[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3111628B2 - Fuel cell power generator - Google Patents

Fuel cell power generator

Info

Publication number
JP3111628B2
JP3111628B2 JP04116480A JP11648092A JP3111628B2 JP 3111628 B2 JP3111628 B2 JP 3111628B2 JP 04116480 A JP04116480 A JP 04116480A JP 11648092 A JP11648092 A JP 11648092A JP 3111628 B2 JP3111628 B2 JP 3111628B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion
water
resin cylinder
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04116480A
Other languages
Japanese (ja)
Other versions
JPH05315002A (en
Inventor
義治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP04116480A priority Critical patent/JP3111628B2/en
Publication of JPH05315002A publication Critical patent/JPH05315002A/en
Application granted granted Critical
Publication of JP3111628B2 publication Critical patent/JP3111628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、不純物を含む復水お
よび水道水をイオン交換式水処理装置によって浄化し、
燃料電池の冷却水または原燃料の改質反応水として補給
する燃料電池発電装置の水処理システム、ことにイオン
交換樹脂の詰め替え作業を容易化したイオン交換式水処
理装置を備えた水処理システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention purifies condensed water and tap water containing impurities by an ion exchange type water treatment apparatus.
The present invention relates to a water treatment system for a fuel cell power generator for replenishing fuel cell cooling water or raw fuel reforming reaction water, and more particularly to a water treatment system equipped with an ion-exchange type water treatment device that facilitates refilling of ion-exchange resin. .

【0002】[0002]

【従来の技術】燃料電池を高効率で長時間運転するため
には、電池反応に伴う発熱を除熱して単位セルの積層体
(スタックと呼ぶ)内の温度分布を所定の運転温度(り
ん酸形燃料電池では190°C 前後)にできるだけ均一
に保持することが求められる。そこで、スタックは複数
の単位セルを1ブロックとしてブロック間に冷却板を積
層し、この冷却板に埋設された冷却パイプに冷却媒体と
しての冷却水を通流して冷却する水冷式の燃料電池が知
られている。また、水冷式燃料電池では異なる電位にあ
る冷却板間で冷却水による液絡が生ずることを防ぐた
め、冷却水はその電気電導度が極力低い(電気抵抗が高
い)ことが求められるので、冷却水の循環系にイオン交
換水を補給する水処理システムを設けたものが知られて
いる。
2. Description of the Related Art In order to operate a fuel cell with high efficiency for a long period of time, heat generated by a cell reaction is removed and the temperature distribution in a unit cell stack (called a stack) is changed to a predetermined operating temperature (phosphoric acid). It is required to keep the temperature of the fuel cell as uniform as possible at around 190 ° C. Therefore, a water-cooled fuel cell is known in which a stack is formed by stacking cooling plates between blocks with a plurality of unit cells as one block, and cooling water flowing as cooling medium flows through cooling pipes embedded in the cooling plates. Have been. Further, in a water-cooled fuel cell, the cooling water is required to have as low an electric conductivity as possible (high electric resistance) in order to prevent a liquid junction from being generated between the cooling plates at different potentials. There is known a water circulation system provided with a water treatment system for replenishing ion-exchanged water.

【0003】図3は水冷式燃料電池の従来の水処理シス
テムを示す構成図である。図において、単位セルの積層
体からなる燃料電池(スタック)1の燃料電極には燃料
改質器2から燃料ガスが供給され、空気電極にはブロワ
1Bから反応空気が供給されることにより、一対の電極
間で水素と酸素が直接反応する電気化学反応に基づいて
発電が行われる。また、燃料電池には複数単位セル毎に
冷却板3が積層されており、冷却板3に埋設された複数
の冷却パイプが絶縁継手を介して外部に配された循環ポ
ンプ4Pおよび水蒸気分離器4を含む冷却水6の循環系
10に連結される。水蒸気分離器4は燃料電池の運転温
度に対して所定温度低い冷却水6を包蔵しており、循環
ポンプ4Pにより冷却水6を冷却板3に循環することに
より、発電生成熱の排熱が行われ、燃料電池スタック1
の温度がその運転温度に保持される。また、空気電極か
ら排出される空気オフガス1G,および燃料改質器2の
バ−ナで燃料オフガス1F中の残存水素を燃焼させるこ
とにより生じた燃焼排ガス2Gには多量の発電生成水ま
たは燃焼生成水が含まれているので、空気オフガスおよ
び燃焼排ガスに水蒸気として含まれる水分を復水凝縮器
5で冷却して復水7として回収し、水処理システムに供
給するよう構成される。
FIG. 3 is a configuration diagram showing a conventional water treatment system for a water-cooled fuel cell. In the figure, a fuel gas is supplied from a fuel reformer 2 to a fuel electrode of a fuel cell (stack) 1 composed of a stack of unit cells, and reaction air is supplied to a pneumatic electrode from a blower 1B. Power is generated based on an electrochemical reaction in which hydrogen and oxygen directly react between the electrodes. In the fuel cell, a cooling plate 3 is stacked for each of a plurality of unit cells, and a plurality of cooling pipes embedded in the cooling plate 3 are provided with a circulating pump 4P and a steam separator 4P arranged outside via an insulating joint. Is connected to the circulating system 10 of the cooling water 6 containing. The steam separator 4 contains cooling water 6 that is lower than the operating temperature of the fuel cell by a predetermined temperature. By circulating the cooling water 6 to the cooling plate 3 by a circulation pump 4P, the heat generated by the power generation is exhausted. The fuel cell stack 1
Is maintained at its operating temperature. Further, a large amount of power generation water or combustion generation is contained in the air off gas 1G discharged from the air electrode and the combustion exhaust gas 2G generated by burning the residual hydrogen in the fuel off gas 1F with the burner of the fuel reformer 2. Since water is contained, the water contained in the air off-gas and the combustion exhaust gas as water vapor is cooled by the condensing condenser 5, collected as condensed water 7, and supplied to the water treatment system.

