JP3116358B2 - Focus detection photometer - Google Patents
Focus detection photometerInfo
- Publication number
- JP3116358B2 JP3116358B2 JP02065298A JP6529890A JP3116358B2 JP 3116358 B2 JP3116358 B2 JP 3116358B2 JP 02065298 A JP02065298 A JP 02065298A JP 6529890 A JP6529890 A JP 6529890A JP 3116358 B2 JP3116358 B2 JP 3116358B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- focus detection
- conversion means
- correction coefficient
- photometric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Automatic Focus Adjustment (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Exposure Control For Cameras (AREA)
- Focusing (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、CCDラインセンサーを用いた焦点検出装置
を利用して安定性の高い測光値を得る焦点検出測光装置
に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus detection photometry device that obtains a highly stable photometry value using a focus detection device using a CCD line sensor.
[従来の技術] 従来、撮影画面の中央部の焦点検出を行う焦点検出装
置の光電変換出力に基づいて中央部のスポット測光出力
を得る焦点検出測光装置が知られている。例えば特開昭
62−188916号においては、焦点検出用に設けたCCDライ
ンセンサーの画素出力の全平均を算出して中央部の測光
値とする装置が開示されている。2. Description of the Related Art Conventionally, there has been known a focus detection photometry device that obtains a spot photometry output at a central portion based on a photoelectric conversion output of a focus detection device that performs focus detection at a central portion of a shooting screen. For example,
Japanese Patent Application Laid-Open No. 62-188916 discloses a device that calculates the total average of the pixel outputs of a CCD line sensor provided for focus detection and uses it as a photometric value at the center.
[発明が解決しようとする課題] しかしながら、このような従来の焦点検出装置を利用
した測光装置、所謂焦点検出測光装置にあっては、第16
図に示すように焦点検出領域100が十字形の二次元形状
を成す場合、第16図(A)に示すようにストライプ状の
輝度分布102を有する被写体の測光値を単純にラインセ
ンサー画素出力の全平均から算出すると、第16図(B)
のように僅かに画角を変化させた場合、ラインセンサー
の素子幅程度の僅かな画角の変化によって測光値が大き
く変動してしまい、信頼性と安定性に欠ける問題があっ
た。[Problems to be Solved by the Invention] However, in a photometric device using such a conventional focus detecting device, that is, a so-called focus detecting photometric device,
When the focus detection area 100 has a cross-shaped two-dimensional shape as shown in the figure, the photometric value of a subject having a stripe-shaped luminance distribution 102 as shown in FIG. When calculated from the overall average, Fig. 16 (B)
When the angle of view is slightly changed as described above, the photometric value greatly fluctuates due to a slight change in the angle of view about the element width of the line sensor, and there is a problem that reliability and stability are lacking.
本発明は、このような従来の問題点に鑑みてなされた
もので、焦点検出用の光電変換素子列の出力から僅かな
画角の変化等による影響を受けない安定性と信頼性の高
い測光値を得ることができる焦点検出測光装置を提供す
ることを目的とする。The present invention has been made in view of such a conventional problem, and has a stable and reliable photometry that is not affected by a slight change in the angle of view or the like from the output of the photoelectric conversion element array for focus detection. It is an object of the present invention to provide a focus detection photometry device capable of obtaining a value.
[課題を解決するための手段] まず本発明は、直線的な焦点検出領域を有する第1の
光電変換手段の受光出力に基づいて測光値を求める焦点
検出装置を対象とする。[Means for Solving the Problems] First, the present invention is directed to a focus detection device that obtains a photometric value based on a light receiving output of a first photoelectric conversion unit having a linear focus detection region.
このような焦点検出装置につき本発明にあっては、第
1の光電変換手段の焦点検出領域に交差する直線的な焦
点検出領域を有する第2の光電変換手段と、第2の光電
変換手段の出力信号に基づいて第1の光電変換手段の受
光信号を補正することによって測光値を算出する測光演
算手段とを備えたものである。According to the present invention, such a focus detection device includes a second photoelectric conversion unit having a linear focus detection region that intersects a focus detection region of the first photoelectric conversion unit, and a second photoelectric conversion unit. A photometric calculation means for calculating a photometric value by correcting a light receiving signal of the first photoelectric conversion means based on the output signal.
ここで、測光演算手段は、第2の光電変換手段の出力
信号から補正係数を算出する補正係数演算手段と、補正
係数を第1の光電変換手段の出力信号に掛け合わせた値
に基づいて測光値を算出する測光値演算手段とを備えた
ものである。Here, the photometric calculation means includes a correction coefficient calculation means for calculating a correction coefficient from an output signal of the second photoelectric conversion means, and a photometry based on a value obtained by multiplying the output signal of the first photoelectric conversion means by the correction coefficient. And a photometric value calculating means for calculating a value.
また、補正係数演算手段は、第1及び第2の光電変換
手段が互いに交差する部分の出力信号と、第2光電変換
手段の出力信号とに基づいて、補正係数を求める。Further, the correction coefficient calculating means obtains a correction coefficient based on an output signal of a portion where the first and second photoelectric conversion means intersect each other and an output signal of the second photoelectric conversion means.
さらに、補正係数演算手段は、第2の光電変換手段の
出力を(c1,c2,・・・,cm)とし、第1の光電変換手段
との交差領域の出力信号を(Ck+1,ck+2,・・・,ck+i)
とした時、補正係数f(c)を、 f(c)={(c1+・・・+cm)/m}/{(ck+1+・・・+ck+i)/i} として算出する。Further, the correction coefficient calculating means, the output of the second photoelectric conversion means and (c 1, c 2, ··· , c m) and the output signal of the intersections of the first photoelectric conversion means (C k +1 , c k + 2 , ..., c k + i )
Where f (c) = {(c 1 +... + C m ) / m} / {(c k + 1 +... + C k + i ) / i} Is calculated as
また、測光値演算手段は、補正係数を第1の光電変換
手段の出力の総和に掛け合わせた後に、光電変換手段の
蓄積時間で除して測光値を求める。Further, the photometric value calculating means multiplies the correction coefficient by the sum of outputs of the first photoelectric conversion means, and divides the result by the accumulation time of the photoelectric conversion means to obtain a photometric value.
また、補正係数は、光電変換手段内の位置に応じた重
み付け係数に基づいて決定される。The correction coefficient is determined based on a weighting coefficient corresponding to a position in the photoelectric conversion unit.
また、補正演算手段は、第2の光電変換手段の出力を
(c1,c2,・・・,cm)、第2の光電変換手段内の位置に
対する重み付け係数を(v1〜vm)、第1の光電変換手段
との交差領域の出力信号を(ck+1,ck+2,・・・,
ck+i)、第1の光電変換手段内の位置に対する重み付け
係数を(u1〜um)とした時、補正係数f(c)を、 f(c)=[{(v1×c1)+(v2×c2)+・・・ +(vm×cm)}/(v1+v2+・・・+vm)] /[{(vk-1×ck+1)+(vk×ck)+(vk+1×ck+1)} /(vk-1+vk+vk+1)] として算出する。The correction computation means outputs a second photoelectric conversion means (c 1, c 2, ··· , c m), the weighting factor for the position in the second photoelectric conversion means (v 1 to v m ), The output signal of the intersection area with the first photoelectric conversion means is represented by (c k + 1 , c k + 2 ,.
c k + i), when the weighting coefficient for the position in the first photoelectric conversion means and (u 1 ~u m), the correction coefficient f a (c), f (c) = [{(v 1 × c 1 ) + (v 2 × c 2 ) +... + (V m × c m )} / (v 1 + v 2 +... + V m )] / [{(v k−1 × c k + 1) ) + (V k × c k ) + (v k + 1 × c k + 1 )} / (v k−1 + v k + v k + 1 )].
