during off idle, whereas, the frequency ratio of the frequency of the second air-fuel ratio sensor 13 and the first air-fuel ratio sensor 12 is larger at the time of off idle approaches one. However, the phenomenon that the frequency of the second air-fuel ratio sensor 13 increases also appears when the catalyst 7 is deteriorated. Further, the frequency of the second air-fuel ratio sensor 13 is not significantly affected by the deterioration of the first air-fuel ratio sensor 12 during idling. Therefore, first, both sensors 12, 1 at the time of off-idling are used.
Looking at the frequency ratio of 3, if the frequency ratio becomes almost 1,
Next, the frequency ratio during idling is checked, and if this exceeds a threshold value, it is determined that the first air-fuel ratio sensor 12 has deteriorated in frequency. Here, the determination at the time of idling and at the time of off-idling are performed by an idle switch signal.
【0020】 図5は上記実施例の周波数劣化検出の制御
を実行するためのフローチャートであり、S101〜1
04はその各ステップを示す。このフローでは、スター
トすると、S101でオフアイドル時の第1空燃比セン
サ(フロントO2)の周波数と第2空燃比センサ(リア
O2)の周波数の比が1かどうかを見る。そして、周波
数比が1である(YES)ということであれば、S10
2へ行って、今度はアイドル時の周波数比がしきい値K
を越えているかどうかを見て、周波数比がKを越えてい
る(YES)ということであれば、S103で第1空燃
比センサの周波数劣化と判定してリターンする。 FIG . 5 is a flow chart for executing the control of the frequency deterioration detection of the above embodiment, and
04 shows each step. In this flow, when started, it is checked in S101 whether the ratio of the frequency of the first air-fuel ratio sensor (front O 2 ) and the frequency of the second air-fuel ratio sensor (rear O 2 ) at the time of off-idle is 1 or not. If the frequency ratio is 1 (YES), S10
2 and this time the frequency ratio at idle is
If it is determined that the frequency ratio exceeds K (YES), it is determined in S103 that the frequency of the first air-fuel ratio sensor has deteriorated, and the routine returns.
【0021】 また、オフアイドル時の周波数比が1でな
い(S101でNO)という場合、あるいは、オフアイ
ドル時の周波数比が1であってもアイドル時の周波数比
がK以下(S102でNO)というときは、S104へ
行って触媒(キャタ)の劣化判定を行い、リターンす
る。 Further, if that the frequency ratio of the off idle is not 1 (NO in S101), or off-frequency ratio at the time is also idle frequency ratio is 1 at the time of idling the following K as (NO in S102) In this case, the flow goes to S104 to determine the deterioration of the catalyst (catalyst), and then returns.
【0022】 図6は、この出願の発明に関連する制御を
実行するためのフローチャートである。この制御は、排
気通路に配設した触媒の劣化検出を空燃比センサのリー
ンシフトおよびリッチシフトの劣化が検出され補正され
た後で実行するようにしたものであって、全体システム
図は先の実施例に係る図3と同様である。この場合も、
やはり空燃比フィードバック制御を行い、また、P値フ
ィードバック制御を行う。以下、図6のフローによって
この制御を説明する。なお、S201〜222はこのフ
ローの各ステップを示す。 FIG . 6 is a flowchart for executing control related to the invention of this application. In this control , the deterioration of the catalyst disposed in the exhaust passage is detected after the deterioration of the lean shift and the rich shift of the air-fuel ratio sensor is detected and corrected. This is the same as FIG. 3 according to the embodiment. Again,
Again, air-fuel ratio feedback control is performed, and P-value feedback control is performed. Hereinafter, this control will be described with reference to the flow of FIG. In addition, S201 to S222 show each step of this flow.
【0023】 図6のフローにおいて、スタートすると、
まずS201で第1空燃比センサ(フロントO2)が活
性かどうかを判定する。そして、活性である(YES)
ということであれば、S202へ進んで空燃比フィード
バック制御を実行し、つぎに、S203で第2空燃比セ
ンサ(リアO2)が活性かどうかを判定する。 In the flow of FIG . 6, when starting,
First, in S201, it is determined whether the first air-fuel ratio sensor (front O 2 ) is active. And active (YES)
If so, the process proceeds to S202 to execute the air-fuel ratio feedback control, and then determines in S203 whether the second air-fuel ratio sensor (rear O 2 ) is active.