【0004】ところで、冷却水6の電気伝導度が高い
と、前記冷却パイプを相互に連結する絶縁継手内の冷却
水を通して冷却板間に短絡電流が流れる液絡現象が発生
し、発電電力の一部が無駄に消費されることになる。そ
こで、冷却水6の電気電導度を1μS/cm以下に保持
するために冷却水の循環系に水処理システム11が連結
される。すなわち、水処理システム11は復水凝縮器5
で回収した復水7を補助水タンク12に導いて水道水を
適度に加えた混合水8とし、混合水8をポンプ13およ
び冷却器14を介してイオン交換式水処理装置15に送
り、得られた低電気電導度のイオン交換水9を補給水と
して冷却水6に加え、冷却水6の電気伝導度を1μS/
cm以下に保持するよう構成される。なお、補給水9の
供給量は、水蒸気分離器4内のスチ−ムを例えば改質反
応水として原燃料に添加して燃料改質器2に供給する際
生ずる不足分,または冷却水6をブロ−水として外部に
放出することにより生ずる不足分を補給する量に対応し
て制御される。
If the electric conductivity of the cooling water 6 is high, a short-circuit current flows between the cooling plates through the cooling water in the insulating joint connecting the cooling pipes to each other. Parts are wasted. Therefore, the water treatment system 11 is connected to the cooling water circulation system in order to maintain the electric conductivity of the cooling water 6 at 1 μS / cm or less. That is, the water treatment system 11 includes the condensing condenser 5
The condensed water 7 collected in step 2 is guided to an auxiliary water tank 12 to form a mixed water 8 to which tap water is appropriately added, and the mixed water 8 is sent to an ion-exchange type water treatment device 15 via a pump 13 and a cooler 14, thereby obtaining The low-conductivity ion-exchanged water 9 was added to the cooling water 6 as makeup water, and the electric conductivity of the cooling water 6 was 1 μS /
cm or less. The supply amount of the make-up water 9 is determined by the shortage generated when the steam in the steam separator 4 is added to the raw fuel as the reforming reaction water and supplied to the fuel reformer 2 or the cooling water 6. It is controlled in accordance with the amount of replenishment for the shortage caused by discharging to the outside as blow water.

【0005】図4は従来のイオン交換式水処理装置を示
すシステム構成図であり、イオン交換式水処理装置15
は、イオン交換樹脂を充填したイオン交換樹脂筒16
と、その吐出側に接続された電導度センサ−17を備
え、入口弁18を介して供給される混合水8中の不純物
をイオン交換処理して低電気電導度の補給水9とし、出
口弁19を介して冷却水循環系10に供給するととも
に、補給水9の電気電導度をを電導度センサ−17で監
視し、電導度が例えば1μS/cmを越える状態になった
場合には、イオン交換樹脂が寿命に達したものと判断し
て弁18および19を閉じ、イオン交換樹脂筒16内の
イオン交換樹脂の入替え作業を行うよう構成される。
FIG. 4 is a system configuration diagram showing a conventional ion-exchange type water treatment apparatus.
Is an ion exchange resin cylinder 16 filled with ion exchange resin.
And an electric conductivity sensor 17 connected to the discharge side thereof, and ion-exchanges impurities in the mixed water 8 supplied through an inlet valve 18 to make low-conductivity make-up water 9, and an outlet valve The electric conductivity of the make-up water 9 is monitored by an electric conductivity sensor 17 while the electric conductivity of the make-up water 9 is monitored via an electric conductivity sensor 17 when the electric conductivity exceeds, for example, 1 μS / cm. When it is determined that the resin has reached the end of its life, the valves 18 and 19 are closed and the ion exchange resin in the ion exchange resin cylinder 16 is replaced.

【0006】図5は異なる従来のイオン交換式水処理装
置を示すシステム構成図であり、イオン交換樹脂筒が1
6A,16B,および16Cに3分割され、それぞれの
イオン交換水吐出側に電導度センサ−17A,17B,
および17Cが接続された点が前述のイオン交換式水処
理装置と異なっており、上流側のイオン交換樹脂筒から
順次イオン交換能力が低下する性質を有するイオン交換
樹脂筒それぞれについてそのイオン交換水の電導度の低
下を電導度センサ−で監視し、1段目の樹脂寿命,2段
目の樹脂寿命に対応する運転時間から最終段の樹脂寿命
を経験的に予測し、各段のイオン交換樹脂筒の樹脂交換
を行うことにより、1μS/cmを越える電導度の補給水
9を誤って冷却水循環系10に供給しないよう構成され
る。
FIG. 5 is a system configuration diagram showing a different conventional ion-exchange type water treatment apparatus.
6A, 16B and 16C, and the conductivity sensors 17A, 17B,
Is different from the above-described ion-exchange type water treatment apparatus in that the ion-exchanged water treatment apparatus has the property that the ion-exchange capacity decreases sequentially from the upstream-side ion-exchange resin cylinder. The decrease in conductivity is monitored by a conductivity sensor, and the service life of the last stage is empirically predicted from the operating time corresponding to the resin life of the first stage and the resin life of the second stage. By exchanging the resin in the cylinder, the makeup water 9 having a conductivity exceeding 1 μS / cm is prevented from being supplied to the cooling water circulation system 10 by mistake.

【0007】図6はさらに異なる従来のイオン交換式水
処理装置を示すシステム構成図であり、図5における弁
18および19が三方切替え弁22および23に置き換
えられ、その反イオン交換樹脂筒側に予備イオン交換樹
脂筒16Dを有するバイパス配管路21が接続され、さ
らに補給水9が三方切替え弁24を介して冷却水循環系
10に供給されるとともに、三方切替え弁23の吐出側
に電導度センサ−17Cを接続するよう構成されてお
り、予備イオン交換樹脂筒16Dを介して補給水を供給
した状態で、イオン交換樹脂筒16A,16B,および
16Cのイオン交換樹脂の交換作業を行える点が前述の
従来技術と異なっている。
FIG. 6 is a system configuration diagram showing another conventional ion-exchange type water treatment apparatus. Valves 18 and 19 in FIG. 5 are replaced with three-way switching valves 22 and 23, and the three-way switching valves 22 and 23 are provided on the anti-ion exchange resin cylinder side. A bypass pipe line 21 having a spare ion exchange resin cylinder 16D is connected, and the makeup water 9 is supplied to the cooling water circulation system 10 via a three-way switching valve 24, and an electric conductivity sensor is provided on the discharge side of the three-way switching valve 23. 17C, the ion exchange resin of the ion exchange resin tubes 16A, 16B, and 16C can be exchanged in a state where the makeup water is supplied via the preliminary ion exchange resin tube 16D. Different from the prior art.