[作用] このような構成を備えた本発明の焦点検出測光装置に
よれば、撮影画面中に二次元的な広がりを持つ被写体の
測光値を算出するにあたり、互いに交差したラインセン
サー(焦点検出素子列)の出力を掛け合わせて用い、例
えばXY十字形の場合、Y方向のラインセンサーの素子列
出力の分布状態がX方向のラインセンサーに沿った近傍
においても成り立つとみなし、交差した少なくとも2つ
のラインセンサーのカバーするエリア、例えば矩形エリ
ア内の被写体の輝度を推定し算出する。[Operation] According to the focus detection photometry device of the present invention having such a configuration, when calculating photometry values of a subject having a two-dimensional spread in a shooting screen, line sensors (focus detection elements) crossing each other are calculated. In the case of, for example, an XY cross shape, it is considered that the distribution state of the element row output of the line sensor in the Y direction is satisfied in the vicinity along the line sensor in the X direction. The luminance of the subject in an area covered by the line sensor, for example, a rectangular area is estimated and calculated.
従って従来問題となったラインセンサーの素子幅程度
の画角の変化は、測光対象となるエリアの大きさに比べ
て微小なため殆ど影響が出ないようになり、安定性の高
い測光値を得ることができる。Therefore, the change in the angle of view, which is about the element width of the line sensor, which has been a problem in the related art, is so small as to be smaller than the size of the area to be measured, so that it has almost no effect, and a highly stable photometric value is obtained. be able to.
[実施例] まず第1図に示すような十字形の検出領域100を持つ
焦点検出測光装置について本発明の原理を説明する。Embodiment First, the principle of the present invention will be described for a focus detection photometry device having a cross-shaped detection area 100 as shown in FIG.
第1図において、十字形の検出領域100の横方向(X
方向)列の一対の受光素子列(光電変換素子列)をA
列、B列とし、縦方向(Y方向)の受光素子列をC列、
D列とする。In FIG. 1, the cross direction (X
Direction) A pair of light receiving element rows (photoelectric conversion element rows)
Row, B row, and the light receiving element row in the vertical direction (Y direction) is C row,
Let it be column D.
ここでn個の受光素子を配列したA,B列の受光出力をA
D変換して得た受光データを A=a1,a2,・・・,an B=b1,b2,・・・,bn とし、またm個の受光素子を配列したC列,D列の受光出
力をAD変換して得た受光データを C=c1,c2,・・・,cm D=d1,d2,・・・,dm とする。例えばデフォーカス量が零(合焦時)であった
場合、受光データA,Bは同一の被写体について撮影レン
ズの異なる瞳領域を通過した光束が再結像して得られた
ものであるから、同一の値である。よって、被写体の輝
度情報として(A+B)/2の値を用いても良いし、Aも
しくはBのどちらか一方のみでも良い。受光データC,D
についても同様である。以後は輝度情報として受光デー
タA及びCを用いることとして説明する。Here, the light-receiving outputs of rows A and B, where n light-receiving elements are arranged, are A
The received light data obtained by the D conversion is A = a1, a2,..., An B = b1, b2,..., Bn, and the received light output of the C and D columns in which m light receiving elements are arranged , C = c1, c2,..., Cm D = d1, d2,. For example, when the defocus amount is zero (at the time of focusing), the light receiving data A and B are obtained by re-imaging light beams that have passed through different pupil regions of the photographing lens for the same subject. They have the same value. Therefore, the value of (A + B) / 2 may be used as the luminance information of the subject, or only one of A and B may be used. Light reception data C, D
The same applies to. Hereinafter, the description will be made assuming that the light receiving data A and C are used as the luminance information.
次に、被写体の輝度分布の一例を第2図に示す。 Next, an example of the luminance distribution of the subject is shown in FIG.
第2図において、X軸上に受光素子列A列が並び、Y
軸上に受光素子列C列が並んでいる。X,Y軸に直交する
E軸は被写体の輝度を表す。In FIG. 2, light receiving element row A is arranged on the X axis, and Y
The light receiving element rows C are arranged on the axis. The E axis orthogonal to the X and Y axes represents the brightness of the subject.
第2図のような被写体に関する測光値として、第3図
に破線で示すように立体の平均高さ、即ち平均被写体
輝度を採用する。ここで受光素子列A,Cの検出領域につ
いて注目すると、A列のデータ列a1〜anは第4図(A)
に示すように第2図の立体のX軸断面の輝度分布情報で
あり、同様にC列のデータ列c1〜cmは第4図(B)に示
すように、第2図の立体のY軸断面の輝度分布情報であ
る。As the photometric value of the subject as shown in FIG. 2, an average height of a solid, that is, an average subject brightness is adopted as shown by a broken line in FIG. Here the light receiving element array A, Paying attention to the detection region and C, the data sequence a 1 ~a n of column A FIG. 4 (A)
As shown in FIG. 4, it is luminance distribution information of the X-axis cross section of the solid in FIG. 2, and similarly, the data strings c 1 to cm of the C column, as shown in FIG. This is luminance distribution information of the Y-axis cross section.
通常の撮影においては被写体の大きさは焦点検出領域
に比べて十分大きく、また輝度の分布も撮影画面に対し
て二次元的広がりをもっている。よって第3図に示した
立体の平均高さ(被写体平均輝度)“”を求める方法
として、互いに交差したライン状の焦点検出用の受光素
子列の出力を掛け合わせ、一方の受光素子列、例えばY
軸方向の受光素子列Cの出力分布状態が他方の受光素子
列、例えばX軸方向の受光素子列Aに沿った近傍におい
ても成り立つとみなし、交差した2の受光素子列A,Cが
カバーする矩形エリア内の被写体の平均輝度を算出する
方法を用いる。In normal photographing, the size of the subject is sufficiently larger than the focus detection area, and the luminance distribution has a two-dimensional spread over the photographing screen. Therefore, as a method for obtaining the average height (average subject brightness) “” of the solid shown in FIG. 3, the outputs of the light receiving element arrays for focus detection in the form of lines intersecting each other are multiplied, and one of the light receiving element arrays, for example, Y
It is considered that the output distribution state of the light receiving element array C in the axial direction is established also in the vicinity of the other light receiving element array, for example, along the light receiving element array A in the X-axis direction, and the two intersecting light receiving element arrays A and C cover. A method of calculating the average luminance of the subject in the rectangular area is used.
いま第5図に示すようにA列の受光素子A1〜AnとC列
の受光素子C1〜Cmの交差領域に注目すると、交差領域に
存在するAj-1〜Aj+1とCk-1〜Ck+1との各々3つの受光素
子は同一領域を測光している。従って、交差領域のA,C
列の受光素子出力の総和は、同一の値となる。When now focusing on the intersection region of the light receiving element C1~Cm of the light receiving element A1~An and C columns from column A as shown in FIG. 5, present in the crossing area A j-1 ~A j + 1 and C k- Each of the three light receiving elements 1 to C k + 1 measures the same area. Therefore, A, C of the intersection area
The sum of the outputs of the light receiving elements in the column has the same value.
(aj-1+aj+aj+1)=(ck-1+ck+ck+1) ここでC列の受光素子の出力データc1〜cmは、X軸方
向での受光素子Ajの測光領域近傍での被写体のY軸方向
断面の輝度分布情報とみなせる。即ち、受光素子Ajの位
置するX軸の座標位置で被写体の輝度分布をY軸に沿っ
て測光したデータがc1〜cmで、このY軸断面の平均測光
出力である。(A j-1 + a j + a j + 1 ) = (c k-1 + c k + c k + 1 ) Here, the output data c 1 to cm of the light receiving elements in column C are the light receiving elements Aj in the X-axis direction. Can be regarded as the luminance distribution information of the cross section in the Y-axis direction of the subject in the vicinity of the photometric region. That is, data metering along the luminance distribution of the subject on the Y-axis coordinate position of the X axis position of the light receiving element Aj is at c 1 to c m, the average photometry output of the Y-axis section.
(c1+c2+…+cm)/m に対し、A列の受光素子Ajが測光出力としてajという測
光データを出力していることになる。For (c 1 + c 2 +... + C m ) / m, the light receiving elements Aj in row A output the photometric data aj as the photometric output.