【0024】 S203の判定がYESで第1空燃比セン
サおよび第2空燃比センサがいずれも活性であれば、S
204でP値フィードバック制御の実行フラッグを立て
る。そして、S205で第2空燃比センサの出力がスラ
イスレベル(設定値)以上であるかどうかを見て、スラ
イスレベル以上である(YES)という時はS206で
リッチフラッグを立て、S207でCGPFLRをΔS
KIPだけ大きくし、また、CGPFRLをΔSKIP
だけ小さくする。 If the determination in S203 is YES and both the first air-fuel ratio sensor and the second air-fuel ratio sensor are active, S
At step 204, the execution flag of the P value feedback control is set. Then, it is determined whether or not the output of the second air-fuel ratio sensor is equal to or higher than the slice level (set value) in S205. If the output is equal to or higher than the slice level (YES), a rich flag is set in S206, and CGPFLR is set to ΔS in S207.
KIP is increased and CGPFRL is increased by ΔSKIP
Just make it smaller.
【0025】 また、第2空燃比センサの出力がスライス
レベルより低い(S205でNO)という時は、S20
8でリーンフラッグを立て、S209でCGPFLRを
ΔSKIPだけ小さくし、また、CGPFRLをΔSK
IPだけ大きくする。 If the output of the second air-fuel ratio sensor is lower than the slice level (NO in S205), the flow goes to S20.
8, a lean flag is set, and in S209, CGPFLR is reduced by ΔSKIP, and CGPFLL is reduced by ΔSK.
Increase only IP.
【0026】 また、第2空燃比センサが活性でない(S
203でNO)という時は、S210でP値フィードバ
ック制御の実行フラッグを降ろす。そして、S211へ
行ってCGPFLRおよびCGPFRLをいずれも前回
値で更新する。 Further, the second air-fuel ratio sensor is not active (S
If (NO in 203), the execution flag of the P value feedback control is lowered in S210. Then, the process goes to S211 to update both CGPFLR and CGPFLL with the previous values.
【0027】 S207あるいはS208でCGPFLR
あるいはCGPFRLの増減を行った時は、つぎに、S
212でCGP(CGPFLRおよびCGPFRL)の
平均値がフェイル判定しきい値を越えていないかどうか
を見る。そして、しきい値を越えていない(YES)と
いうことであれば、S213へ進み、今回のフェイル判
定しきい値とCGP平均値の差Bと前回のフェイル判定
しきい値とCGP平均値の差B(i−1)すなわちB−
B(i−1)の値ΔAを求め、このΔAがCGPの収束
判定しきい値以下となったかどうかによって、P値制御
が収束したかどうかを判定する。そして、ΔAがCGP
の収束判定しきい値以下となった(YES)ということ
であれば、S214でCGP収束判定フラッグを立て、
S215でシステム正常の判定を行い、S216でフィ
ードバック補正量(CFB)の演算を実行し、その後、
S217で触媒劣化検出を実行する。 In step S207 or S208, the CGPFLR
Alternatively, when CGPFRL is increased or decreased, then S
At 212, it is determined whether the average value of CGP (CGPFLR and CGPFLL) does not exceed the fail determination threshold. If it does not exceed the threshold (YES), the process proceeds to S213, and the difference B between the current fail determination threshold and the CGP average value and the difference B between the previous fail determination threshold and the CGP average value B (i-1), that is, B-
The value ΔA of B (i−1) is obtained, and it is determined whether the P-value control has converged based on whether this ΔA has become equal to or less than the convergence determination threshold value of CGP. And ΔA is CGP
If the value is equal to or less than the convergence determination threshold value (YES), a CGP convergence determination flag is set in S214,
At S215, a determination is made as to whether the system is normal, and at S216, a feedback correction amount (CFB) is calculated.
At S217, catalyst deterioration detection is executed.