【0008】[0008]

【発明が解決しようとする課題】イオン交換樹脂筒によ
って浄水される水の電気電導度は、イオン交換樹脂の寿
命終期において急激に悪化する性質がある。したがっ
て、図4において補給水9の電気電導度を電導度センサ
−17で監視した時点で電導度に異常が認められなくて
も、監視の休止期間,例えば休日等に電導度が悪化する
ことがある。また、イオン交換樹脂の交換作業を専門業
者に依頼することが多く、電導度に異常を認めてからイ
オン交換樹脂の交換作業が終了するまでに数日間を要す
ることが稀ではない。その結果、電導度の高い補給水9
が数日間冷却水循環系10に供給されるという思わぬ不
都合が生じ、この間燃料電池で液絡が発生して発電電力
が無駄に消費されるという問題がある。
The electrical conductivity of the water purified by the ion exchange resin tube has a property of rapidly deteriorating at the end of the life of the ion exchange resin. Therefore, even if no abnormality is observed in the electrical conductivity of the make-up water 9 when the electrical conductivity of the make-up water 9 is monitored by the electrical conductivity sensor 17 in FIG. 4, the electrical conductivity may be deteriorated during a monitoring suspension period, for example, a holiday. is there. In addition, it is often the case that a professional trader is required to replace the ion-exchange resin, and it is not rare that it takes several days from the occurrence of an abnormality in the conductivity to the completion of the replacement operation of the ion-exchange resin. As a result, make-up water 9 having high conductivity
Is supplied to the cooling water circulating system 10 for several days. During this time, there is a problem that a liquid junction occurs in the fuel cell and power generation is wasted.

【0009】また、図5の構成とすることにより最終段
のイオン交換樹脂筒16Cの残存寿命を予測できるの
で、イオン交換樹脂の交換作業を早めに手配することが
可能になる。しかしながら、イオン交換樹脂筒が通常同
じ大きさに3分割されるため最終段のイオン交換樹脂筒
16C中のイオン交換樹脂を使い残した状態で交換作業
を行うという無駄が発生する。さらに、イオン交換樹脂
筒および導電度センサ−を3組必要とするため、イオン
交換式水処理装置が大型化するという問題も発生する。
In addition, since the remaining life of the ion-exchange resin cylinder 16C at the last stage can be predicted by adopting the configuration shown in FIG. 5, it is possible to arrange the ion-exchange resin exchange work earlier. However, since the ion-exchange resin cylinder is usually divided into three parts of the same size, there is a waste that the exchange work is performed while the ion-exchange resin in the ion-exchange resin cylinder 16C in the final stage is left unused. Further, since three sets of the ion exchange resin cylinder and the conductivity sensor are required, there arises a problem that the ion exchange type water treatment apparatus becomes large.

【0010】一方、図6のように予備イオン交換樹脂筒
16Dを有するバイパス配管路21を設けることによ
り、補給水9の供給を停止せずにイオン交換樹脂の交換
作業を行うことが可能になるが、予備イオン交換樹脂筒
は常時使用しないために水が淀んでおり、使用初期には
質の悪い水が補給水9として冷却水循環系10に供給さ
れるという問題が発生するとともに、これを回避するた
めに三方切替え弁24を追加し、質の悪い水を外部に排
水した後補給水の給水を開始する煩わしい操作が必要に
なるとともに、イオン交換式水処理装置の構成が益々複
雑化する。
On the other hand, by providing the bypass piping 21 having the spare ion exchange resin cylinder 16D as shown in FIG. 6, it is possible to carry out the ion exchange resin exchange work without stopping the supply of the makeup water 9. However, since the spare ion-exchange resin tube is not used at all times, water is stagnant, and the problem that poor quality water is supplied to the cooling water circulation system 10 as makeup water 9 in the early stage of use occurs, and this is avoided. In order to do so, a three-way switching valve 24 must be added, a troublesome operation of draining poor-quality water to the outside and then supplying makeup water is required, and the configuration of the ion-exchange type water treatment apparatus is further complicated.

【0011】この発明の目的は、イオン交換樹脂の交換
作業および交換時期の予測が簡単且つ正確でイオン交換
樹脂の無駄が無く、装置の構成が簡素なイオン交換式水
処理装置を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ion-exchange type water treatment apparatus in which the operation of replacing the ion-exchange resin and the prediction of the exchange time are simple and accurate, the ion-exchange resin is not wasted, and the structure of the apparatus is simple. .

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、燃料電池の空気オフガスおよび
燃料改質器の燃焼排ガス中の水蒸気を復水凝縮器により
凝縮して得られる復水に水道水を混合し、この混合水を
イオン交換式水処理装置を通して低電気電導度の補給水
とし、前記燃料電池または燃料改質器に補給する燃料電
池発電装置において、前記イオン交換式水処理装置が、
主イオン交換樹脂筒と、その後段に直列に連結された補
助イオン交換樹脂筒と、前記主イオン交換樹脂筒と前記
補助イオン交換樹脂筒との間に設けられた電導度監視手
段からなり、前記補助イオン交換樹脂筒が、前記電導度
監視手段が前記補給水の電気電導度が設定値を超えたこ
とを検知した後主イオン交換樹脂筒の樹脂交換を終了す
る迄の期間、前記設定値以下の電気電導度の補給水を吐
出し得る量のイオン交換樹脂を包蔵してなるものとす
る。
According to the present invention, a water condensate is obtained by condensing air off-gas of a fuel cell and water vapor in combustion exhaust gas of a fuel reformer by a condensing condenser. Tap water is mixed with condensed water, and this mixed water is supplied as low-conductivity water through an ion-exchange type water treatment device. Water treatment equipment,
A main ion exchange resin tube, an auxiliary ion exchange resin tube connected in series at a subsequent stage, and an electric conductivity monitoring means provided between the main ion exchange resin tube and the auxiliary ion exchange resin tube; The auxiliary ion-exchange resin cylinder is not longer than the set value during a period from when the conductivity monitoring unit detects that the electric conductivity of the make-up water has exceeded the set value until the resin exchange of the main ion-exchange resin cylinder is completed. An amount of ion-exchange resin capable of discharging make-up water having the electric conductivity described above is included.

