JP3110275B2 - Gas turbine blade platform cooling system - Google Patents
Gas turbine blade platform cooling systemInfo
- Publication number
- JP3110275B2 JP3110275B2 JP07055611A JP5561195A JP3110275B2 JP 3110275 B2 JP3110275 B2 JP 3110275B2 JP 07055611 A JP07055611 A JP 07055611A JP 5561195 A JP5561195 A JP 5561195A JP 3110275 B2 JP3110275 B2 JP 3110275B2
- Authority
- JP
- Japan
- Prior art keywords
- blade
- cooling air
- platform
- gas turbine
- tail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/80—Platforms for stationary or moving blades
- F05B2240/801—Platforms for stationary or moving blades cooled platforms
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はガスタービン動翼のプラ
ットフォームの冷却構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for a gas turbine blade platform.
【0002】[0002]
【従来の技術】図4は従来のガスタービン中空動翼の一
例を示す縦断面図である。2. Description of the Related Art FIG. 4 is a longitudinal sectional view showing an example of a conventional gas turbine hollow rotor blade.
【0003】翼の冷却空気は翼根(11)の底部から流
入し矢印の方向に流れて動翼を冷却する。即ち翼頭(前
縁)がわから流入した冷却空気(12A)は、タービュレ
ータ(13)を有する流路を流れて翼を冷却し、翼頭部
およびチップシンニング(14)が設けられた翼頂部に
設けられた穴から流出して、主ガス流れに合流する。ま
た翼尾(後縁)がわから流入した冷却空気(12B)は、
タービュレータ(13)が設けられた冷却通路を矢印方
向に流れ、ピンフィン(15)で翼尾部を冷却した後、
穴またはスリット(16)から流出して主ガス流れに合
流する。また中央部(12C)から流入した冷却空気(12
C)は、タービュレータ(13)が設けられた冷却通路
を矢印方向に流れ、主として翼頂の穴から流出し主ガス
流れに合流する。[0003] The blade cooling air flows in from the bottom of the blade root (11) and flows in the direction of the arrow to cool the blade. That is, the cooling air (12A) flowing from the wing tip (leading edge) flows through the flow path having the turbulator (13) to cool the wing, and to the wing tip provided with the wing head and the chip thinning (14). It flows out of the provided holes and merges with the main gas stream. In addition, the cooling air (12B) flowing from the tail
After flowing through the cooling passage provided with the turbulator (13) in the direction of the arrow and cooling the tail portion with the pin fin (15),
It flows out of the hole or slit (16) and joins the main gas stream. Cooling air (12C) flowing from the center (12C)
C) flows in the direction of the arrow in the cooling passage provided with the turbulator (13), flows out mainly from the hole at the top of the blade, and joins the main gas flow.
【0004】[0004]
【発明が解決しようとする課題】ガスタービンの高温化
が進むにつれタービン部の冷却能力の向上が求められ
る。このため動翼翼部には、高度な冷却構造が採用され
ているのに対し、プラットフォームの冷却については、
いくつかの方法が発表されているものの、決定的な冷却
方法はない。そのため、しばしばプラットフォームが高
温となって高温酸化や低サイクル疲労を惹き起してい
る。As the temperature of a gas turbine increases, it is required to improve the cooling capacity of the turbine section. For this reason, the advanced cooling structure is adopted for the rotor blade, while the cooling of the platform is
Although several methods have been announced, there is no definitive cooling method. As a result, the platform often becomes hot, causing high temperature oxidation and low cycle fatigue.