【0028】 また、S213の判定で、ΔAがCGPの
収束判定しきい値以下となっていなければ(NO)、S
218へ行ってCGP収束判定フラッグを降ろし、S2
19でCFB演算を実行した後、そのままリターンす
る。 If ΔA is not equal to or smaller than the convergence judgment threshold value of CGP in the judgment of S213 (NO), S
Go to 218, lower the CGP convergence determination flag, and go to S2
After executing the CFB operation in step 19, the process returns.
【0029】 また、S212の判定がNOすなわちCG
P平均値がしきい値を越えたという場合は、S220へ
行ってシステム異常の判定を行い、S221でランプを
点灯する。 If the determination in S212 is NO, that is, CG
If the P average value has exceeded the threshold value, the flow goes to S220 to determine a system abnormality, and the lamp is turned on in S221.
【0030】 また、第1空燃比センサが活性でない(S
201でNO)という時は、空燃比フィードバックは実
行しないので、S222でCFBを固定する。 Further , the first air-fuel ratio sensor is not active (S
If NO in step 201), the air-fuel ratio feedback is not executed, so that the CFB is fixed in step S222.
【0031】[0031]
【発明の効果】この出願の発明は以上のように構成され
ているので、触媒の下流側に配設した第2空燃比センサ
の出力により上流側の第1空燃比センサの劣化を検出す
るに際し、触媒の劣化と混同することなく第1空燃比セ
ンサの劣化を正確に検出できる。また、触媒劣化の誤判
定も防止できる。 Since the invention of this application is constructed as described above, it can be used to detect the deterioration of the upstream first air-fuel ratio sensor based on the output of the second air-fuel ratio sensor disposed downstream of the catalyst. Thus, the deterioration of the first air-fuel ratio sensor can be accurately detected without being confused with the deterioration of the catalyst. Also, misjudgment of catalyst deterioration
Can be prevented.
【図1】この出願の発明の全体構成図FIG. 1 is an overall configuration diagram of the invention of this application.
【図2】この出願の発明の作用を説明するタイムチャー
トFIG. 2 is a time chart illustrating the operation of the invention of this application.
【図3】この出願の発明の一実施例の全体システム図FIG. 3 is an overall system diagram of an embodiment of the invention of this application.
【図4】この出願の発明の一実施例におけるP値フィー
ドバック制御を説明するタイムチャートFIG. 4 is a time chart for explaining P value feedback control in one embodiment of the present invention;
【図5】この出願の発明の一実施例における空燃比セン
サの周波数劣化検出の制御を実行するフローチャートFIG. 5 is a flowchart illustrating control for detecting frequency deterioration of an air-fuel ratio sensor according to an embodiment of the present invention;
【図6】この出願の発明に関連する制御を実行するフロ
ーチャートFIG. 6 is a flowchart for executing control relating to the invention of this application;
1 エンジン本体 6 排気通路 7 触媒 8 インジェクタ 9 コントロールユニット 12 第1空燃比センサ 13 第2空燃比センサ DESCRIPTION OF SYMBOLS 1 Engine main body 6 Exhaust passage 7 Catalyst 8 Injector 9 Control unit 12 First air-fuel ratio sensor 13 Second air-fuel ratio sensor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02D 45/00 368 F02D 45/00 368G 368H (56)参考文献 特開 平2−204648(JP,A) 特開 平4−116239(JP,A) 特開 平3−286160(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 41/40 F02D 43/00 - 45/00 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification code FI F02D 45/00 368 F02D 45/00 368G 368H (56) References JP-A-2-204648 (JP, A) JP-A-4- 116239 (JP, A) JP-A-3-286160 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F02D 41/00-41/40 F02D 43/00-45/00
Claims (2)
化のための触媒の上流側に配設され、該エンジンに供給
される混合気の空燃比を目標空燃比にフィードバック制
御するため空燃比制御手段に空燃比信号を出力する第1
空燃比センサと、前記触媒の下流側に配設された第2空
燃比センサと、これら第1空燃比センサと第2空燃比セ
ンサとの出力を受け、両空燃比センサの出力の周波数比
に基づいて前記第1空燃比センサの故障を検出するセン
サ故障検出手段とを備えた空燃比検出装置において、 前記エンジンの吸入空気量に関連するパラメータを検出
する吸入空気量検出手段の出力を受け、吸入空気量が設
定値以上の時に前記第2空燃比センサの出力の周波数に
対する前記第1空燃比センサの出力の周波数の比が略1
となり、かつ、吸入空気量が設定値以下の時に前記第2
空燃比センサの出力の周波数に対する前記第1空燃比セ
ンサの出力の周波数の比が所定値以上となった場合に、
前記第1空燃比センサの故障と判定するよう前記センサ
故障検出手段を構成したことを特徴とする空燃比検出装
置の故障検出装置。1. An air-fuel ratio control means disposed in an exhaust passage of an engine on an upstream side of a catalyst for purifying exhaust gas and for feedback-controlling an air-fuel ratio of an air-fuel mixture supplied to the engine to a target air-fuel ratio. 1st output of air-fuel ratio signal
An air-fuel ratio sensor, a second air-fuel ratio sensor disposed downstream of the catalyst, a first air-fuel ratio sensor and a second air-fuel ratio sensor.