【0013】また、前記イオン交換式水処理装置が、補
給水の吐出を停止することなく、主イオン交換樹脂筒ま
たは補助イオン交換樹脂筒を任意に選択し、イオン交換
樹脂の詰め替えを可能にするバイパス配管路、たとえ
ば、混合水を主イオン交換樹脂筒側とバイパス管側とに
切り換える三方切替え弁と、補給水の吐出を前記バイパ
ス管側と補助イオン交換樹脂筒側とに切り換える三方切
替え弁と、主イオン交換樹脂筒と補助イオン交換樹脂筒
との間に直列に連結された一対の止め弁と、この一対の
止め弁の中間点と前記パイパス管とに連通する分岐管と
からなり、前記一対の止め弁の主イオン交換樹脂筒側に
電気伝導度監視手段を有するバイパス配管路を備えてな
ることとする。
Further, the ion-exchange type water treatment apparatus can arbitrarily select a main ion-exchange resin cylinder or an auxiliary ion-exchange resin cylinder without stopping discharge of make-up water, thereby enabling refilling of the ion-exchange resin. A bypass pipe line, for example, a three-way switching valve for switching the mixed water between the main ion exchange resin cylinder side and the bypass pipe side, and a three-way switching valve for switching the discharge of make-up water between the bypass pipe side and the auxiliary ion exchange resin cylinder side. A pair of stop valves connected in series between the main ion exchange resin cylinder and the auxiliary ion exchange resin cylinder, and a branch pipe communicating with the intermediate point of the pair of stop valves and the bypass pipe, A bypass pipe having an electric conductivity monitoring means is provided on the main ion exchange resin cylinder side of the pair of stop valves.

【0014】[0014]

【作用】この発明の構成において、前記イオン交換式水
処理装置が、主イオン交換樹脂筒と、その後段に直列に
連結された補助イオン交換樹脂筒と、前記主イオン交換
樹脂筒と前記補助イオン交換樹脂筒との間に設けられた
電導度監視手段からなり、前記補助イオン交換樹脂筒
が、前記電導度監視手段が前記補給水の電気電導度が設
定値を超えたことを検知した後主イオン交換樹脂筒の樹
脂交換を終了する迄の期間、前記設定値以下の電気電導
度の補給水を吐出し得る量のイオン交換樹脂を包蔵して
なることにより、交換時期の遅れにより電導度の高い補
給水を冷却水循環系に供給することによる液絡の発生を
防止し、かつ補助イオン交換樹脂筒内のイオン交換樹脂
の使い残しを最小限に抑える機能が得られる。また、主
イオン交換樹脂筒には、あらかじめ定まる寿命期間に対
応する量のイオン交換樹脂を一つのイオン交換樹脂筒に
充填して装置の構成を簡素化できるとともに、電導度セ
ンサ−も一つで済むのでイオン交換式水処理装置を小型
化でき、したがってその設置スペ−スを縮小する機能が
得られる。
In the structure of the present invention, the ion-exchange type water treatment apparatus includes a main ion-exchange resin tube, an auxiliary ion-exchange resin tube connected in series in a subsequent stage, the main ion-exchange resin tube and the auxiliary ion-exchange resin tube. The auxiliary ion-exchange resin cylinder is connected to the auxiliary ion-exchange resin cylinder after detecting that the electric conductivity of the make-up water has exceeded a set value. During the period until the resin exchange of the ion exchange resin cylinder is completed, the amount of ion exchange resin capable of discharging the replenishing water having the electric conductivity equal to or less than the set value is included, so that the electric conductivity is reduced due to a delay in the exchange time. The function of preventing the occurrence of liquid junction due to the supply of high supply water to the cooling water circulation system and minimizing the remaining use of the ion exchange resin in the auxiliary ion exchange resin cylinder is obtained. In addition, the main ion exchange resin cylinder can be filled with an ion exchange resin in an amount corresponding to a predetermined life period into one ion exchange resin cylinder, thereby simplifying the configuration of the apparatus, and using only one conductivity sensor. As a result, the size of the ion-exchange type water treatment apparatus can be reduced, and the function of reducing the installation space can be obtained.

【0015】また、イオン交換式水処理装置が、補給水
の吐出を停止することなく、主イオン交換樹脂筒または
補助イオン交換樹脂筒を任意に選択し、イオン交換樹脂
の詰め替えを可能にするバイパス配管路、ことに予備イ
オン交換樹脂筒を持たないバイパス配管路を備えるよう
構成すれば、補給水の供給を停止することなくイオン交
換樹脂の交換作業を効率よく行えるとともに、予備イオ
ン交換樹脂筒に水が停滞することにより質の悪い補給水
を冷却水循環系に供給する不都合を排除する機能が得ら
れる。
Further, the ion-exchange type water treatment apparatus can arbitrarily select the main ion-exchange resin cylinder or the auxiliary ion-exchange resin cylinder without stopping the discharge of make-up water, and can refill the ion-exchange resin. By providing a pipeline, especially a bypass pipeline that does not have a spare ion-exchange resin cylinder, the ion-exchange resin can be exchanged efficiently without stopping the supply of make-up water. The function of eliminating the inconvenience of supplying poor quality makeup water to the cooling water circulation system due to the stagnation of water is obtained.

【0016】[0016]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池発電装置の
水処理システムを示すシステム構成図であり、従来技術
と同じ構成部分には同一参照符号を付すことにより、重
複した説明を省略する。図において、イオン交換式水処
理装置31は、混合水8の入口弁18側に配された主イ
オン交換樹脂筒32と、その後段に直列に連結されて低
電気電導度の補給水9を吐出する小容量の補助イオン交
換樹脂筒33と、この補助イオン交換樹脂筒の上流側に
接続された電導度監視手段としての電導度センサ−34
とで構成され、電導度センサ−34により例えば1μS
/cm以下の低電導度に管理された補給水9は出口弁19
を介して燃料電池1の冷却水循環系10に補給される。
なお、イオン交換式水処理装置31は入口弁18,冷却
器14,およびポンプ13を介して混合水8を包蔵した
補助水タンク12に連結され、全体として水処理システ
ムを構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a system configuration diagram showing a water treatment system of a fuel cell power generator according to an embodiment of the present invention. The same components as those in the prior art are denoted by the same reference numerals, and redundant description will be omitted. In the figure, an ion-exchange type water treatment apparatus 31 discharges a main ion-exchange resin cylinder 32 arranged on the inlet valve 18 side of the mixed water 8 and a make-up water 9 of low electric conductivity which is connected in series at a subsequent stage. A small-capacity auxiliary ion-exchange resin tube 33 and an electric conductivity sensor 34 connected to the upstream side of the auxiliary ion-exchange resin tube as electric conductivity monitoring means.
And 1 μS for example by the electric conductivity sensor-34.
Make-up water 9 controlled to a low electrical conductivity of not more than / cm
Is supplied to the cooling water circulation system 10 of the fuel cell 1 via the
The ion-exchange type water treatment apparatus 31 is connected to the auxiliary water tank 12 containing the mixed water 8 via the inlet valve 18, the cooler 14, and the pump 13, and constitutes a water treatment system as a whole.