よって、X軸上のAj対応位置でのY軸スライス断面の
平均測光データaj′は次式のように表すことができる。Therefore, the average photometric data a j ′ of the Y-axis slice cross section at the position corresponding to Aj on the X-axis can be expressed by the following equation.
aj′=(c1+c2+…+cm)/m =(ck-1+ck+ck+1)×(c1+c2+…+cm) /{(ck-1+ck+ck+1)×m} =(aj-1+aj+aj+1)×(c1+c2+…+cm) /{(ck-1+ck+ck+1)×m} ≒aj×3×(c1+c2+…+cm) /{(ck-1+ck+ck+1)×m} =aj×{(c1+c2+…+cm)/m} /{(ck-1+ck+ck+1)/3} =aj×f(c) ・・・(1) ここでf(c)は補正係数であり、従って前記第1式
より補正係数f(c)は、 f(c)={(c1+c2+…+cm)/m}/{(ck-1+ck+ck+1)/3} ・・・(2) として求められる。a j ′ = (c 1 + c 2 +... + c m ) / m = (c k-1 + c k + c k + 1 ) × (c 1 + c 2 +... + cm) / {(c k-1 + c k + c k) +1 ) × m} = (a j−1 + a j + a j + 1 ) × (c 1 + c 2 +... + Cm) / {(c k-1 + c k + c k + 1 ) × m} a j × 3 × (c 1 + c 2 +... + C m ) / {(c k-1 + c k + c k + 1 ) × m} = a j × {(c 1 + c 2 +... + C m ) / m} / {( c k-1 + c k + c k + 1 ) / 3} = a j × f (c) (1) where f (c) is a correction coefficient, and therefore, the correction coefficient f ( c) is obtained as f (c) = {(c 1 + c 2 +... + c m ) / m} / {(c k-1 + c k + c k + 1 ) / 3} (2)
同様にAj−1対応位置、Aj+1対応位置、Aj−2対応
位置、・・・A1対応位置、An対応位置でもAj対応位置と
相似なY軸方向の輝度分布と考えて良く、平均測光デー
タとして、 aj-1′=aj-1×f(c) aj+1′=aj+1×f(c) ・ ・ ・ ・ ・ ・ an′=an×f(c) が得られる。よって矩形領域の平均測光データは、次式
ようになる。Similarly, the Aj-1 corresponding position, the Aj + 1 corresponding position, the Aj-2 corresponding position,..., The A1 corresponding position, and the An corresponding position may be considered to be similar to the Aj corresponding position in the luminance distribution in the Y-axis direction. , a j-1 '= a j-1 × f (c) a j + 1' = a j + 1 × f (c) · · · · · · a n '= a n × f (c) is obtained Can be Therefore, the average photometry data of the rectangular area is expressed by the following equation.
a′=(a1+a2+…+an)×f(c)/n ・・・(3) この第(3)式は最終的に次式のようにまとめられ
る。a ′ = (a 1 + a 2 +... + a n ) × f (c) / n (3) This equation (3) is finally summarized as follows.
a′={(a1+…+an)×(c1+…+cm)×3} /{n×m×(ck-1+ck+ck+1)} ・・・(4) そして、第(4)式から算出された値をCCD蓄積時間
で除して所定の係数を掛けることにより測光値を得るこ
とができる。 a '= {(a 1 + ... + a n) × (c 1 + ... + c m) × 3} / {n × m × (c k-1 + c k + c k + 1)} ··· (4) and The photometric value can be obtained by dividing the value calculated from Expression (4) by the CCD accumulation time and multiplying the result by a predetermined coefficient.
以上が本発明による測光値算出の原理であり、これを
実現するためのアルゴリズムのフロー図を第6図に示
す。The principle of the photometric value calculation according to the present invention has been described above. FIG. 6 shows a flowchart of an algorithm for realizing the photometric value calculation.
まず、第6図ステップS1(以下ステップは省略する)
のようにA列の受光素子A1〜Anからの画素出力a1〜anの
積算値Σaを算出する。次にS2に進み、C列の受光素子
C1〜Cmからの画素出力c1〜cmの積算値Σcを算出する。
次にS3で縦横となるA列とC列のオーバーラップ部分の
C列の3つの画素出力ck-1〜ck+1より縦横列オーバーラ
ップ部の画素出力積算値Sを算出する。次にS4のように
矩形領域の平均測光データa′を算出し、最後にS5のよ
うに平均測光データa′をCCD蓄積時間Tで除して所定
の係数Bを掛け測光値を算出する。First, step S1 in FIG. 6 (steps are hereinafter omitted)
It calculates an integrated value Σa of the pixel output a 1 ~a n from the light receiving element A1~An the A string like. Next, proceed to S2, and the light receiving element in column C
It calculates an integrated value Σc of the pixel output c 1 to c m from C1-Cm.
Next, in S3, the pixel output integrated value S of the vertical / horizontal row overlap portion is calculated from the three pixel outputs ck-1 to ck + 1 of the vertical / horizontal column A and the vertical / horizontal column C in the overlap portion. Next, the average photometric data a 'of the rectangular area is calculated as in S4, and finally, the average photometric data a' is divided by the CCD accumulation time T and multiplied by a predetermined coefficient B to calculate the photometric value as in S5.
次に、第7図を用いて本発明の焦点検出測光装置を一
眼レフカメラに適用した場合の実施例を説明する。Next, an embodiment in which the focus detection photometry device of the present invention is applied to a single-lens reflex camera will be described with reference to FIG.
第7図において、カメラボディ20に対して交換可能な
レンズ10が着脱自在にマウントに装着されている。レン
ズ10を装着した状態において、被写体から到達する撮影
光束は撮影レンズ11を通ってカメラボディ20に設けられ
たメインミラー21により一部は反射されてファインダー
に導かれ、他の一部はメインミラー21を透過してサブミ
ラー22により反射され焦点検出測光用の光束としてAFモ
ジュール30に導かれる。In FIG. 7, the interchangeable lens 10 for the camera body 20 is detachably mounted on a mount. In a state where the lens 10 is mounted, a photographic light beam arriving from a subject passes through the photographic lens 11 and is partially reflected by a main mirror 21 provided on a camera body 20 and guided to a finder, and another part is a main mirror. The light passes through 21 and is reflected by the sub mirror 22 to be guided to the AF module 30 as a light beam for focus detection and photometry.
AFモジュール30の構成の一例を第8図に示す。 An example of the configuration of the AF module 30 is shown in FIG.
第8図において、AFモジュール30は視野マスク31、フ
ィールドレンズ32及び2組の一対の再結像レンズ28A,28
Bと29A,29Bから成る焦点検出光学系25と、2組の一対の
受光部38A,38Bと39A,39Bから成るCCD等の光電変換手段3
5とから構成されている。In FIG. 8, the AF module 30 includes a field mask 31, a field lens 32, and two pairs of re-imaging lenses 28A, 28A.
A focus detection optical system 25 comprising B, 29A and 29B, and a photoelectric conversion means 3 such as a CCD comprising two pairs of light receiving sections 38A and 38B and 39A and 39B.
It is composed of five.
このような構成において撮影レンズ11の射出瞳16に含
まれる光軸17に対して対称な2組の領域18A,18Bと領域1
9A,19Bを通る光束は、第1図に示したような焦点検出領
域全体に対応した開口形状を有する視野マスク31付近で
一次像を形成する。視野マスク31の開口部に形成された
一次像の一部は更にフィールドレンズ32及び2組の再結
像レンズ28A,28Bと29A,29Bにより光電変換手段35の2組
の受光部38A,38Bと39A,39B上に各々一対の二次像として
形成される。In such a configuration, two sets of regions 18A and 18B and a region 1 symmetrical with respect to the optical axis 17 included in the exit pupil 16 of the photographing lens 11
The light beams passing through 9A and 19B form a primary image near a field mask 31 having an opening shape corresponding to the entire focus detection area as shown in FIG. A part of the primary image formed at the opening of the field mask 31 is further combined with the field lens 32 and two sets of re-imaging lenses 28A and 28B and 29A and 29B to form two sets of light receiving parts 38A and 38B of the photoelectric conversion means 35. A pair of secondary images is formed on each of 39A and 39B.
公知のように光電変換手段35上で対をなした二次像の
受光部並び方向の相対的位置関係を検出することによ
り、撮影レンズのデフォーカス量を検出できる。As is well known, by detecting the relative positional relationship between the paired secondary images in the light receiving portion arrangement direction on the photoelectric conversion means 35, the defocus amount of the photographing lens can be detected.