And a sensor failure detecting means for detecting a failure of the first air-fuel ratio sensor based on the frequency ratio of the outputs of the two air-fuel ratio sensors. Receiving the output of the intake air amount detecting means for detecting a parameter related to the intake air amount of the second air-fuel ratio sensor when the intake air amount is equal to or more than a set value.
The ratio of the output frequency of the first air-fuel ratio sensor to
And when the intake air amount is equal to or less than the set value, the second
The first air-fuel ratio sensor with respect to the frequency of the output of the air-fuel ratio sensor
When the ratio of the frequency of the sensor output exceeds a predetermined value,
A failure detection device for an air-fuel ratio detection device, wherein the sensor failure detection means is configured to determine that the first air-fuel ratio sensor has failed.
化のための触媒の上流側に配設され、該エンジンに供給Installed upstream of the catalyst for
される混合気の空燃比を目標空燃比にフィードバック制Feedback control of the air-fuel ratio of the air-fuel mixture
御するため空燃比制御手段に空燃比信号を出力する第1Output the air-fuel ratio signal to the air-fuel ratio control means in order to control
空燃比センサと、前記触媒の下流側に配設された第2空An air-fuel ratio sensor, and a second air disposed downstream of the catalyst.
燃比センサと、これら第1空燃比センサと第2空燃比セA fuel ratio sensor, the first air-fuel ratio sensor and the second air-fuel ratio sensor.
ンサとの出力を受け、両空燃比センサの出力の周波数比The frequency ratio of the output of both air-fuel ratio sensors
に基づいて前記第1空燃比センサの故障を検出するセンFor detecting a failure of the first air-fuel ratio sensor based on
サ故障検出手段と、これら第1空燃比センサと第2空燃The first air-fuel ratio sensor and the second air-fuel
比センサとの出力を受け、両空燃比センサの出力の周波Receives the output from the ratio sensor and outputs the frequency of the output from both air-fuel ratio sensors.
数比に基づいて前記触媒の劣化を検出する触媒劣化検出Catalyst deterioration detection for detecting deterioration of the catalyst based on a numerical ratio
手段を備えたエンジンの制御装置において、An engine control device comprising the means, 前記センサ故障検出手段は、前記エンジンの吸入空気量The sensor failure detecting means is configured to detect an intake air amount of the engine.
に関連するパラメータを検出する吸入空気量検出手段のOf the intake air amount detecting means for detecting the parameter related to
出力を受け、吸入空気量が設定値以下の時に、When the output is received and the intake air amount is below the set value, 前記第2The second
空燃比センサの出力の周波数に対する前記第1空燃比セThe first air-fuel ratio sensor with respect to the frequency of the output of the air-fuel ratio sensor
ンサの出力の周波数の比が所定値以上の場合は、前記第If the ratio of the output frequencies of the sensors is equal to or greater than a predetermined value,
1空燃比センサの故障と判定するものとし、(1) It is determined that the air-fuel ratio sensor has failed, 前記触媒劣化検出手段は、前記エンジンの吸入空気量にThe catalyst deterioration detecting means detects the amount of intake air of the engine.