【0017】また、主イオン交換樹脂筒32はイオン交
換式水処理装置の運転中に混合水8のイオン交換処理を
継続して行うものであり、充填されるイオン交換樹脂3
9は、あらかじめ定まる交換周期中例えば1μS/cm以
下の低電気電導度の補給水9を吐出し得る量が充填され
る。一方、補助イオン交換樹脂筒33は電導度センサ−
34が主イオン交換樹脂筒32が寿命に達したことを検
知した時点から、イオン交換樹脂39の交換作業が終了
するまでの期間混合水8のイオン交換処理を受け持つも
のであり、イオン交換樹脂の充填量は、上記イオン交換
樹脂の交換待ち日数に、例えば休日など導電度監視の休
止日数を加えた数日間イオン交換機能を持続できる量に
限定され、したがって補助イオン交換樹脂筒を小型に形
成することができる。なお、主イオン交換樹脂筒32は
一つに纏めてその数を減らしてもよく、また任意の大き
さに分割して集積度を高め、省スペ−ス化するよう構成
してもよい。ただしこの場合、導電度センサ−34は主
イオン交換樹脂筒の分割数に関係なく補助イオン交換樹
脂筒33の上流側に一つ設け、主イオン交換樹脂筒の最
後段の分割イオン交換樹脂筒の寿命を監視すればよく、
これにより、イオン交換式水処理装置の構成を簡素化す
ることができる。
The main ion-exchange resin tube 32 continuously performs the ion-exchange treatment of the mixed water 8 during the operation of the ion-exchange type water treatment apparatus.
9 is filled with an amount capable of discharging make-up water 9 having a low electric conductivity of, for example, 1 μS / cm or less during a predetermined replacement cycle. On the other hand, the auxiliary ion exchange resin cylinder 33 is provided with an electric conductivity sensor.
34 is responsible for the ion exchange processing of the mixed water 8 from the time when the main ion exchange resin cylinder 32 reaches the end of its life to the time when the exchange work of the ion exchange resin 39 is completed. The filling amount is limited to an amount that can maintain the ion exchange function for a few days by adding the number of days for waiting for the exchange of the ion exchange resin, for example, the number of days of non-conductivity monitoring such as holidays. be able to. The number of the main ion exchange resin cylinders 32 may be reduced to one, or the number may be reduced to an arbitrary size to increase the degree of integration and save space. However, in this case, one conductivity sensor 34 is provided on the upstream side of the auxiliary ion exchange resin cylinder 33 regardless of the number of divisions of the main ion exchange resin cylinder, and the conductivity sensor 34 is provided for the last divided ion exchange resin cylinder of the main ion exchange resin cylinder. You only have to monitor the lifetime,
Thereby, the configuration of the ion-exchange type water treatment apparatus can be simplified.

【0018】上述のように構成されたイオン交換式水処
理装置において、電導度センサ−34により主イオン交
換樹脂筒32の寿命を検知し、イオン交換樹脂の交換作
業の手配が行われるが、この時点以後交換作業の開始時
点までの数日間補助イオン交換樹脂筒33がイオン交換
作業を受け持つので、この間低電導度の補給水9を継続
して冷却水循環系10に供給することができる。また、
イオン交換樹脂39の交換作業は主イオン交換樹脂筒,
補助イオン交換樹脂筒ともに一括して行うことにより、
補助イオン交換樹脂筒が再びイオン交換樹脂交換の待機
状態となるが、補助イオン交換樹脂筒に充填されるイオ
ン交換樹脂量がイオン交換樹脂の交換待ち日数に対応し
た量に限定されているので、交換による無駄が少なく、
イオン交換樹脂のイオン交換能力を有効に活用すること
ができる。
In the ion-exchange type water treatment apparatus constructed as described above, the service life of the main ion-exchange resin tube 32 is detected by the conductivity sensor 34, and the exchange work of the ion-exchange resin is arranged. Since the auxiliary ion exchange resin cylinder 33 is in charge of the ion exchange operation for several days from the time to the start of the exchange operation, during this time, the low-conductivity make-up water 9 can be continuously supplied to the cooling water circulation system 10. Also,
The replacement work of the ion-exchange resin 39 is performed by the main ion-exchange resin cylinder,
By performing it together with the auxiliary ion exchange resin cylinder,
The auxiliary ion exchange resin cylinder is again in a standby state for ion exchange resin exchange, but since the amount of ion exchange resin filled in the auxiliary ion exchange resin cylinder is limited to an amount corresponding to the number of days to wait for ion exchange resin exchange, There is little waste from replacement,
The ion exchange capacity of the ion exchange resin can be effectively utilized.