第9図は光電変換手段35上での受光部配置構成を示
す。受光部38A,38Bは各々n個の受光素子A1〜An、B1〜B
nから成り、一次像がフィルム面と一致しているとき
(合焦時)、対応する受光素子、即ちA1とB1、A2とB2、
・・・との出力が等しくなるように配置されている。受
光部39A,39Bについても同様である。FIG. 9 shows the arrangement of the light receiving section on the photoelectric conversion means 35. The light receiving sections 38A and 38B each include n light receiving elements A1 to An and B1 to B
n, when the primary image coincides with the film surface (at the time of focusing), the corresponding light receiving elements, ie, A1 and B1, A2 and B2,
Are arranged to be equal. The same applies to the light receiving units 39A and 39B.
受光部38A,38B,39A,39Bを形成する受光素子は、フォ
トダイオード等の電荷蓄積型素子によって構成されてお
り、光電変換手段35上の照度に応じた電荷蓄積時間だけ
電荷蓄積を行うことにより受光素子出力を適正な出力レ
ベルに制御することができる。The light-receiving elements forming the light-receiving sections 38A, 38B, 39A, and 39B are configured by charge storage elements such as photodiodes, and perform charge storage for a charge storage time according to the illuminance on the photoelectric conversion means 35. The output of the light receiving element can be controlled to an appropriate output level.
再び第7図を参照するに、センサー制御手段40はCPU1
00のポートP3からの電荷蓄積開始及び終了指令を受け取
り、指令に応じた制御信号を光電変換手段35に与えるこ
とにより光電変換手段35の電荷蓄積時間を制御する。ま
た、転送クロック信号等を光電変換手段35に与え受光素
子信号出力を時系列的にCPU100に転送するとともに、受
光素子信号出力の転送開始に同期した同期信号をCPU100
のポートP3に送る。CPU100はこの信号に同期して内蔵し
たAD変換手段によりポートP1に入力する受光素子出力信
号のAD変換を開始し、受光素子数に応じたAD変換データ
を得る。AD変換が終了すると、得られたデータに対して
本出願人による特開昭60−37513号に開示された3点内
挿法等によりデフォーカス量を検出する。Referring again to FIG. 7, the sensor control means 40
A charge accumulation start and end command is received from the port P3 of 00, and a control signal corresponding to the command is given to the photoelectric conversion means 35 to control the charge accumulation time of the photoelectric conversion means 35. Also, a transfer clock signal or the like is given to the photoelectric conversion means 35, and the light receiving element signal output is transferred to the CPU 100 in time series.
To port P3. The CPU 100 starts the AD conversion of the light receiving element output signal input to the port P1 by the built-in AD converting means in synchronization with this signal, and obtains AD conversion data according to the number of light receiving elements. When the AD conversion is completed, the defocus amount is detected from the obtained data by a three-point interpolation method disclosed in Japanese Patent Application Laid-Open No. 60-37513 by the present applicant.
CPU100はデータを処理してデフォーカス量を算出する
と、デフォーカス量に基づきAF表示手段50の表示部51,5
2,53,54の表示形態をポートP2を用いて制御する。ま
た、AFモード選択手段76の設定情報(AFモード、MFモー
ド)はCPU100のポートP11に送られ、AFモード設定時、C
PU100は該デフォーカス量に基づきAFモータ60の駆動方
向及び駆動量をポートP12を用いて制御して、撮影レン
ズ駆動系65を介して撮影レンズ11を合焦点に移動させ
る。After calculating the defocus amount by processing the data, the CPU 100 displays the display units 51, 5 of the AF display means 50 based on the defocus amount.
The display mode of 2, 53, 54 is controlled using the port P2. The setting information (AF mode, MF mode) of the AF mode selection means 76 is sent to the port P11 of the CPU 100, and when the AF mode is set, C
The PU 100 controls the driving direction and the driving amount of the AF motor 60 using the port P12 based on the defocus amount, and moves the photographing lens 11 to a focal point via the photographing lens drive system 65.
CPU100はデフォーカス量の算出と並行もしくは時系列
的に前後して、得られたデータに基づき第6図に示した
アルゴリズムに従ってデータ処理を行い測光値を算出す
る。また、スポット測光値以外の測光値は、ポートP5に
送られる測光手段90の出力信号により算出する。CPU100
は、ポートP9に送られる測光モード選択手段78のスポッ
ト測光かその他の測光モードかの設定情報に基づいて、
測光表示手段80の表示部81,82の表示形態をポートP4を
用いて制御する。更に、ポートP10に送られるAEモード
選択手段77の設定情報(マニュアル、シャッター優先A
E、絞り優先AE、プログラムAE、デーライトシンクロ
等)によっては、算出された測光値よりCPU100はシャッ
ター制御手段70、絞り制御手段72及びストロボ制御手段
74をポートP6〜P8を用いて単独にもしくは並列的に制御
し、適正露光をフィルムに与える。The CPU 100 performs data processing in accordance with the algorithm shown in FIG. 6 based on the obtained data before or after the calculation of the defocus amount in parallel or in time series, and calculates the photometric value. Further, photometric values other than the spot photometric value are calculated based on the output signal of the photometric means 90 sent to the port P5. CPU100
Is based on the spot metering or other metering mode setting information of the metering mode selection means 78 sent to the port P9,
The display mode of the display units 81 and 82 of the photometric display unit 80 is controlled using the port P4. Further, the setting information (manual, shutter priority A) of the AE mode selection means 77 sent to the port P10
E, aperture priority AE, program AE, daylight sync, etc.), the CPU 100 determines the shutter control unit 70, the aperture control unit 72, and the flash control unit from the calculated photometric value.
74 is controlled singly or in parallel using ports P6 to P8 to give proper exposure to the film.
以上が本発明にかかる焦点検出測光装置を一眼レフカ
メラに適用した実施例の構成及び動作の概要である。The above is the outline of the configuration and operation of the embodiment in which the focus detection photometry device according to the present invention is applied to a single-lens reflex camera.
次に、本発明の測光値算出方法が従来の測光値算出方
法に比べ安定性が高いことを説明する。Next, the fact that the photometric value calculation method of the present invention has higher stability than the conventional photometric value calculation method will be described.
従来例として、測光データの算出を受光素子データの
総平均として求める方法が知られている。算出式は、下
記のようになる。As a conventional example, there is known a method of calculating photometric data as a total average of light receiving element data. The calculation formula is as follows.
a″=(a1+a2+…+an+c1+c2+…+cm)/(n+m) ここで、第10図に示す輝度分布をもつ被写体を考え
る。最初の測光時、n=99個の受光素子A1〜A99の受光
データa1〜a99が第11図(A)の値をもち、また、m=4
9個の受光素子C1〜C49の受光データc1〜c49が第11図
(B)の値であったとする。 a "= (a 1 + a 2 + ... + a n + c 1 + c 2 + ... + c m) / (n + m) , where. during the first metering considered a subject having a luminance distribution shown in FIG. 10, n = 99 pieces The light receiving data a1 to a99 of the light receiving elements A1 to A99 have the values shown in FIG. 11 (A), and m = 4
It is assumed that the light receiving data c1 to c49 of the nine light receiving elements C1 to C49 have the values shown in FIG. 11B.
この場合、従来方法による測光データa″及び本発明
による測光データa′は各々次のようになる。In this case, the photometric data a ″ according to the conventional method and the photometric data a ′ according to the present invention are as follows.
[従来] a″ =(a1+a2+…+a99+c1+c2+…+c49)/(99+49) ={(200×99)+(50×23)+(200×26)}/148 =26150/148 =177 [本発明] a′={(a1+…+a99)×(c1+…+c49)×3} /{(99×49×(c24+c25+c26)} =[(200×99)+{(50×23)+(200×26)}×3] /{99×49×(200×3)} =130 次に、撮影画角を僅かに変化させると、その後の測光
で第12図のような受光素子データが得られ、従来データ
a″及び本発明のデータa′は次のようになる。[Conventional] a ″ = (a 1 + a 2 +... + A 99 + c 1 + c 2 +... + C 49 ) / (99 + 49) = {(200 × 99) + (50 × 23) + (200 × 26)} / 148 = 26150/148 = 177 [present invention] a '= {(a 1 + ... + a 99) × (c 1 + ... + c 49) × 3} / {(99 × 49 × (c 24 + c 25 + c 26)} = [(200 × 99) + {(50 × 23) + (200 × 26)} × 3] / {99 × 49 × (200 × 3)} = 130 Next, if the shooting angle of view is slightly changed, Then, the photometric data as shown in FIG. 12 is obtained by the photometry, and the conventional data a ″ and the data a ′ of the present invention are as follows.