【0005】[0005]
【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、ガスタービン動翼の翼尾がわの
翼根部に穿設された冷却空気通路から冷却用空気を供給
し、プラットフォームの翼尾近傍内部および周方向の両
側方内部を順次通して翼頭がわ端面に開放する冷却空気
通路を穿設したことを特徴とするガスタービン動翼のプ
ラットフォーム冷却装置;ガスタービン動翼の翼頭がわ
の翼根部に穿設された冷却空気通路から冷却用空気を供
給し、プラットフォームの翼頭近傍内部および周方向の
両側方内部を順次通して翼尾がわ端面に開放する冷却空
気通路を穿設したことを特徴とするガスタービン動翼の
プラットフォーム冷却装置;ならびにガスタービン動翼
の翼尾がわの翼根部に穿設された冷却空気通路から冷却
用空気を供給し、プラットフォームの翼尾近傍内部およ
び周方向の両側方内部を順次通して、翼頭がわ端面近傍
で翼根方向に開放する冷却空気通路を穿設したことを特
徴とするガスタービン動翼のプラットフォーム冷却装置
を提案するものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present inventor supplies cooling air from a cooling air passage formed in a root of a tail of a gas turbine rotor blade. and, platform Tsubasao near inner and circumferential directions of the <br/> lateral internal sequential through the gas turbine rotor blade, characterized in that bored cooling air passage which opens to the end surface I wings head with Platform cooling device; cooling air is supplied from a cooling air passage formed in the root of the gas turbine blade at the blade root, and the inside of the platform in the vicinity of the blade head and the inside of both sides in the circumferential direction are supplied. A cooling system for a gas turbine rotor blade, wherein a cooling air passage is provided through which a tail is opened to an end face of the gas turbine blade sequentially; and a tail blade of the gas turbine rotor blade is provided. cooling air from the cooling air passages formed in the root portion Supplied, sequentially through both sides inside the Tsubasao near inner and circumferential direction of the platform, the gas turbine moving, characterized in that bored cooling air passage which opens the blade root direction Tsubasaatama Kanagawa vicinity of the end face A wing platform cooling device is proposed.
【0006】[0006]
【作用】本発明は前記構成を有するので、ガスタービン
動翼の翼尾がわ又は翼頭がわの翼根部に穿設された冷却
空気通路から冷却用空気を導入し、プラットフォームの
翼尾近傍内部または翼頭近傍内部および周方向の両側方
内部に穿設された冷却空気通路を順次通過して、翼頭が
わ端面、翼尾がわ端面または翼根方向に流出させること
ができる。したがって動翼のプラットフォームを効果的
に冷却することができる。According to the present invention having the above-described structure, the cooling blade formed at the blade root of the gas turbine blade or the blade head of the gas turbine blade is provided.
Introducing cooling air from the air passage, the Tsubasao neighborhood inside or Tsubasaatama vicinity within and circumferentially on both sides inside the drilled cooling air passages platform sequentially passes through the end surface I is Tsubasaatama, Tsubasao It can be discharged in the direction of the end face or blade root. Therefore, the platform of the moving blade can be effectively cooled.
【0007】[0007]
【実施例】図1は本発明の第1実施例を示す図であっ
て、図1(a)は翼根部縦断面図、図1(b)は図1
(a)のB−B矢視断面図、図1(c)は図1(a)の
C−C矢視断面図である。FIG. 1 is a view showing a first embodiment of the present invention. FIG. 1 (a) is a longitudinal sectional view of a blade root portion, and FIG.
1A is a cross-sectional view taken along the line BB, and FIG. 1C is a cross-sectional view taken along the line CC in FIG.
【0008】本実施例では、動翼の翼尾がわの翼根部
(1)に翼軸方向に冷却空気通路(A1)が穿設されて
いる。またプラットフォーム(2)の周方向の両側部に
は平行に2ツの冷却空気通路(B1),(C1)が穿設
されている。そして上記翼根部の通路(A1)とプラッ
トフォーム側部の通路(B1),(C1)とは、翼尾近
傍のプラットフォーム内部に穿設された通路(D1)で
互に連通している。上記平行な通路(B1),(C1)
の翼頭がわは開放されている。In this embodiment, a cooling air passage (A1) is formed in the blade root portion (1) of the rotor blade in the blade axis direction. Two cooling air passages (B1) and (C1) are formed in parallel on both sides in the circumferential direction of the platform (2). The passage (A1) at the blade root and the passages (B1) and (C1) at the side of the platform communicate with each other via a passage (D1) formed inside the platform near the blade tail. The parallel passages (B1) and (C1)
The wings are open.