【0019】図2はこの発明の異なる実施例になるイオ
ン交換式水処理装置を示すシステム構成図であり、イオ
ン交換式水処理装置31が、補給水9の吐出を停止する
ことなく、主イオン交換樹脂筒32または補助イオン交
換樹脂筒33を任意に選択し、イオン交換樹脂39の詰
め替えを可能にするバイパス配管路41を備えた点が前
述の実施例と異なっている。バイパス配管路41は、混
合水8を主イオン交換樹脂筒32側とバイパス管42側
とに切り換える三方切替え弁43と、補給水9の吐出を
バイパス管42側と補助イオン交換樹脂筒33側とに切
り換える三方切替え弁44と、主イオン交換樹脂筒と補
助イオン交換樹脂筒との間に直列に連結された一対の止
め弁45,46と、この一対の止め弁の中間点とパイパ
ス管42とに連通する分岐管47とで構成され、電導度
センサ−34は止め弁45の上流側に接続される。
FIG. 2 is a system configuration diagram showing an ion-exchange type water treatment apparatus according to another embodiment of the present invention. The present embodiment is different from the above-described embodiment in that the exchange resin tube 32 or the auxiliary ion exchange resin tube 33 is arbitrarily selected and a bypass pipe 41 is provided to enable refilling of the ion exchange resin 39. The bypass pipe passage 41 has a three-way switching valve 43 for switching the mixed water 8 between the main ion exchange resin cylinder 32 side and the bypass pipe 42 side, and the discharge of makeup water 9 between the bypass pipe 42 side and the auxiliary ion exchange resin cylinder 33 side. , A pair of stop valves 45 and 46 connected in series between the main ion exchange resin tube and the auxiliary ion exchange resin tube, an intermediate point between the pair of stop valves, and the bypass pipe 42. The conductivity sensor -34 is connected to the upstream side of the stop valve 45.

【0020】このように構成されたバイパス配管路41
を有するイオン交換式水処理装置において、通常運転時
には、三方切替え弁43および44をイオン交換樹脂筒
側に切換えるとともに、止め弁45および46を開くこ
とにより、混合水8は主イオン交換樹脂筒32または補
助イオン交換樹脂筒33でイオン交換処理される。また
主イオン交換樹脂筒中のイオン交換樹脂を交換する場合
には、三方切替え弁43をバイパス管42側に切換える
とともに、止め弁45を閉じることにより、混合水はバ
イパス管42および分岐管47を通って補助イオン交換
樹脂筒33でイオン交換処理され、三方切替え弁44を
通って冷却水循環系10に補給水9を供給できるので、
この間に主イオン交換樹脂筒中のイオン交換樹脂を交換
することができる。
The bypass piping 41 constructed as described above
During normal operation, the three-way switching valves 43 and 44 are switched to the ion-exchange resin cylinder side and the stop valves 45 and 46 are opened during the normal operation, so that the mixed water 8 is supplied to the main ion-exchange resin cylinder 32. Alternatively, ion exchange processing is performed in the auxiliary ion exchange resin cylinder 33. When replacing the ion exchange resin in the main ion exchange resin cylinder, the mixed water passes through the bypass pipe 42 and the branch pipe 47 by switching the three-way switching valve 43 to the bypass pipe 42 side and closing the stop valve 45. The auxiliary ion-exchange resin tube 33 performs ion exchange processing, and the makeup water 9 can be supplied to the cooling water circulation system 10 through the three-way switching valve 44.
During this time, the ion exchange resin in the main ion exchange resin cylinder can be exchanged.

【0021】さらに、補助イオン交換樹脂筒33中のイ
オン交換樹脂の交換は、止め弁46を閉じ、三方切替え
弁44をバイパス管42側にすることにより、混合水8
は主イオン交換樹脂筒32で浄化され、分岐管47,バ
イパス管42および三方切替え弁44を通って冷却水循
環系10に供給されるので、この間に補助イオン交換樹
脂筒33のイオン交換樹脂を交換することができる。ま
た、バイパス配管路41がイオン交換樹脂筒を持たず、
かつ交換作業中にも供給水が通流されるので、水の停滞
が無く、質の悪い水を冷却水循環系に供給するという不
都合を排除することができる。
Further, the exchange of the ion exchange resin in the auxiliary ion exchange resin cylinder 33 is performed by closing the stop valve 46 and setting the three-way switching valve 44 to the bypass pipe 42 side.
Is purified by the main ion exchange resin tube 32 and supplied to the cooling water circulation system 10 through the branch pipe 47, the bypass pipe 42, and the three-way switching valve 44, during which the ion exchange resin in the auxiliary ion exchange resin cylinder 33 is exchanged. can do. Also, the bypass pipe 41 has no ion exchange resin cylinder,
In addition, since the supply water flows even during the replacement work, there is no stagnation of the water, and the inconvenience of supplying poor quality water to the cooling water circulation system can be eliminated.

【0022】[0022]

【発明の効果】この発明は前述のように、燃料電池発電
装置のイオン交換式水処理装置が、主イオン交換樹脂筒
と、その後段に直列に連結された補助イオン交換樹脂筒
と、前記主イオン交換樹脂筒と前記補助イオン交換樹脂
筒との間に設けられた電導度監視手段からなり、前記補
助イオン交換樹脂筒が、前記電導度監視手段が前記補給
水の電気電導度が設定値を超えたことを検知した後主イ
オン交換樹脂筒の樹脂交換を終了する迄の期間、前記設
定値以下の電気電導度の補給水を吐出し得る量のイオン
交換樹脂を包蔵してなることとした。その結果、従来問
題になっていた、交換時期の遅れにより電導度の高い補
給水が冷却水循環系に供給されて液絡が発生する事態を
防止し、かつ補助イオン交換樹脂筒内のイオン交換樹脂
の使い残しを最小限に抑えることが可能になり、したが
って燃料電池発電装置のランニングコストを低減できる
水処理システムを提供することができる。
As described above, according to the present invention, the ion-exchange type water treatment apparatus for a fuel cell power generator includes a main ion-exchange resin cylinder, an auxiliary ion-exchange resin cylinder connected in series at a subsequent stage, and the main ion-exchange resin cylinder. The auxiliary ion exchange resin cylinder comprises an electric conductivity monitoring means provided between the ion exchange resin cylinder and the auxiliary ion exchange resin cylinder. After detecting that the amount of ion exchange resin has exceeded the set value, the period until the resin exchange of the main ion exchange resin cylinder is completed is to be filled with an amount of ion exchange resin capable of discharging make-up water having an electric conductivity equal to or less than the set value. . As a result, it is possible to prevent a situation in which supply water having high conductivity is supplied to the cooling water circulation system due to a delay in replacement time and a liquid junction is caused. It is possible to provide a water treatment system capable of minimizing the residual use of the fuel cell, thereby reducing the running cost of the fuel cell power generator.

【0023】また、主イオン交換樹脂筒には、あらかじ
め定まる寿命期間に対応する量のイオン交換樹脂を一つ
のイオン交換樹脂筒に充填できるとともに、電導度セン
サ−も一つで済むのでイオン交換式水処理装置の構成を
簡素化でき、したがってその設置スペ−スを縮小し、燃
料電池発電装置のイニシャルコストを低減できる水処理
システムを提供することができる。
The main ion-exchange resin cylinder can be filled with an ion-exchange resin in an amount corresponding to a predetermined life period into one ion-exchange resin cylinder, and only one conductivity sensor is required. It is possible to provide a water treatment system in which the configuration of the water treatment device can be simplified, the installation space thereof can be reduced, and the initial cost of the fuel cell power generator can be reduced.

【0024】さらに、イオン交換式水処理装置が、補給
水の吐出を停止することなく、主イオン交換樹脂筒また
は補助イオン交換樹脂筒を任意に選択し、イオン交換樹
脂の詰め替えを可能にするバイパス配管路、ことに予備
イオン交換樹脂筒を持たないバイパス配管路を備えるよ
う構成すれば、補給水の供給を停止することなくイオン
交換樹脂の交換作業を効率よく行えるとともに、従来技
術で問題になった、予備イオン交換樹脂筒に水が停滞し
て質の悪い補給水が冷却水循環系に供給されるという不
都合を排除でき、したがって液絡による電力の無駄な消
費をほぼ完全に阻止できる利点が得られる。
Further, the ion-exchange type water treatment apparatus is capable of arbitrarily selecting a main ion-exchange resin cylinder or an auxiliary ion-exchange resin cylinder without stopping the supply of make-up water, and a bypass for refilling the ion-exchange resin. By providing a bypass, particularly a bypass pipe without a spare ion-exchange resin cylinder, the ion-exchange resin can be exchanged efficiently without stopping the supply of make-up water. In addition, it is possible to eliminate the inconvenience that water is stagnated in the spare ion exchange resin cylinder and poor quality makeup water is supplied to the cooling water circulation system, and therefore, there is an advantage that wasteful consumption of power due to a liquid junction can be almost completely prevented. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例になる燃料電池発電装置の構
成図
FIG. 1 is a configuration diagram of a fuel cell power generation device according to an embodiment of the present invention.

【図2】この発明の異なる実施例になるイオン交換式水
処理装置を示すシステム構成図
FIG. 2 is a system configuration diagram showing an ion-exchange type water treatment apparatus according to a different embodiment of the present invention.

【図3】従来の水冷式燃料電池発電装置の構成図FIG. 3 is a configuration diagram of a conventional water-cooled fuel cell power generator.

【図4】従来のイオン交換式水処理装置を示すシステム
構成図
FIG. 4 is a system configuration diagram showing a conventional ion-exchange type water treatment apparatus.

【図5】異なる従来のイオン交換式水処理装置を示すシ
ステム構成図
FIG. 5 is a system configuration diagram showing a different conventional ion exchange type water treatment apparatus.

【図6】さらに異なる従来のイオン交換式水処理装置を
示すシステム構成図
FIG. 6 is a system configuration diagram showing another conventional ion-exchange type water treatment apparatus.

【符号の説明】[Explanation of symbols]

1 燃料電池 1G 空気オフガス 2 燃料改質器 2G 燃焼排ガス 3 冷却板 4 水蒸気分離器 5 復水凝縮器 6 冷却水 7 復水 8 混合水 9 補給水 10 冷却水循環系 11 水処理システム 12 補助水タンク 15 イオン交換式水処理装置 16 イオン交換樹脂筒 17 電導度センサ− 21 バイパス配管路 31 イオン交換式水処理装置 32 主イオン交換樹脂筒 33 補助イオン交換樹脂筒 34 電気電導度監視手段(電導度センサ−) 39 イオン交換樹脂 41 バイパス配管路 42 バイパス管 43 三方切替え弁 44 三方切替え弁 45 止め弁 46 止め弁 47 分岐管 DESCRIPTION OF SYMBOLS 1 Fuel cell 1G Air off-gas 2 Fuel reformer 2G Combustion exhaust gas 3 Cooling plate 4 Steam separator 5 Condenser condenser 6 Cooling water 7 Condensed water 8 Mixed water 9 Makeup water 10 Cooling water circulation system 11 Water treatment system 12 Auxiliary water tank DESCRIPTION OF SYMBOLS 15 Ion exchange type water treatment apparatus 16 Ion exchange resin cylinder 17 Conductivity sensor 21 Bypass piping 31 Ion exchange type water treatment apparatus 32 Main ion exchange resin cylinder 33 Auxiliary ion exchange resin cylinder 34 Electric conductivity monitoring means (Conductivity sensor −) 39 Ion exchange resin 41 Bypass piping 42 Bypass pipe 43 Three-way switching valve 44 Three-way switching valve 45 Stop valve 46 Stop valve 47 Branch pipe