[従来] a″={(50×99)+(50×26)+(200×23)}/148 =73 [本発明] a′ =[(50×99)×{(50×26)+(200×23)}×3] /{99×49×(50×3)} =120 この具体例で明らかなように、従来の方法によれば僅
かな画角の変化によって測光データが59%も低くなるの
に対して、本発明の方法によれば9%の変化に収まる。
画角の変化に対する本発明の方法による測光値変化は従
来より一般的なSPD受光素子を用いたスポット測光方式
の測光値変化と近く、従来よりの使用感と同等で違和感
が少ないため撮影者にとって操作性がよい。[Conventional] a ″ = {(50 × 99) + (50 × 26) + (200 × 23)} / 148 = 73 [Invention] a ′ = [(50 × 99) × {(50 × 26) + (200 × 23)} × 3] / {99 × 49 × (50 × 3)} = 120 As is clear from this specific example, according to the conventional method, the photometric data is 59% due to a slight change in the angle of view. , While the method of the present invention falls within a 9% change.
The change in the photometric value according to the method of the present invention with respect to the change in the angle of view is close to the change in the photometric value of the spot photometric method using a conventional SPD light receiving element, and is equivalent to the conventional feeling of use and has little uncomfortable feeling. Operability is good.
以上のように、本発明による焦点検出測光装置は安定
性の高い操作性良好な測光値を得られるが、測光値の算
出方法は上記に限定されるものではない。As described above, the focus detection photometry device according to the present invention can obtain a photometry value with high stability and good operability, but the method of calculating the photometry value is not limited to the above.
前述した本発明の算出方法の応用例として、受光素子
の位置に対応して受光素子データに重み付け係数を掛け
合わせれば、中央部重点式のスポット測光装置や下方重
点式のスポット測光装置とすることも可能である。As an application example of the above-described calculation method of the present invention, by multiplying the light receiving element data by a weighting coefficient corresponding to the position of the light receiving element, a center-weighted spot metering device or a lower-weighted spot metering device can be obtained. Is also possible.
以下に、重み付け係数を掛け合わせる応用例を説明す
る。Hereinafter, an application example of multiplying by a weighting coefficient will be described.
C列の受光素子C1〜Cmの画素出力c1〜cmに対する重み
付け係数をv1〜vmとすれば、補正係数f(c)を求める
前記第(2)式は次式のように改められる。If the weighting coefficient for the pixel output c 1 to c m of the light-receiving element C1~Cm column C v and 1 to v m, the first (2) for obtaining the correction coefficient f (c) is amended as follows Can be
f(c)=[{(v1×c1)+(v2×c2)+… +(vm×cm)}/(v1+v2+…+vm)] /[{(vk-1×ck-1)+(vk×ck)+(vk+1×ck+1)} /(vk-1+Vk+vk+1)] ・・・(5) 次に、A列の受光素子A1〜Anの画素出力a1〜anに対す
る重み付け係数をu1〜unとすれば、任意の位置のAi対応
位置でのY軸スライス断面の重み付け係数付きの平均測
光データai′は次式になる。f (c) = [{( v 1 × c 1) + (v 2 × c 2) + ... + (v m × c m)} / (v 1 + v 2 + ... + v m)] / [{(v k-1 × c k-1 ) + (v k × c k) + (v k + 1 × c k + 1)} / (v k-1 + V k + v k + 1)] ··· (5) then, the weighting factor for the pixel output a 1 ~a n of light receiving elements A1~An column a if u 1 ~u n, with the weighting coefficients of the Y-axis slice sections at Ai corresponding positions in an arbitrary position The average photometric data ai 'is given by the following equation.
ai′=ui×ai×f(c) ・・・(6) よって、A列の受光素子A1〜An及びC列の受光素子C1
〜Cmより構成される矩形領域の平均測光データを求める
前記第(3)式は、iに対応する重み付けを受けて次式
になる。a i ′ = u i × a i × f (c) (6) Therefore, the light receiving elements A1 to An in row A and the light receiving element C1 in row C
Equation (3) for calculating the average photometric data of a rectangular area composed of .about.Cm is given by the following equation after receiving weighting corresponding to i.
a′=[{(u1×a1)+(u2×a2)+…+(un×an)} ×f(c)]/(u1+u2+…+un) ・・・(7) 重み付け係数u1〜un及びv1〜vmは、連続的に滑らかに
変化する変数でもよいし、計算の簡略のため、いくつか
の区間を設定して段階的に重い付けが変化するように値
を設定しても良い。中央重点式の一例をあげるならば、
第17図(A)〜(C)に示すように、A列の受光素子A1
〜An及びC列の受光素子C1〜Cmを各々3つの区間に分
け、各区間ごとの重み付け係数を下記のように設定すれ
ばよい。 a '= [{(u 1 × a 1) + (u 2 × a 2) + ... + (u n × a n)} × f (c)] / (u 1 + u 2 + ... + u n) ·· - (7) the weighting factor u 1 ~u n and v 1 to v m may be a continuously and smoothly varying variable, for the calculation simpler, some sections to set the stepwise heavy with May be set so as to change. To give an example of the center-weighted formula,
As shown in FIGS. 17 (A) to 17 (C), the light receiving elements A1 in row A
The light-receiving elements C1 to Cm in the columns .about.An and C are each divided into three sections, and the weighting coefficient for each section may be set as follows.
A列(A1〜An)については、第17図(A)のように下
記の3つの区間に対して重み付けを行う。; 区間 1≦i<(n/3):ui=1 区間 (n/3)≦i≦{(2×n)/3}:ui=2 区間 {(2×n)/3}<i≦n:ui=1 C列(C1〜Cm)についても同様に、第17図(B)のよ
うに重み付けを行う。; 区間 1≦i<(m/3):vi=1 区間 (m/3)≦i≦{(2×m)/3}:vi=2 区間 {(2×m)/3}<i≦m:vi=1 よって、上記の如くA列及びC列について重み付けを
行うと、矩形領域の測光感度分布(重み付けによる相対
感度)形状は、第17図(C)に示すようになる。For column A (A1 to An), the following three sections are weighted as shown in FIG. 17 (A). Section 1 ≦ i <(n / 3): u i = 1 section (n / 3) ≦ i ≦ {(2 × n) / 3}: u i = 2 section {(2 × n) / 3} < i ≦ n: u i = 1 Similarly, weighting is applied to the C columns (C1 to Cm) as shown in FIG. 17 (B). Section 1 ≦ i <(m / 3): v i = 1 section (m / 3) ≦ i ≦ {(2 × m) / 3}: v i = 2 section {(2 × m) / 3} < i ≦ m: v i = 1 Accordingly, when weighting is performed on the rows A and C as described above, the shape of the photometric sensitivity distribution (relative sensitivity by weighting) of the rectangular area becomes as shown in FIG. 17 (C). .
また、下方重点式の例をあげるならば、第7図にて不
図示の姿勢検知手段等によってCPU100が、C列の受光素
子C1方向が天で、Cm方向が地であると判断したときに、
各区間ごとの重み付け係数を下記のように設定すればよ
い。In addition, as an example of the lower-priority type, when the CPU 100 determines that the direction of the light receiving element C1 in column C is heaven and that the direction of Cm is ground by an attitude detecting means or the like not shown in FIG. ,
The weighting coefficient for each section may be set as follows.
A列について; 区間 1≦i<(n/3):ui=1 区間 (n/3)≦i≦{(2×n)/3}:ui=2 区間 {(2×n)/3}<i≦n:ui=1 C列について; 区間 1≦i<(m/3):vi=1 区間 (m/3)≦i≦{(2×m)/3}:vi=2 区間 {(2×m)/3}<i≦m:vi=2 なお、区間の分割は3つに限られるものではなく、重
み付け係数の割り付けも上記に限定されるものではな
い。For column A; interval 1 ≦ i <(n / 3): u i = 1 interval (n / 3) ≦ i ≦ {(2 × n) / 3}: u i = 2 interval {(2 × n) / 3} <i ≦ n: u i = 1 For column C; section 1 ≦ i <(m / 3): v i = 1 section (m / 3) ≦ i ≦ {(2 × m) / 3}: v i = 2 Section {(2 × m) / 3} <i ≦ m: v i = 2 The division of the section is not limited to three, and the assignment of weighting coefficients is not limited to the above. .
重み付け係数は受光素子データの特性によりCPU100が
自動的に選択してもよいし、測光モード選択手段78やAF
モード選択手段76に連動して選択されるようになってい
てもよい。The weighting coefficient may be automatically selected by the CPU 100 according to the characteristics of the light receiving element data, or may be selected by the light metering mode selection unit 78 or AF.
The selection may be made in conjunction with the mode selection means 76.
重み付け係数は複数設定可能であり、係数によって第
13図(A)〜(C)に示すように、測光表示手段80にお
いて中央重点度の設定に応じ、地図の等高線表示に類し
て、中央重点度の低い場合、第13図(A)のように、中
央重点度が中程度の場合、第13図(B)のように、中央
重点度が高い場合、第13図(C)のように表示を行な
う。A plurality of weighting coefficients can be set.
As shown in FIGS. 13 (A) to 13 (C), in accordance with the setting of the center emphasis in the photometric display means 80, when the center emphasis is low, similar to the contour display of the map, FIG. Thus, when the center importance is medium, the display is performed as shown in FIG. 13B, and when the center importance is high, the display is performed as shown in FIG. 13C.
また、受光素子データの出力コントラストが第10図
(B)や第11図(B)の例よりも更に極端で、低出力部
のデータの信頼性が極めて低い場合や、明らかに被写体
の連続性が無いと判断された場合は、測光値算出の領域
を限定するようにしても良い。例えば、A列の最後の受
光データan近傍での出力が極めて低い場合や、最初の受
光データa1近傍及び最後の受光データan近傍での出力が
極めて低い場合は、第14図(A)に示す測光表示手段80
の領域表示から第14図(B)及び(C)に示す限定され
た測光値算出領域を表示するようにする。Also, the output contrast of the light receiving element data is much more extreme than in the examples of FIGS. 10 (B) and 11 (B), and the reliability of the data in the low output part is extremely low, If it is determined that there is no photometry value, the area for photometric value calculation may be limited. For example, when the output in the vicinity of the last received light data an in the row A is extremely low, or when the output in the vicinity of the first received light data a1 and in the vicinity of the last received light data an is extremely low, FIG. Photometric display means 80
The limited photometric value calculation area shown in FIGS. 14B and 14C is displayed from the area display of FIG.
また、本発明にかかる焦点検出測光装置の測光値算出
アルゴリズムと例として、先ず縦方向の受光素子列の素
子出力から補正係数を求め、その後横方向の受光素子列
の素子出力の和に掛け合わせて測光データを算出するア
ルゴリズムを示したが、その逆で先ず横方向の受光素子
列の素子出力から補正係数を求め、その後縦方向の受光
素子列の素子出力の和に掛け合わせて測光データを算出
するアルゴリズムを用いてもよいことは勿論である。Further, as an example of the photometric value calculation algorithm of the focus detection photometric device according to the present invention, a correction coefficient is first obtained from the element outputs of the light receiving element rows in the vertical direction, and then multiplied by the sum of the element outputs of the light receiving element rows in the horizontal direction. Although the algorithm for calculating the photometric data was shown, the conversely, first, a correction coefficient was obtained from the element outputs of the light receiving element rows in the horizontal direction, and then multiplied by the sum of the element outputs of the light receiving element rows in the vertical direction to obtain the photometric data. It goes without saying that an algorithm for calculation may be used.
具体的には、第6図のS3における縦横となるA,C列オ
ーバーラップ部の画素出力積算値Sをaj-1〜aj+1より算
出しても構わない。Specifically, the pixel output integrated value S of the vertical and horizontal A and C column overlap portions in S3 in FIG. 6 may be calculated from a j-1 to a j + 1 .
(aj-1+aj+aj+1)と(ck-1+ck+ck+1)は同一の値で
あるから、算出された測光データも同一になる。Since (a j-1 + a j + a j + 1 ) and (c k-1 + c k + c k + 1 ) have the same value, the calculated photometric data is also the same.
また、本実施例は類似二次元形状の検出領域として十
字形の例をもって説明したが、第15図のようなH形の場
合には、Y軸方向の輝度分布情報としてC列の受光デー
タc1〜cmとE列の受光データe1〜emを用いて、受光素子
列C1〜CmとE1〜Emに挟まれた領域については、本発明の
明細書に説明した方法でc1〜cmより求めた補正係数g
(c)と、e1〜emより求めた補正係数g(e)の中間的
値を用いてa1〜anに掛け合わせても良い。Although the present embodiment has been described with reference to the case where the detection area of the similar two-dimensional shape is a cross shape, in the case of the H shape as shown in FIG. 1 using a to c m and receiving data e 1 to e m of column E, the region sandwiched by the light-receiving element array C1~Cm and E1~Em is, c 1 ~ in the manner described in the specification of the present invention Correction coefficient g obtained from cm
And (c), may be used an intermediate value of the correction coefficient g (e) obtained from e 1 to e m multiplied in a 1 ~a n.
具体的に説明するならば、A列とC列との交差領域の
C列の受光データをck-1〜ck+1としたときにc1〜cmより
求められる補正係数g(c)は次式のようになる。More specifically, the correction coefficient g (c) obtained from c 1 to cm when the light receiving data of the C column in the intersection area between the A column and the C column is c k−1 to c k + 1. ) Is as follows.
g(c)={(c1+c2+…+cm)/m} /{(ck-1+ck+ck+1)/3} ・・・(8) 一方、A列とE列との交差領域のE列の受光データを
ek-1〜ek+1とすれば、e1〜emより求められる補正係数g
(e)は同様に次式のようになる。g (c) = {(c 1 + c 2 +... + c m ) / m} / {(c k−1 + c k + c k + 1 ) / 3} (8) The received light data of column E in the intersection area of
if e k-1 ~e k + 1 , the correction coefficient obtained from the e 1 to e m g
(E) is similarly expressed by the following equation.
g(e)={(e1+e2+…+em)/m} /{(ek-1+ek+ek+1)/3} ・・・(9) 上記2つの補正係数の中間的値として単純平均を用い
ることとすれば、a1〜anに掛け合わせる補正係数は、 g(c,e)={g(c)+g(e)}/2 ・・・(10) となり、任意の位置のAi対応位置でのY軸スライス断面
の重み付け係数付きの平均測光データai′は次式にな
る。g (e) = {(e 1 + e 2 + ... + e m) / m} / {(e k-1 + e k + e k + 1) / 3} ··· (9) an intermediate of the two correction factors if the use of a simple average as the value, the correction factor by multiplying the a 1 ~a n is, g (c, e) = {g (c) + g (e)} / 2 ··· (10) , and the The average photometric data a i ′ with the weighting coefficient of the Y-axis slice section at an arbitrary position corresponding to Ai is given by the following equation.
ai′=ui×ai×f(c) よって、最終的に矩形領域の平均測光データは次式の
ようになる。a i ′ = u i × a i × f (c) Therefore, the average photometry data of the rectangular area is finally expressed by the following equation.
a′={(a1+a2+…+an)×g(c,e)}/n =[{(a1+a2+…+an)×3}/(n×m×2)] ×[(c1+c2+…+cm)/(ck-1+ck+ck+1)} +{(e1+e2+…+em)/(ek-1+ek+ek+1)}] ・・・(11) なお、中間的値の補正係数の求め方は上記に限定され
るものではない。また、計算の簡略化のために、g
(c)とg(e)とが略同一と見なせる場合において
は、 g(c,e)=g(c) としてもよい。この場合、第(8)式は第(4)式と同
じになる。また、 g(c,e)=g(e) とした場合でも同様なことは、自明である。また、前記
重み付け係数を併せて掛け合わせ可能なことも勿論であ
る。 a '= {(a 1 + a 2 + ... + a n) × g (c, e)} / n = [{(a 1 + a 2 + ... + a n) × 3} / (n × m × 2)] × [(C 1 + c 2 + ... + c m ) / (c k-1 + c k + c k + 1 ) +} (e 1 + e 2 + ... + e m ) / (e k-1 + e k + e k + 1 ) }] (11) The method of obtaining the correction coefficient of the intermediate value is not limited to the above. For simplicity of calculation, g
In the case where (c) and g (e) can be regarded as substantially the same, g (c, e) = g (c). In this case, Expression (8) becomes the same as Expression (4). The same is obvious even when g (c, e) = g (e). Further, it is needless to say that the weighting coefficients can be multiplied together.
また、a1〜anのC列及びE列よりの距離に応じて補間
補正係数h(i)を求め、a1〜anに掛け合わせても良
い。Also, it determines the interpolation correction coefficient h (i) according to the distance from the column C and column E of a 1 ~a n, may be multiplied in a 1 ~a n.
以下に、補間補正係数h(i)の求め方を説明する。 Hereinafter, a method of obtaining the interpolation correction coefficient h (i) will be described.
上記第(5)式により求めた補正係数g(c)は、A
列の受光素子A1の測光領域近傍での被写体のY軸方向断
面の輝度分布情報に基づく補正係数である。また、上記
第(6)式により求めた補正係数g(e)は、A列の受
光素子Anの測光領域近傍での被写体のY軸方向断面の輝
度分布情報に基づく補正係数である。The correction coefficient g (c) obtained by the above equation (5) is A
This is a correction coefficient based on luminance distribution information of a cross section in the Y-axis direction of the subject near the photometric region of the light receiving element A1 in the row. Further, the correction coefficient g (e) obtained by the above equation (6) is a correction coefficient based on the luminance distribution information of the section in the Y-axis direction of the subject in the vicinity of the photometry area of the light receiving element An in the A-th row.
よってX軸上のA列の受光素子A1〜Anのうち、任意の
位置のAi対応位置でのY軸スライス断面の平均測光デー
タai′は、AiがA1に近ければ、 ai′=ai×g(c) とみなせ、AiがAnに近ければ、 ai′=ai×g(e) とみなせる。また、AiがA1とAnとの中間に位置する場合
は、 ai′=ai×{g(c)+g(e)}/2 とみなせる。Therefore, among the light receiving elements A1 to An in row A on the X-axis, the average photometric data ai 'of the Y-axis slice cross section at an arbitrary position corresponding to Ai is ai ' = a if Ai is close to A1. regarded as i × g (c), Ai is the closer to an, regarded as a i '= a i × g (e). When Ai is located between A1 and An, it can be considered that ai ′ = ai × {g (c) + g (e)} / 2.
以上の関係から、連続的な位置を表すiの関数として
の補間補正係数h(i)を式として表すと、次式にな
る。From the above relationship, when the interpolation correction coefficient h (i) as a function of i representing a continuous position is expressed as an equation, the following equation is obtained.
h(i)=[{(n−i+1)×g(c)} +{(i−1)×g(e)}]/n (1≦i≦n) ・・・(12) よって、任意の位置のAi対応位置でのY軸スライス断
面の平均測光データai′は、次式で表せる。h (i) = [{(n−i + 1) × g (c)} + {(i−1) × g (e)}] / n (1 ≦ i ≦ n) (12) The average photometric data a i ′ of the Y-axis slice cross-section at the position corresponding to Ai at the position (1) can be expressed by the following equation.
ai′=h(i)×ai ・・・(13) また、受光素子列C1〜Cm、E1〜Em及びA1〜Anより構成
される矩形領域の平均測光データは、次式のようにな
る。a i ′ = h (i) × a i (13) The average photometric data of the rectangular area composed of the light receiving element rows C1 to Cm, E1 to Em and A1 to An is given by the following equation. Become.
a′={(a1×h(1))+(a2×h(2))+… +(an×h(n))}/n ・・・(14) なお、補間補正係数h(i)の求め方は上記に限定さ
れるものではない。例えば、計算の簡略化のために、A
列の受光素子A1〜Anを3つの区間に分け、各区間ごとの
補間補正係数h(i)を下記の数値で代表させてもよ
い。a ′ = {(a 1 × h (1)) + (a 2 × h (2)) +... + (a n × h (n))} / n (14) The interpolation correction coefficient h The method of obtaining (i) is not limited to the above. For example, for simplicity of calculation, A
The light receiving elements A1 to An in the row may be divided into three sections, and the interpolation correction coefficient h (i) for each section may be represented by the following numerical values.
区間 1≦i<(n/3):h(i)=g(c) 区間 (n/3)≦i≦{(2×n)/3}:h(i)={g(c)+g(e)}/2 区間 {(2×n)/3}<i≦n:h(i)=g(e)
また、区間の分割も3つに限るものではない。また、
前記重み付け係数を併せて掛け合わせ可能なことも勿論
である。Section 1 ≦ i <(n / 3): h (i) = g (c) Section (n / 3) ≦ i ≦ {(2 × n) / 3}: h (i) = {g (c) + g (E)} / 2 section {(2 × n) / 3} <i ≦ n: h (i) = g (e)
The division of the section is not limited to three. Also,
Of course, the weighting coefficients can be multiplied together.
[発明の効果] 以上説明したように本発明の焦点検出測光装置によれ
ば、僅かな画角の変化による測光値の大きな変動を回避
でき、安定した測光値が高い精度で得られる。また従来
のスポット測光と類似した特性を有するため、操作性も
良い。[Effects of the Invention] As described above, according to the focus detection photometry device of the present invention, a large change in photometry value due to a slight change in the angle of view can be avoided, and a stable photometry value can be obtained with high accuracy. In addition, the operability is good because it has characteristics similar to those of the conventional spot metering.
第1図は本発明の検出領域の説明図; 第2図、第3図は被写体の輝度分布の例の説明図; 第4図は第2,3図に対応した受光素子出力の説明図; 第5図は検出領域の部分拡大図; 第6図は本発明による焦点検出測光装置の測光値演算に
関するブロック図; 第7図は本発明による焦点検出測光装置の構成図; 第8図は本発明に用いられる検出光学系の説明図; 第9図は光電変換手段の構成図; 第10図は別の被写体の輝度分布の例の説明図; 第11図及び第12図は第10図に対応した受光素子出力の説
明図; 第13図は測光モード表示手段の応用例の説明図; 第14図は測光モード表示手段の別の応用例の説明図; 第15図は別の検出領域の例の説明図; 第16図は画角を僅かに変化させたときの従来の問題を説
明するため被写体の一例を示す説明図; 第17図(A)〜(C)は重み付け係数を掛け合わせた応
用例の感度分布形状の説明図である。 [主要部分の符号の説明] 10:撮影レンズ 20:カメラボディ 30:AFモジュール 50:AF表示 60:AFモーター 80:測光モード表示 100:CPUFIG. 1 is an explanatory view of a detection area of the present invention; FIGS. 2 and 3 are explanatory views of an example of a luminance distribution of a subject; FIG. 4 is an explanatory view of a light receiving element output corresponding to FIGS. FIG. 5 is a partially enlarged view of a detection area; FIG. 6 is a block diagram relating to photometric value calculation of the focus detection photometry device according to the present invention; FIG. 7 is a configuration diagram of the focus detection photometry device according to the present invention; FIG. 9 is a diagram illustrating a photoelectric conversion unit; FIG. 10 is a diagram illustrating an example of a luminance distribution of another subject; FIGS. 11 and 12 are diagrams illustrating a detection optical system used in the present invention; FIG. 13 is an explanatory view of an application example of the photometric mode display means; FIG. 14 is an explanatory view of another application example of the photometric mode display means; FIG. 15 is a view of another detection area. FIG. 16 is an explanatory view showing an example of a subject to explain a conventional problem when the angle of view is slightly changed; FIG. A) ~ (C) is an explanatory view of the sensitivity distribution profile applications multiplied by the weighting factor. [Description of Signs of Main Parts] 10: Photo Lens 20: Camera Body 30: AF Module 50: AF Display 60: AF Motor 80: Metering Mode Display 100: CPU
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 宏之 東京都品川区西大井1丁目6番3号 株 式会社ニコン大井製作所内 (56)参考文献 特開 昭62−188916(JP,A) 特開 昭62−19824(JP,A) 特開 昭62−6231(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03B 7/00 - 7/28 G02B 7/28 - 7/40 G03B 3/00 - 3/12 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Iwasaki 1-6-3 Nishioi, Shinagawa-ku, Tokyo Nikon Oi Works Co., Ltd. (56) References JP-A-62-188916 (JP, A) Sho 62-19824 (JP, A) JP-A Sho 62-6231 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G03B 7/ 00-7/28 G02B 7 /28-7 / 40 G03B 3/00-3/12
Claims (7)
変換手段の受光出力に基づいて測光値を求める焦点検出
装置において、 前記第1の光電変換手段の焦点検出領域に交差する直線
的な焦点検出領域を有する第2の光電変換手段と、 前記第2の光電変換手段の出力信号に基づいて前記第1
の光電変換手段の受光信号を補正することによって前記
測光値を算出する測光演算手段とを備えたことを特徴と
する焦点検出測光装置。1. A focus detection device for obtaining a photometric value based on a light reception output of a first photoelectric conversion means having a linear focus detection area, wherein the linear detection means has a linear focus detection area of the first photoelectric conversion means. A second photoelectric conversion unit having a focus detection area, and the first photoelectric conversion unit based on an output signal of the second photoelectric conversion unit.
And a photometric calculation means for calculating the photometric value by correcting the light receiving signal of the photoelectric conversion means.
手段の出力信号から補正係数を算出する補正係数演算手
段と、該補正係数を前記第1の光電変換手段の出力信号
に掛け合わせた値に基づいて前記測光値を算出する測光
値演算手段とを備えたことを特徴とした請求項1に記載
の焦点検出測光装置。2. The photometric operation means includes: a correction coefficient operation means for calculating a correction coefficient from an output signal of the second photoelectric conversion means; and a multiplication coefficient multiplied by the output signal of the first photoelectric conversion means. 2. The focus detection / photometry device according to claim 1, further comprising: a photometry value calculation unit configured to calculate the photometry value based on the calculated value.
2の光電変換手段が互いに交差する部分の出力信号と、
前記第2光電変換手段の出力信号とに基づいて、前記補
正係数を求めることを特徴とする請求項2に記載の焦点
検出測光装置。3. The correction coefficient calculating means includes: an output signal at a portion where the first and second photoelectric conversion means intersect each other;
The focus detection photometry device according to claim 2, wherein the correction coefficient is obtained based on an output signal of the second photoelectric conversion unit.
変換手段の出力を(c1,c2,・・・,cm)とし、前記第1
の光電変換手段との交差領域の出力信号を(ck+1,ck+2,
・・・,ck+i)とした時、補正係数f(c)を、 f(c)={(c1+・・・+cm)/m}/{(ck+1+・・・+ck+1)/i} として算出することを特徴とする請求項2又は3に記載
の焦点検出測光装置。Wherein said correction coefficient calculating means, outputs of said second photoelectric conversion means (c 1, c 2, ··· , c m) and, the first
(C k + 1 , c k + 2 ,
.., C k + i ), the correction coefficient f (c) is expressed as f (c) = {(c 1 +... + C m ) / m} / {(c k + 1 +. The focus detection photometry device according to claim 2 or 3, wherein the focus detection photometry device is calculated as + c k + 1 ) / i}.
記第1の光電変換手段の出力の総和に掛け合わせた後
に、該光電変換手段の蓄積時間で除して測光値を求める
ことを特徴とする請求項2記載の焦点検出測光装置。5. The photometric value calculating means calculates a photometric value by multiplying the correction coefficient by a total sum of outputs of the first photoelectric conversion means and dividing by a storage time of the photoelectric conversion means. 3. The focus detection photometer according to claim 2, wherein:
置に応じた重み付け係数に基づいて決定されることを特
徴とする請求項2に記載の焦点検出測光装置。6. The focus detection photometer according to claim 2, wherein the correction coefficient is determined based on a weighting coefficient corresponding to a position in the photoelectric conversion means.
手段の出力を(c1,c2,・・・,cm)、該第2の光電変換
手段内の位置に対する重み付け係数を(v1〜vm)、前記
第1の光電変換手段との交差領域の出力信号を(ck+1,c
k+2,・・・,ck+i)、該第1の光電変換手段内の位置に
対する重み付け係数を(u1〜um)とした時、補正係数f
(c)を、 f(c)=[{(v1×c1)+(v2×c2)+… +(vm×cm)}/(v1+v2+…+vm)] /[{(vk-1×ck+1)+(vk×ck)+(vk+1×ck+1)} /(vk-1+vk+vk+1)] として算出することを特徴とする請求項6に記載の焦点
検出装置。Wherein said correction calculation means, wherein the output of the second photoelectric conversion means (c 1, c 2, ··· , c m), the weighting factor for the position of the photoelectric conversion means of the second (V 1 to v m ), the output signal of the intersection area with the first photoelectric conversion means is represented by (c k + 1 , c k
k + 2 ,..., c k + i ), and when the weighting coefficient for the position in the first photoelectric conversion means is (u 1 to u m ), the correction coefficient f
(C) is calculated by f (c) = [{(v 1 × c 1 ) + (v 2 × c 2 ) +... + (V m × c m )} / (v 1 + v 2 +... + V m )] / [{(V k-1 × c k + 1 ) + (v k × c k ) + (v k + 1 × c k + 1 )} / (v k-1 + v k + v k + 1 )] 7. The focus detection device according to claim 6, wherein the calculation is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02065298A JP3116358B2 (en) | 1989-11-14 | 1990-03-15 | Focus detection photometer |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29564689 | 1989-11-14 | ||
JP30549989 | 1989-11-24 | ||
JP1-305499 | 1989-11-24 | ||
JP1-295646 | 1989-11-24 | ||
JP02065298A JP3116358B2 (en) | 1989-11-14 | 1990-03-15 | Focus detection photometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03218430A JPH03218430A (en) | 1991-09-26 |
JP3116358B2 true JP3116358B2 (en) | 2000-12-11 |
Family
ID=27298740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02065298A Expired - Lifetime JP3116358B2 (en) | 1989-11-14 | 1990-03-15 | Focus detection photometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3116358B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5381472B2 (en) * | 2009-08-05 | 2014-01-08 | 株式会社ニコン | Imaging device |
-
1990
- 1990-03-15 JP JP02065298A patent/JP3116358B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03218430A (en) | 1991-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8730374B2 (en) | Focus detection apparatus | |
RU2593689C2 (en) | Image capturing device and control method thereof | |
JP2881790B2 (en) | Focus detection device | |
JP3491343B2 (en) | Focus detection device and focus detection method | |
JP3080968B2 (en) | Photometric device | |
JP3102825B2 (en) | camera | |
JP3116358B2 (en) | Focus detection photometer | |
JP2958997B2 (en) | Focus detection photometer | |
US20080024764A1 (en) | Focus detection apparatus | |
JP3144155B2 (en) | Focus detection device | |
JP2768459B2 (en) | Focus detection device | |
JP3230759B2 (en) | Distance measuring device | |
JP3728604B2 (en) | Focus detection device | |
JPH03174127A (en) | Exposure controller for camera | |
JPH03196106A (en) | Camera focus detector | |
JP3240705B2 (en) | Camera photometer | |
US20040013421A1 (en) | Distance measuring apparatus and camera comprising same | |
JPS62198722A (en) | Photometric device | |
JP2995773B2 (en) | Camera exposure calculation device | |
JPH04215631A (en) | Split photometric device for camera | |
JP3456231B2 (en) | Subject tracking device | |
JP2600934B2 (en) | Projection system for automatic focus detection | |
JP3106613B2 (en) | Camera exposure calculation device | |
JPH10301020A (en) | Focus detector | |
JP4092737B2 (en) | Photometric device and camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101006 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101006 Year of fee payment: 10 |