関連するパラメータを検出する吸入空気量検出手段の出The output of the intake air amount detection means for detecting related parameters
力を受け、吸入空気量が設定値以下の時に、前記第2空When the intake air amount is equal to or less than the set value, the second air
燃比センサの出力の周波数に対する前記第1空燃比センThe first air-fuel ratio sensor with respect to the frequency of the output of the fuel ratio sensor
サの出力の周波数の比が所定値以上の場合は、前記触媒If the ratio of the output frequency of the
の劣化検出を非実行とするものとしたことを特徴とするCharacterized in that the deterioration detection is not executed
エンジンの制御装置。Engine control device.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03330421A JP3122856B2 (en) | 1991-12-13 | 1991-12-13 | Air-fuel ratio detection device failure detection device and engine control device |
US07/988,274 US5337555A (en) | 1991-12-13 | 1992-12-14 | Failure detection system for air-fuel ratio control system |
US08/195,671 US5414995A (en) | 1991-12-13 | 1994-02-16 | Failure detection system for air-fuel ratio control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03330421A JP3122856B2 (en) | 1991-12-13 | 1991-12-13 | Air-fuel ratio detection device failure detection device and engine control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05163984A JPH05163984A (en) | 1993-06-29 |
JP3122856B2 true JP3122856B2 (en) | 2001-01-09 |
Family
ID=18232421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03330421A Expired - Fee Related JP3122856B2 (en) | 1991-12-13 | 1991-12-13 | Air-fuel ratio detection device failure detection device and engine control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3122856B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1273045B (en) * | 1994-07-19 | 1997-07-01 | Weber Srl | ELECTRONIC CONTROL SYSTEM TITLE OF PETROL AIR MIXTURE SUPPLYING AN INTERNAL COMBUSTION ENGINE. |
IT1273044B (en) * | 1994-07-19 | 1997-07-01 | Weber Srl | ELECTRONIC CONTROL SYSTEM TITLE OF PETROL AIR MIXTURE SUPPLIED TO AN INTERNAL COMBUSTION ENGINE |
JP2005140075A (en) | 2003-11-10 | 2005-06-02 | Toyota Motor Corp | Failure detecting device |
-
1991
- 1991-12-13 JP JP03330421A patent/JP3122856B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05163984A (en) | 1993-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3759578B2 (en) | Deterioration detection device for exhaust gas purification catalyst | |
JP3156604B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3438298B2 (en) | Air-fuel ratio sensor failure detection device | |
JP3498817B2 (en) | Exhaust system failure diagnosis device for internal combustion engine | |
US5414995A (en) | Failure detection system for air-fuel ratio control system | |
JP3625163B2 (en) | Exhaust purification catalyst deterioration detection device | |
JP3855877B2 (en) | Deterioration detection device for air-fuel ratio detection device | |
JPH0718368B2 (en) | Catalyst deterioration detection device for internal combustion engine | |
JP3060745B2 (en) | Engine air-fuel ratio control device | |
JPH0914022A (en) | Air-fuel ratio control device for internal combustion engine | |
JP3122856B2 (en) | Air-fuel ratio detection device failure detection device and engine control device | |
JP2977986B2 (en) | Oxygen sensor deterioration detection method | |
JP2004278542A (en) | Fault diagnosing device in fuel supply system of internal combustion engine | |
JP2006126218A (en) | Deterioration detector for air-fuel ratio detection device | |
JP3342160B2 (en) | Catalyst deterioration detection device | |
JP2000027688A (en) | Air-fuel ratio control device for engine | |
JP3156582B2 (en) | Catalyst deterioration determination device for internal combustion engine | |
JP4281747B2 (en) | Deterioration detection device for air-fuel ratio detection device | |
JPH0617692A (en) | Failure judgment device for engine fuel system | |
JPH08121216A (en) | Air-fuel ratio control device for internal combustion engine | |
JP3028325B2 (en) | Catalyst deterioration detection device | |
JPH04365952A (en) | Deterioration detecting method for oxygen sensor | |
JP3010625B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0868362A (en) | Trouble diagnostic device for exhaust gas reflux device for internal combustion engine | |
JP2536753B2 (en) | Engine air-fuel ratio control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |