[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3110197U - Refrigerant tube of heat exchanger - Google Patents

Refrigerant tube of heat exchanger Download PDF

Info

Publication number
JP3110197U
JP3110197U JP2004006819U JP2004006819U JP3110197U JP 3110197 U JP3110197 U JP 3110197U JP 2004006819 U JP2004006819 U JP 2004006819U JP 2004006819 U JP2004006819 U JP 2004006819U JP 3110197 U JP3110197 U JP 3110197U
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigerant pipe
fin
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004006819U
Other languages
Japanese (ja)
Inventor
サイ ケー オー
ドン ヨン チャン
セ ヨーン オー
ウーク ヨン リー
Original Assignee
エルジー電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー電子株式会社 filed Critical エルジー電子株式会社
Application granted granted Critical
Publication of JP3110197U publication Critical patent/JP3110197U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】 熱交換器のコスト低減及び小型化と空気側の圧力損失減少のような細径管の長所を有すると共に、熱伝達効率を向上させて熱交換性能を極大化させることが可能な冷媒管を提供すること。
【解決手段】 多数の冷却フィンが結合され、冷媒と空気とを熱交換させる熱交換器の冷媒管において、前記冷媒管51は5.3mm以下の外径を有し、内周面に多数のフィン53が螺旋状に突設されている。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a refrigerant capable of maximizing heat exchange performance by improving heat transfer efficiency while having advantages of a small diameter tube such as cost reduction and downsizing of a heat exchanger and reduction of air side pressure loss. Providing tubes.
In a refrigerant tube of a heat exchanger in which a large number of cooling fins are coupled to exchange heat between the refrigerant and air, the refrigerant tube 51 has an outer diameter of 5.3 mm or less, and a large number of inner surfaces are arranged on the inner peripheral surface. The fin 53 is provided in a spiral shape.
[Selection] Figure 1

Description

本考案は熱交換器の冷媒管に係り、特に管の内周面に多数のフィンが螺旋状に突出し、冷媒が流れながら熱交換される空気調和器用熱交換器の冷媒管に関する。   The present invention relates to a refrigerant pipe of a heat exchanger, and more particularly, to a refrigerant pipe of a heat exchanger for an air conditioner in which a large number of fins protrude spirally on the inner peripheral surface of the pipe and heat is exchanged while the refrigerant flows.

一般的な空気調和器用熱交換器は、図3に示すように、内部に冷媒が流れる冷媒管11と、前記冷媒管11が貫いた状態に取り付けられた多数の冷却フィン3とからなり、前記冷媒管11を流れる冷媒と冷媒管11の周囲の空気とが熱交換されるように構成されている。   As shown in FIG. 3, a general heat exchanger for an air conditioner includes a refrigerant pipe 11 through which a refrigerant flows, and a plurality of cooling fins 3 attached in a state in which the refrigerant pipe 11 penetrates, The refrigerant flowing through the refrigerant pipe 11 and the air around the refrigerant pipe 11 are configured to exchange heat.

従来の熱交換器に用いられる冷媒管11は、図4及び図5に示すように、7mmまたは9mmの外径を有し、その内周面に多数のフィン13が突出し、前記フィン13同士の間にグルーブがそれぞれ設けられ、前記フィン13とグルーブ15によって冷媒管11内部の熱伝達面積が増大し、温度境界層が撹乱され、冷媒管11を流れる冷媒と冷媒管11の周囲の空気との熱交換を促進させる。   As shown in FIGS. 4 and 5, the refrigerant pipe 11 used in the conventional heat exchanger has an outer diameter of 7 mm or 9 mm, and a large number of fins 13 project on the inner peripheral surface thereof. Grooves are respectively provided between the fins 13 and the grooves 15, the heat transfer area inside the refrigerant pipe 11 is increased, the temperature boundary layer is disturbed, and the refrigerant flowing through the refrigerant pipe 11 and the air around the refrigerant pipe 11 are Promotes heat exchange.

即ち、前記フィン13とグルーブ15によって液状または蒸気状の冷媒と接触する冷媒管11の面積が増大し、低流速の冷媒においても毛細管効果と剪断力によって管内に形成された液膜の乱流の強度も増加して熱交換効果が増大するが、前記フィン13の個数及び形状によって、冷媒と管壁面との接触面積、液膜の乱流化度及び液膜の膜厚などが可変される。   That is, the fin 13 and the groove 15 increase the area of the refrigerant tube 11 in contact with the liquid or vapor refrigerant, and even in a low flow rate refrigerant, the turbulent flow of the liquid film formed in the tube due to the capillary effect and the shearing force. Although the strength increases and the heat exchange effect increases, the contact area between the refrigerant and the pipe wall surface, the degree of turbulence of the liquid film, the film thickness of the liquid film, and the like are varied depending on the number and shape of the fins 13.

従って、前記冷媒管11を製造する際には、前記フィン13がそれぞれの用途に合わせて最適化されるようにフィンの個数、フィンの高さ、フィンの突出角、フィンのねじれ角などの加工変数を選定しなければならない。前記フィンの形状を設計する方式には定型化されたものが未だ存在していないので、実験によって最適の組合を見出す方式で行われている実情である。   Accordingly, when manufacturing the refrigerant tube 11, the number of fins, fin height, fin protrusion angle, fin twist angle, etc. are processed so that the fin 13 is optimized for each application. Variables must be selected. There is no standardized method for designing the shape of the fins, so this is the actual situation in which an optimum combination is found through experiments.

つまり、前記フィンは各加工変数を変更しながら行う実験によって冷媒量や冷媒の種類、外部環境などの熱交換器の使用条件から最適の組合を見出す方式で設計されている。このような方式で設計された従来の熱交換器に用いられる冷媒管11は、7mmまたは9mmの外径と0.27mmの管厚t1を有するように形成されたもので、その内周面に突出しているフィン13は60個からなり、0.15mmの高さH1、56°の突出角β1、18°のねじれ角α1を有する。   In other words, the fins are designed in such a way as to find the optimum combination from the heat exchanger usage conditions such as the amount of refrigerant, the type of refrigerant and the external environment through experiments conducted while changing each processing variable. The refrigerant pipe 11 used in the conventional heat exchanger designed in such a manner is formed to have an outer diameter of 7 mm or 9 mm and a pipe thickness t1 of 0.27 mm, and has an inner peripheral surface thereof. The number of projecting fins 13 is 60, and has a height H1 of 0.15 mm, a projecting angle β1 of 56 °, and a twist angle α1 of 18 °.

ところで、最近、熱交換器の製造コストと空気側の圧力損失を低減させるために、前記冷媒管11の外径を縮小して製造する必要性が台頭している。しかし、前記冷媒管11の外径を縮小しながら、従来の冷媒管11に形成していたフィン13の形状をそのまま適用すると、むしろ前記冷媒の圧力損失が増加して熱交換効率が低減するだけでなく、フィン13が加工可能な寸法を外れてしまい冷媒管11の製造が難しくなるという問題がある。   By the way, recently, in order to reduce the manufacturing cost of the heat exchanger and the pressure loss on the air side, it is necessary to reduce the outer diameter of the refrigerant pipe 11 and manufacture it. However, if the shape of the fin 13 formed in the conventional refrigerant pipe 11 is applied as it is while reducing the outer diameter of the refrigerant pipe 11, the pressure loss of the refrigerant is increased and the heat exchange efficiency is reduced. In addition, there is a problem that it is difficult to manufacture the refrigerant pipe 11 because the fins 13 are out of the processable dimensions.

また、上述した従来の熱交換器に用いられる冷媒管11は、冷媒を代替冷媒に変更する場合を考慮せずに設計したものなので、前記冷媒を変更すれば、冷媒の圧力損失及び熱伝達係数が変化され、性能を十分発揮できなくなるという問題がある。従って、前記冷媒管の外径を縮小させながら、前記冷媒管に設けられたフィンの形状及び個数を最適化することにより、冷媒の圧力損失を低減させると共に熱伝達係数のような熱伝達性能を向上させることができる冷媒管の開発が求められる。   In addition, the refrigerant pipe 11 used in the above-described conventional heat exchanger is designed without considering the case where the refrigerant is changed to an alternative refrigerant. Therefore, if the refrigerant is changed, the pressure loss and the heat transfer coefficient of the refrigerant are changed. Is changed, and there is a problem that the performance cannot be fully exhibited. Therefore, by optimizing the shape and number of fins provided in the refrigerant pipe while reducing the outer diameter of the refrigerant pipe, the pressure loss of the refrigerant is reduced and the heat transfer performance such as the heat transfer coefficient is improved. Development of refrigerant pipes that can be improved is required.

本考案はかかる問題点を解決するためのもので、その目的は冷媒管の外径を縮小させながら、冷媒管の内周面に突出しているフィンを縮小された外径の冷媒管に最も適するように形成することにより、熱交換器のコスト低減及び小型化と空気側の圧力損失減少のような細径管の長所を有すると共に、熱伝達効率を向上させて熱交換性能を極大化させることが可能な冷媒管を提供することにある。   The present invention is intended to solve such problems, and its purpose is most suitable for a refrigerant pipe having a reduced outer diameter with fins protruding from the inner peripheral surface of the refrigerant pipe reduced in the outer diameter of the refrigerant pipe. In this way, it has the advantages of small diameter tubes such as cost reduction and downsizing of heat exchangers and reduced pressure loss on the air side, and also improves heat transfer efficiency and maximizes heat exchange performance. An object of the present invention is to provide a refrigerant pipe capable of achieving the above.

請求項1に記載の本考案は、多数の冷却フィンが結合され、内周面に多数のフィンが螺旋状に突出され、内部に流れる冷媒と周辺の空気とを熱交換させる熱交換器の冷媒管において、前記冷媒管は5.3mm以下の外径と0.16mm〜0.2mmの管厚を有し、前記冷媒管の内部面に突出したフィンの個数は40〜50個、フィンの高さは0.15〜0.18mm、フィンの突出角は38〜42°、フィンのねじれ角は6〜20°であるようにした熱交換器の冷媒管を要旨とする。   The present invention according to claim 1 is a heat exchanger refrigerant in which a large number of cooling fins are coupled, a large number of fins are spirally projected on the inner peripheral surface, and heat is exchanged between the refrigerant flowing inside and the surrounding air. In the pipe, the refrigerant pipe has an outer diameter of 5.3 mm or less and a pipe thickness of 0.16 mm to 0.2 mm, and the number of fins protruding from the inner surface of the refrigerant pipe is 40 to 50, The gist is a refrigerant tube of a heat exchanger having a thickness of 0.15 to 0.18 mm, a fin protrusion angle of 38 to 42 °, and a fin twist angle of 6 to 20 °.

本考案による熱交換器の冷媒管は、冷媒管の外径が縮小され、縮小された外径の冷媒管に適するようにフィンが形成され、熱交換器の製造コストの低減及び小型化と空気側の圧力損失減少のような細径管の長所を全て生かしながら、前記冷媒管による熱伝達効率を向上させて熱交換の性能を極大化させる利点がある。特に、本考案による冷媒管は、細径管に適した形態でフィンが設計され、前記フィンによる冷媒側圧力損失が最小化されると共に、冷媒管製造時の公差管理が容易であるという利点がある。   The refrigerant pipe of the heat exchanger according to the present invention has a reduced outer diameter of the refrigerant pipe, and fins are formed so as to be suitable for the reduced outer diameter refrigerant pipe. This has the advantage of maximizing the heat exchange performance by improving the heat transfer efficiency of the refrigerant tube while making full use of the advantages of the small-diameter tube such as reducing the pressure loss on the side. In particular, the refrigerant pipe according to the present invention has an advantage that the fin is designed in a form suitable for a small-diameter pipe, refrigerant side pressure loss due to the fin is minimized, and tolerance management at the time of manufacturing the refrigerant pipe is easy. is there.

以下、本考案の実施例を添付図に基づいて説明する。図1は本考案に係る熱交換器の冷媒管構造を示す一部切欠図、図2は本考案に係る冷媒管を拡大して示す一部断面図である。図1及び図2に示すように、本考案による熱交換器の冷媒管では、多数の冷却フィン(図示せず)を貫いた状態に取り付けられた冷媒管において、前記冷媒管51は5.3mm以下の外径を有し、内周面に多数のフィン53が突出しており、前記フィン53同士の間にグルーブ55がそれぞれ形成されている。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a partially cutaway view showing a refrigerant tube structure of a heat exchanger according to the present invention. FIG. 2 is an enlarged partial sectional view showing a refrigerant tube according to the present invention. As shown in FIGS. 1 and 2, in the refrigerant pipe of the heat exchanger according to the present invention, the refrigerant pipe 51 is 5.3 mm in the refrigerant pipe attached in a state of penetrating a plurality of cooling fins (not shown). The fins 53 have the following outer diameters, a large number of fins 53 project from the inner peripheral surface, and grooves 55 are formed between the fins 53.

ここで、前記冷媒管51は0.16〜0.2mmの管厚tを有するように形成され、前記フィン53は冷媒管51の内周面に40〜50個突設されると共に、ねじれ角(α)6〜20°、高さ(H)0.15〜0.18mm、突出角(β)38〜42°を有する。前記フィンのねじれ角αは6〜10°もしくは16〜20°とすることが好ましい。   Here, the refrigerant pipe 51 is formed to have a pipe thickness t of 0.16 to 0.2 mm, and 40 to 50 fins 53 project from the inner peripheral surface of the refrigerant pipe 51 and have a twist angle. (Α) 6 to 20 °, height (H) 0.15 to 0.18 mm, and protrusion angle (β) 38 to 42 °. The twist angle α of the fin is preferably 6 to 10 ° or 16 to 20 °.

このような本考案による冷媒管を用いた熱交換器では、冷媒管51の外径が5.3mmに縮小されて7mmまたは9mmの管径を有する冷媒管を使用した熱交換器に比べて、同一冷媒流量における冷媒側圧力損失が増加し且つ管厚tが減少するので、このような冷媒側圧力損失及び管厚tの減少を考慮し、縮小された外径の冷媒管に適するようにフィン53が設計された。その結果、実験により、前記冷媒管51の冷媒側圧力損失が減少して熱交換性能が向上し、冷媒管51製造時のフィンの公差管理が可能となることが分った。   In such a heat exchanger using the refrigerant pipe according to the present invention, the outer diameter of the refrigerant pipe 51 is reduced to 5.3 mm, compared with a heat exchanger using a refrigerant pipe having a pipe diameter of 7 mm or 9 mm, Since the refrigerant-side pressure loss at the same refrigerant flow rate increases and the tube thickness t decreases, the fins are suitable for the reduced-diameter refrigerant tube in consideration of the refrigerant-side pressure loss and the decrease in the tube thickness t. 53 was designed. As a result, it has been found from experiments that the refrigerant-side pressure loss of the refrigerant pipe 51 is reduced, heat exchange performance is improved, and fin tolerance management is possible when the refrigerant pipe 51 is manufactured.

また、前記冷媒管51の構造を同一にした状態で冷媒を代替冷媒に変更しても、その圧力損失及び熱伝達係数が変化するので、代替冷媒の使用も考慮して前記フィン53の形状が設計された。   In addition, even if the refrigerant is changed to an alternative refrigerant with the refrigerant pipe 51 having the same structure, the pressure loss and the heat transfer coefficient change. Designed.

本考案の実施形態による熱交換器の冷媒管構造を示す一部切欠図である。It is a partially cutaway view showing a refrigerant tube structure of a heat exchanger according to an embodiment of the present invention. 本考案の実施形態による熱交換器の冷媒管を拡大して示す一部断面図である。It is a partial sectional view expanding and showing a refrigerant pipe of a heat exchanger by an embodiment of the present invention. 一般的な熱交換器を示す斜視図である。It is a perspective view which shows a general heat exchanger. 従来の技術による熱交換器の冷媒管構造を示す一部切欠図である。It is a partial notch figure which shows the refrigerant | coolant tube structure of the heat exchanger by a prior art. 従来の技術による熱交換器の冷媒管を拡大して示す一部断面図である。It is a partial cross section figure which expands and shows the refrigerant pipe of the heat exchanger by the prior art.

符号の説明Explanation of symbols

51 冷媒管
53 フィン
55 グルーブ
t 冷媒管の管厚
H フィンの高さ
α フィンのねじれ角
β フィンの突出角
51 Refrigerant tube 53 Fin 55 Groove t Refrigerant tube thickness H Fin height α Fin twist angle β Fin protrusion angle

Claims (3)

多数の冷却フィンが結合され、内周面に多数のフィンが螺旋状に突出され、内部に流れる冷媒と周辺の空気とを熱交換させる熱交換器の冷媒管において、
前記冷媒管は5.3mm以下の外径と0.16mm〜0.2mmの管厚を有し、前記冷媒管の内部面に突出したフィンの個数は40〜50個、フィンの高さは0.15〜0.18mm、フィンの突出角は38〜42°、フィンのねじれ角は6〜20°であることを特徴とする熱交換器の冷媒管。
In the refrigerant tube of the heat exchanger, in which a large number of cooling fins are coupled, and a large number of fins are spirally projected on the inner peripheral surface to exchange heat between the refrigerant flowing inside and the surrounding air.
The refrigerant pipe has an outer diameter of 5.3 mm or less and a pipe thickness of 0.16 mm to 0.2 mm, the number of fins protruding from the inner surface of the refrigerant pipe is 40 to 50, and the height of the fin is 0. A refrigerant tube for a heat exchanger, wherein the fin projection angle is 38 to 42 °, and the twist angle of the fin is 6 to 20 °.
前記フィンのねじれ角は6〜10°であることを特徴とする請求項1記載の熱交換器の冷媒管。   The refrigerant pipe of the heat exchanger according to claim 1, wherein the twist angle of the fin is 6 to 10 °. 前記フィンのねじれ角は16〜20°であることを特徴とする請求項1記載の熱交換器の冷媒管。   The refrigerant pipe of the heat exchanger according to claim 1, wherein the twist angle of the fin is 16 to 20 °.
JP2004006819U 2000-07-06 2004-11-22 Refrigerant tube of heat exchanger Expired - Lifetime JP3110197U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0038501A KR100382341B1 (en) 2000-07-06 2000-07-06 Heat exchanger

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001202455A Continuation JP2002062077A (en) 2000-07-06 2001-07-03 Refrigerant tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP3110197U true JP3110197U (en) 2005-06-16

Family

ID=19676520

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001202455A Pending JP2002062077A (en) 2000-07-06 2001-07-03 Refrigerant tube for heat exchanger
JP2004006819U Expired - Lifetime JP3110197U (en) 2000-07-06 2004-11-22 Refrigerant tube of heat exchanger

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2001202455A Pending JP2002062077A (en) 2000-07-06 2001-07-03 Refrigerant tube for heat exchanger

Country Status (7)

Country Link
US (1) US20020011332A1 (en)
JP (2) JP2002062077A (en)
KR (1) KR100382341B1 (en)
CN (1) CN1188652C (en)
ES (1) ES2228189A1 (en)
IT (1) ITRM20010384A1 (en)
TW (1) TW526322B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885499B1 (en) * 2002-07-15 2009-02-26 한라공조주식회사 Heat exchanger
US10683865B2 (en) 2006-02-14 2020-06-16 Air Squared, Inc. Scroll type device incorporating spinning or co-rotating scrolls
US11047389B2 (en) 2010-04-16 2021-06-29 Air Squared, Inc. Multi-stage scroll vacuum pumps and related scroll devices
US20130232975A1 (en) 2011-08-09 2013-09-12 Robert W. Saffer Compact energy cycle construction utilizing some combination of a scroll type expander, pump, and compressor for operating according to a rankine, an organic rankine, heat pump, or combined organic rankine and heat pump cycle
US20140224464A1 (en) * 2012-06-05 2014-08-14 Golden Dragon Precise Copper Tube Group Inc. Enhanced condensation heat-transfer tube
DE112014002095T5 (en) * 2013-04-23 2016-01-14 Air Squared, Inc. Compact energy cycle design using a combination of a hoist expander, pump and compressor operating according to a Rankine temperature scale, a Rankine organic temperature heat pump or a combined organic Rankine temperature and heat pump cycle
US10508543B2 (en) 2015-05-07 2019-12-17 Air Squared, Inc. Scroll device having a pressure plate
US10865793B2 (en) 2016-12-06 2020-12-15 Air Squared, Inc. Scroll type device having liquid cooling through idler shafts
EP3770535A1 (en) * 2018-03-20 2021-01-27 Mitsubishi Electric Corporation Heat exchanger, refrigeration cycle device, and air conditioning device
WO2019212598A1 (en) 2018-05-04 2019-11-07 Air Squared, Inc. Liquid cooling of fixed and orbiting scroll compressor, expander or vacuum pump
US11067080B2 (en) 2018-07-17 2021-07-20 Air Squared, Inc. Low cost scroll compressor or vacuum pump
US20200025199A1 (en) 2018-07-17 2020-01-23 Air Squared, Inc. Dual drive co-rotating spinning scroll compressor or expander
US11530703B2 (en) 2018-07-18 2022-12-20 Air Squared, Inc. Orbiting scroll device lubrication
US11473572B2 (en) 2019-06-25 2022-10-18 Air Squared, Inc. Aftercooler for cooling compressed working fluid
CN111141068A (en) * 2020-02-21 2020-05-12 顺德职业技术学院 Condenser with variable-pipe-diameter composite tooth-shaped internal thread reinforced pipe
CN111156745A (en) * 2020-02-21 2020-05-15 顺德职业技术学院 Variable-pipe-diameter composite-tooth-shaped internal thread reinforced pipe evaporator
US11898557B2 (en) 2020-11-30 2024-02-13 Air Squared, Inc. Liquid cooling of a scroll type compressor with liquid supply through the crankshaft
CN114963837B (en) * 2021-02-22 2024-11-05 约克广州空调冷冻设备有限公司 Heat exchange tube, heat exchanger and refrigerating system using heat exchanger
US11885328B2 (en) 2021-07-19 2024-01-30 Air Squared, Inc. Scroll device with an integrated cooling loop

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723115B2 (en) * 1986-07-24 1995-03-15 海洋科学技術センタ− Submarine object collection device
JPH01299707A (en) * 1988-05-27 1989-12-04 Sumitomo Light Metal Ind Ltd Manufacture of small and thin wall thickness heat transfer tube
MY110330A (en) * 1991-02-13 1998-04-30 Furukawa Electric Co Ltd Heat-transfer small size tube and method of manufacturing the same
JPH08174044A (en) * 1994-12-28 1996-07-09 Kobe Steel Ltd Production of small-diameter heat transfer tube with groove on inside surface
JPH09101093A (en) * 1995-10-02 1997-04-15 Mitsubishi Shindoh Co Ltd Heat transfer pipe with inner surface groove

Also Published As

Publication number Publication date
KR20020004526A (en) 2002-01-16
CN1332356A (en) 2002-01-23
ES2228189A1 (en) 2005-04-01
ITRM20010384A1 (en) 2002-01-07
CN1188652C (en) 2005-02-09
US20020011332A1 (en) 2002-01-31
ITRM20010384A0 (en) 2001-07-03
JP2002062077A (en) 2002-02-28
TW526322B (en) 2003-04-01
KR100382341B1 (en) 2003-05-01

Similar Documents

Publication Publication Date Title
JP3110197U (en) Refrigerant tube of heat exchanger
JP4347961B2 (en) Multiway flat tube
US20150300745A1 (en) Counterflow helical heat exchanger
US20020023735A1 (en) Double heat exchanger with condenser and radiator
JP2005534888A (en) Flat tube heat exchanger
JP2007232246A (en) Heat exchanger
JP2010002093A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP2006242529A (en) Heat transfer pipe
JP2007032949A (en) Heat exchanger
WO2005026638A1 (en) Heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP5958917B2 (en) Finned tube heat exchanger
JP2009145010A (en) Fin-less heat exchanger for air conditioner
JP2009121738A (en) Air-cooled heat exchanger
JP2008249163A (en) Heat exchanger for supplying hot water
JP2009092269A (en) Double tube-type heat exchanger
JP2005127570A (en) Heat transfer pipe and refrigeration unit using the same
JP4731212B2 (en) Heat exchanger
KR20030088169A (en) Heat exchanger
KR100219026B1 (en) Serpentine heat exchanger with corrugated fin
CN215676621U (en) Fin structure and heat exchanger
JPH0742406U (en) Double tube heat exchanger
KR200314025Y1 (en) Fin tube type heat exchanger and airconditioner and refrigerator using the heat exchanger
KR100368664B1 (en) Coolant tube of heat exchanger
JP7012351B2 (en) Double tube heat exchanger

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 3