【0009】翼尾がわの翼根部に設けられた冷却空気通
路(A1)から導入された冷却空気は、プラットフォー
ム(2)の外周部に穿設された通路(D1),(B
1),(C1)を通ってプラットフォーム(2)を冷却
し、翼頭がわの開放部から流出する。[0009] The cooling air introduced from the cooling air passage (A1) provided at the root of the wing of the tail is applied to the passages (D1), (B) formed in the outer peripheral portion of the platform (2).
The platform (2) is cooled through (1) and (C1), and the wing tip flows out of the opening of the alligator.
【0010】次に図2は本発明の第2実施例を示す図で
あって、図2(a)は翼根部縦断面図、図2(b)は図
2(a)のB−B矢視断面図である。FIG. 2 is a view showing a second embodiment of the present invention. FIG. 2 (a) is a vertical sectional view of a blade root portion, and FIG. 2 (b) is a BB arrow of FIG. 2 (a). FIG.
【0011】本実施例では、動翼の翼頭がわの翼根部
(1)に翼軸方向に冷却通路(A2)が穿設されてい
る。また、プラットフォーム(2)の周方向の両側部に
平行に冷却空気通路(B2),(C2)が穿設されてい
る。そして上記翼根部の通路(A2)とプラットフォー
ム側部の通路(B2),(C2)とは、翼頭近傍のプラ
ットフォーム内部の通路(D2)で互に連通している。
上記平行な通路(B2),(C2)の翼尾がわは開放さ
れている。In this embodiment, a cooling passage (A2) is formed in the blade root portion (1) of the blade in the axial direction of the blade. Cooling air passages (B2) and (C2) are formed in parallel with both circumferential sides of the platform (2). The passage (A2) at the root of the blade and the passages (B2) and (C2) at the side of the platform communicate with each other via a passage (D2) inside the platform near the blade tip.
The tails of the parallel passages (B2) and (C2) are open.
【0012】翼頭がわの翼根部(1)に穿設された通路
(A2)から導入された冷却空気は、プラットフォーム
(2)の外周部に穿設された通路(D2),(B2),
(D2)を通ってプラットフォーム(2)を冷却し、翼
尾がわの開放部から流出する。前記第1実施例において
は、冷却空気が翼頭がわに流出するので、主ガス流れに
よって開放端に圧力がかかり冷却空気が流れにくかっ
た。本実施例では冷却空気が翼尾がわに流出するので、
主ガス流れによる吸出し効果が得られ、冷却空気が流れ
やすい。The cooling air introduced from the passage (A2) formed in the blade root portion (1) of the blade head is passed through the passages (D2) and (B2) formed in the outer periphery of the platform (2). ,
The platform (2) cools through (D2) and flows out of the tail opening. In the first embodiment, since the cooling air flows all over the blade head, pressure is applied to the open end by the main gas flow, and the cooling air is difficult to flow. In this embodiment, since the cooling air flows out from the tail,
The suction effect by the main gas flow is obtained, and the cooling air flows easily.
【0013】次に図3は本発明の第3実施例を示す図で
あって、図3(a)は翼根部縦断面図、図3(b)は図
3(a)のB−B矢視断面図である。FIG. 3 is a view showing a third embodiment of the present invention. FIG. 3 (a) is a longitudinal sectional view of a blade root portion, and FIG. 3 (b) is a BB arrow of FIG. 3 (a). FIG.
【0014】本実施例では、動翼の翼尾がわの翼根部
(1)に翼軸方向に冷却空気通路(A3)が穿設されて
いる。またプラットフォーム(2)の周方向の両側部に
は平行な冷却空気通路(B3),(C3)が穿設されて
いる。そして上記翼根部の通路(A3)とプラットフォ
ーム側部の通路(B3),(C3)とは、翼尾近傍のプ
ラットフォーム内部に穿設された通路(D3)で互に連
通している。更に、平行な通路(B3),(C3)の翼
頭がわは、プラットフォーム(2)の翼軸方向に穿設さ
れた2ツの冷却空気通路(E3)と連通して開放されて
いる。In this embodiment, a cooling air passage (A3) is formed in the blade root portion (1) of the rotor blade in the blade axis direction. Parallel cooling air passages (B3) and (C3) are formed on both sides in the circumferential direction of the platform (2). The passage (A3) at the root of the blade and the passages (B3) and (C3) at the side of the platform communicate with each other via a passage (D3) formed inside the platform near the tail of the blade. Furthermore, the blades of the parallel passages (B3) and (C3) are open in communication with two cooling air passages (E3) formed in the blade axis direction of the platform (2).
【0015】翼尾がわの翼根部(1)に設けられた冷却
空気通路(A3)から導入された冷却空気は、プラット
フォーム(2)の外周部に穿設された通路(D3),
(B3),(C3)を通ってプラットフォーム(2)を
冷却し、更に翼軸方向に穿設された通路(E3)を通っ
て翼根方向へ流出する。本実施例でも、前記第1実施例
のように冷却空気が主ガス流れに逆らって流出すること
はないので、冷却空気が流れやすい。The cooling air introduced from the cooling air passage (A3) provided in the wing root portion (1) of the tail fin is cooled by passages (D3) and (D3) formed in the outer periphery of the platform (2).
The platform (2) is cooled through (B3) and (C3), and further flows out toward the blade root through a passage (E3) formed in the blade axis direction. Also in this embodiment, since the cooling air does not flow out against the main gas flow as in the first embodiment, the cooling air flows easily.
【0016】[0016]
【発明の効果】本発明になるガスタービン動翼のプラッ
トフォーム冷却装置によれば、プラットフォームの特に
熱の影響を受け易い周方向の両側部が充分に冷却され、
熱により惹き起されるプラットフォームの高温酸化や低
サイクル疲労を防止することができる。したがってガス
タービン動翼の信頼性は一段と向上し高温化にも対応で
きる。According to the gas turbine blade platform cooling apparatus of the present invention, both sides in the circumferential direction of the platform, which are particularly susceptible to heat, are sufficiently cooled.
High-temperature oxidation and low-cycle fatigue of the platform caused by heat can be prevented. Therefore, the reliability of the gas turbine blade is further improved, and it can cope with a high temperature.
【図1】図1は本発明の第1実施例を示す図であって、
図1(a)は翼根部縦断面図、図1(b)は図1(a)
のB−B矢視断面図、図1(c)は図1(a)のC−C
矢視断面図である。FIG. 1 is a diagram showing a first embodiment of the present invention,
1A is a longitudinal sectional view of a blade root portion, and FIG.
1 (c) is a sectional view taken along the line BB of FIG.
It is arrow sectional drawing.
【図2】図2は本発明の第2実施例を示す図であって、
図2(a)は翼根部縦断面図、図2(b)は図2(a)
のB−B矢視断面図である。FIG. 2 is a diagram showing a second embodiment of the present invention,
FIG. 2A is a longitudinal sectional view of a blade root portion, and FIG. 2B is FIG.
FIG. 3 is a sectional view taken along the line BB in FIG.
【図3】図3は本発明の第3実施例を示す図であって、
図3(a)は翼根部縦断面図、図3(b)は図3(a)
のB−B矢視断面図である。FIG. 3 is a view showing a third embodiment of the present invention,
3A is a longitudinal sectional view of a blade root portion, and FIG.
FIG. 3 is a sectional view taken along the line BB in FIG.
【図4】図4は従来のガスタービン動翼の一例を示す縦
断面図である。FIG. 4 is a longitudinal sectional view showing an example of a conventional gas turbine blade.
(1),(11) 翼根部 (2) プラットフ
ォーム (A1),(A2),(A3) 翼根部の冷
却空気通路 (B1),(C1), (B2),(C2),(B3),(B3) プラットフ
ォームの周方向の両側部の冷却空気通路(1), (11) Blade root (2) Platform (A1), (A2), (A3) Cooling air passage of blade root (B1), (C1), (B2), (C2), (B3), (B3) Cooling air passages on both sides in the circumferential direction of the platform
Claims (3)
穿設された冷却空気通路から冷却用空気を供給し、プラ
ットフォームの翼尾近傍内部および周方向の両側方内部
を順次通して翼頭がわ端面に開放する冷却空気通路を穿
設したことを特徴とするガスタービン動翼のプラットフ
ォーム冷却装置。[Claim 1] to the blade root portion of the I wings tail of gas turbine blades
Supplying cooling air from the drilled cooling air passages, puncture the cooling air passage sequentially through both sides inside the Tsubasao near inner and circumferential directions of the platform to open to the end surface I wings head
Gas turbine blade platform cooling device, characterized in that the set.
穿設された冷却空気通路から冷却用空気を供給し、プラ
ットフォームの翼頭近傍内部および周方向の両側方内部
を順次通して翼尾がわ端面に開放する冷却空気通路を穿
設したことを特徴とするガスタービン動翼のプラットフ
ォーム冷却装置。 To [claim 2] blade root part of I the gas turbine blades of the blade head
Supplying cooling air from the drilled cooling air passages, puncture the cooling air passage sequentially through both sides inside the Tsubasaatama near inner and circumferential directions of the platform to open to the end surface I wing tail
Gas turbine blade platform cooling device, characterized in that the set.
穿設された冷却空気通路から冷却用空気を供給し、プラ
ットフォームの翼尾近傍内部および周方向の両側方内部
を順次通して、翼頭がわ端面近傍で翼根方向に開放する
冷却空気通路を穿設したことを特徴とするガスタービン
動翼のプラットフォーム冷却装置。[Claim 3] to the blade root portion of the I wings tail of gas turbine blades
Cooling air is supplied from the perforated cooling air passage, and sequentially passes through the inside of the vicinity of the blade tail and the inside of both sides in the circumferential direction of the platform, and the blade tip is opened in the blade root direction near the blade end face.
A platform cooling device for a gas turbine rotor blade, wherein a cooling air passage is provided .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07055611A JP3110275B2 (en) | 1995-03-15 | 1995-03-15 | Gas turbine blade platform cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07055611A JP3110275B2 (en) | 1995-03-15 | 1995-03-15 | Gas turbine blade platform cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08246802A JPH08246802A (en) | 1996-09-24 |
JP3110275B2 true JP3110275B2 (en) | 2000-11-20 |
Family
ID=13003567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07055611A Expired - Fee Related JP3110275B2 (en) | 1995-03-15 | 1995-03-15 | Gas turbine blade platform cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3110275B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105275503A (en) * | 2014-06-27 | 2016-01-27 | 三菱日立电力系统株式会社 | Rotor blade and gas turbine equipped with same |
JP7036305B2 (en) | 2016-01-29 | 2022-03-15 | 北京三快在線科技有限公司 | Door lock network control method, equipment, server and PMS |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3758792B2 (en) * | 1997-02-25 | 2006-03-22 | 三菱重工業株式会社 | Gas turbine rotor platform cooling mechanism |
JP3457831B2 (en) * | 1997-03-17 | 2003-10-20 | 三菱重工業株式会社 | Gas turbine blade cooling platform |
CA2262064C (en) * | 1998-02-23 | 2002-09-03 | Mitsubishi Heavy Industries, Ltd. | Gas turbine moving blade platform |
US6190130B1 (en) | 1998-03-03 | 2001-02-20 | Mitsubishi Heavy Industries, Ltd. | Gas turbine moving blade platform |
US6210111B1 (en) * | 1998-12-21 | 2001-04-03 | United Technologies Corporation | Turbine blade with platform cooling |
US6966755B2 (en) | 2004-02-09 | 2005-11-22 | Siemens Westinghouse Power Corporation | Compressor airfoils with movable tips |
US7144215B2 (en) | 2004-07-30 | 2006-12-05 | General Electric Company | Method and apparatus for cooling gas turbine engine rotor blades |
US7198467B2 (en) * | 2004-07-30 | 2007-04-03 | General Electric Company | Method and apparatus for cooling gas turbine engine rotor blades |
EP1630354B1 (en) | 2004-08-25 | 2014-06-18 | Rolls-Royce Plc | Cooled gas turbine aerofoil |
US7309212B2 (en) * | 2005-11-21 | 2007-12-18 | General Electric Company | Gas turbine bucket with cooled platform leading edge and method of cooling platform leading edge |
US8628300B2 (en) * | 2010-12-30 | 2014-01-14 | General Electric Company | Apparatus and methods for cooling platform regions of turbine rotor blades |
-
1995
- 1995-03-15 JP JP07055611A patent/JP3110275B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105275503A (en) * | 2014-06-27 | 2016-01-27 | 三菱日立电力系统株式会社 | Rotor blade and gas turbine equipped with same |
US9644485B2 (en) | 2014-06-27 | 2017-05-09 | Mitsubishi Hitachi Power Systems, Ltd. | Gas turbine blade with cooling passages |
TWI593869B (en) * | 2014-06-27 | 2017-08-01 | 三菱日立電力系統股份有限公司 | Moving blade and gas turbine provided with the same |
JP7036305B2 (en) | 2016-01-29 | 2022-03-15 | 北京三快在線科技有限公司 | Door lock network control method, equipment, server and PMS |
Also Published As
Publication number | Publication date |
---|---|
JPH08246802A (en) | 1996-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3110275B2 (en) | Gas turbine blade platform cooling system | |
JP3758792B2 (en) | Gas turbine rotor platform cooling mechanism | |
US5848876A (en) | Cooling system for cooling platform of gas turbine moving blade | |
RU2296863C2 (en) | Gas-turbine blade provided with improved cooling circuits | |
JP3137527B2 (en) | Gas turbine blade tip cooling system | |
JP3316415B2 (en) | Gas turbine cooling vane | |
JP4778754B2 (en) | Cooling system for trailing edge of turbine bucket airfoil | |
US6602052B2 (en) | Airfoil tip squealer cooling construction | |
JP4416287B2 (en) | Internal cooling airfoil component and cooling method | |
JP3316405B2 (en) | Gas turbine cooling vane | |
US6290463B1 (en) | Slotted impingement cooling of airfoil leading edge | |
US8292581B2 (en) | Air cooled turbine blades and methods of manufacturing | |
RU2296862C2 (en) | Gas-turbine blade provided with cooling circuits | |
US6234753B1 (en) | Turbine airfoil with internal cooling | |
US20080056908A1 (en) | High effectiveness cooled turbine blade | |
JP4175669B2 (en) | Cooling channel structure for cooling the trailing edge of gas turbine blades | |
JPS60192802A (en) | Gas turbine blade | |
JPH10252404A (en) | Gas turbine moving blade | |
JPH05248204A (en) | Turbine blade | |
JPH1113402A (en) | Tip shroud for gas turbine cooling blade | |
JPH0211801A (en) | Gas turbine cooling movable vane | |
JP4064778B2 (en) | Gas turbine blade body and gas turbine | |
US20050265839A1 (en) | Cooled rotor blade | |
JPH10306706A (en) | Cooling stationary blade for gas turbine | |
JP2971356B2 (en) | Gas turbine blades |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000808 |
|
LAPS | Cancellation because of no payment of annual fees |