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池の空気オフガスおよび燃料改質器
の燃焼排ガス中の水蒸気を凝縮して得られる復水に水道
水を混合し、この混合水をイオン交換式水処理装置を通
して低電気電導度の補給水とし、前記燃料電池または燃
料改質器に補給する燃料電池発電装置において、 前記イオン交換式水処理装置が、主イオン交換樹脂筒
と、その後段に直列に連結された補助イオン交換樹脂筒
と、前記主イオン交換樹脂筒と前記補助イオン交換樹脂
筒との間に設けられた電導度監視手段からなり、 前記補助イオン交換樹脂筒が、前記電導度監視手段が前
記補給水の電気電導度が設定値を超えたことを検知した
後主イオン交換樹脂筒の樹脂交換を終了する迄の期間、
前記設定値以下の電気電導度の補給水を吐出し得る量の
イオン交換樹脂を包蔵してなることを特徴とする燃料電
池発電装置。
(1) Tap water is mixed with condensate obtained by condensing water vapor in an air off-gas of a fuel cell and combustion exhaust gas of a fuel reformer, and the mixed water is passed through an ion-exchange type water treatment apparatus to obtain low electric conductivity. In the fuel cell power generator for replenishing the fuel cell or the fuel reformer as a replenishing water, the ion-exchange type water treatment device comprises: a main ion-exchange resin tube; and an auxiliary ion-exchanger connected in series at a subsequent stage. A resin cylinder, and electrical conductivity monitoring means provided between the main ion exchange resin cylinder and the auxiliary ion exchange resin cylinder, wherein the auxiliary ion exchange resin cylinder comprises The period from when the conductivity is detected to exceed the set value to when the resin exchange of the main ion exchange resin cylinder is completed,
A fuel cell power generator comprising an amount of ion exchange resin capable of discharging make-up water having an electric conductivity equal to or less than the set value.
【請求項2】前記イオン交換式水処理装置が、補給水の
吐出を停止することなく、主イオン交換樹脂筒または補
助イオン交換樹脂筒を任意に選択し、イオン交換樹脂の
詰め替えを可能にするバイパス配管路を備えてなること
を特徴とする請求項1に記載の燃料電池発電装置。
2. The ion-exchange type water treatment apparatus can arbitrarily select a main ion-exchange resin cylinder or an auxiliary ion-exchange resin cylinder without stopping discharge of make-up water, thereby enabling refilling of ion-exchange resin. The fuel cell power generator according to claim 1, further comprising a bypass pipe line.
【請求項3】前記バイパス配管路が、混合水を主イオン
交換樹脂筒側とバイパス管側とに切り換える三方切替え
弁と、補給水の吐出を前記バイパス管側と補助イオン交
換樹脂筒側とに切り換える三方切替え弁と、主イオン交
換樹脂筒と補助イオン交換樹脂筒との間に直列に連結さ
れた一対の止め弁と、この一対の止め弁の中間点と前記
パイパス管とに連通する分岐管とからなり、前記一対の
止め弁の主イオン交換樹脂筒側に電気伝導度監視手段を
設けてなることを特徴とする請求項2に記載の燃料電池
発電装置。
3. The three-way switching valve for switching the mixed water between the main ion exchange resin cylinder side and the bypass pipe side, and discharging the makeup water to the bypass pipe side and the auxiliary ion exchange resin cylinder side. A three-way switching valve for switching, a pair of stop valves connected in series between the main ion exchange resin cylinder and the auxiliary ion exchange resin cylinder, and a branch pipe communicating with an intermediate point between the pair of stop valves and the bypass pipe. 3. The fuel cell power generator according to claim 2, wherein electric conductivity monitoring means is provided on the main ion exchange resin cylinder side of the pair of stop valves.
JP04116480A 1992-05-11 1992-05-11 Fuel cell power generator Expired - Fee Related JP3111628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04116480A JP3111628B2 (en) 1992-05-11 1992-05-11 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04116480A JP3111628B2 (en) 1992-05-11 1992-05-11 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH05315002A JPH05315002A (en) 1993-11-26
JP3111628B2 true JP3111628B2 (en) 2000-11-27

Family

ID=14688156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04116480A Expired - Fee Related JP3111628B2 (en) 1992-05-11 1992-05-11 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3111628B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10037416B4 (en) * 1999-07-28 2008-06-05 Vaillant Gmbh Water supply system
JP3783631B2 (en) * 2002-02-22 2006-06-07 日産自動車株式会社 Pure water purity maintenance system for mobile fuel cell
JP4481577B2 (en) * 2003-02-28 2010-06-16 日産自動車株式会社 Fuel cell system
JP4629999B2 (en) * 2004-04-28 2011-02-09 株式会社荏原製作所 Water treatment system and fuel cell power generation system
JP5013034B2 (en) 2004-09-07 2012-08-29 トヨタ自動車株式会社 Fuel cell system
JP5000865B2 (en) * 2005-07-20 2012-08-15 東芝燃料電池システム株式会社 Fuel cell power generation system and maintenance method thereof
JP4598751B2 (en) * 2006-12-28 2010-12-15 アイシン精機株式会社 Fuel cell system
JP5110929B2 (en) * 2007-03-27 2012-12-26 京セラ株式会社 Fuel cell device
JP5132205B2 (en) * 2007-06-27 2013-01-30 京セラ株式会社 Fuel cell device
JP2009087791A (en) * 2007-10-01 2009-04-23 Fuji Electric Holdings Co Ltd Water-refilling device of fuel-cell power generator
JP5487549B2 (en) * 2008-03-13 2014-05-07 富士電機株式会社 Method for starting fuel cell power generator and fuel cell power generator
JP5269446B2 (en) * 2008-03-13 2013-08-21 富士電機株式会社 Method for starting fuel cell power generator and fuel cell power generator
JP5449492B2 (en) * 2012-09-19 2014-03-19 京セラ株式会社 Fuel cell device
JP7320549B2 (en) * 2021-03-31 2023-08-03 本田技研工業株式会社 fuel cell system

Also Published As

Publication number Publication date
JPH05315002A (en) 1993-11-26

Similar Documents

Publication Publication Date Title
JP3111628B2 (en) Fuel cell power generator
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
US7353085B2 (en) Electrolyzer cell stack system
RU2332753C2 (en) Thermoregulation in electrochemical fuel elements
JP2000208157A (en) Fuel cell operation system
WO2001038608A1 (en) Water electrolyzing device
WO2009051348A1 (en) Heat recovery apparatus of fuel cell system
US20120135322A1 (en) Fuel cell system
JP2002141095A (en) Solid polymer fuel cell system and its operating method
CN113793947B (en) Fuel cell waste heat utilization system and energy system
CN115395047A (en) Methane-electricity-hydrogen reversible solid oxide fuel cell system with shared system components
JPH0922716A (en) Cooling water refilling device of water-cooled fuel cell
JPH08138709A (en) Fuel cell power generating system
JPH09231990A (en) Operation method for ion exchange water treatment device for fuel battery
KR20150049399A (en) Fuel cell system with excellent eliminating effect on freezing material throughout air purging and method of controlling the same
JP4095782B2 (en) Gas generator
CN113611894A (en) Hydrogen fuel cell waste heat utilization system
RU2327257C1 (en) Fuel element system
JPH01176668A (en) Start-up method of fuel cell
CN216120380U (en) Hydrogen fuel cell waste heat utilization system
JP6454874B2 (en) Fuel cell system and operation method thereof
JP2015185289A (en) Fuel battery device
JPH06140066A (en) Fuel cell power generating system
JP2004277870A (en) Method for operating water electrolyzer
JP4217940B2 (en) Fuel cell power generation system and operation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees