JP3109626B2 - Transmission line length measurement method - Google Patents
Transmission line length measurement methodInfo
- Publication number
- JP3109626B2 JP3109626B2 JP04259825A JP25982592A JP3109626B2 JP 3109626 B2 JP3109626 B2 JP 3109626B2 JP 04259825 A JP04259825 A JP 04259825A JP 25982592 A JP25982592 A JP 25982592A JP 3109626 B2 JP3109626 B2 JP 3109626B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission line
- transfer function
- frequency band
- far end
- delay time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Tests Of Electronic Circuits (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、遠端開放の伝送線路に
パルスを送出して得られる反射波形から伝送線路長を測
定する伝送線路長測定装置に関し、特に複数の試験ピン
を有する集積回路試験装置等において、これら試験ピン
に対応して設置された試験パタン出力/試験結果判定回
路から、被試験回路の入出力ピンに至る伝送線路長の高
精度測定等に適した伝送線路長の測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission line length measuring apparatus for measuring a transmission line length from a reflected waveform obtained by transmitting a pulse to a transmission line having an open end, and more particularly to an integrated circuit having a plurality of test pins. Measurement of transmission line length suitable for high-accuracy measurement of the transmission line length from the test pattern output / test result judgment circuit installed corresponding to these test pins to the input / output pins of the circuit under test in a test device, etc. About the method.
【0002】[0002]
【従来の技術】集積回路試験装置の試験タイミング精度
を維持するためにはタイミング補正が必要である。その
ためのタイミング補正においては、集積回路試験装置の
試験ピンに対応して設置された試験パタン出力/試験結
果判定回路から被試験回路の入出力ピンに至る伝送線路
長が、試験ピン間でばらつくことによって生じるタイミ
ング誤差を補正することが主要な処理項目の一つとなっ
ている。換言すると、伝送線路を一方向に伝搬するとき
の伝搬遅延時間を高精度に測定することが必要である。2. Description of the Related Art In order to maintain test timing accuracy of an integrated circuit test apparatus, timing correction is required. In the timing correction, the transmission line length from the test pattern output / test result judgment circuit installed corresponding to the test pin of the integrated circuit test equipment to the input / output pin of the circuit under test varies between test pins. Correcting the timing error caused by this is one of the main processing items. In other words, it is necessary to measure the propagation delay time when propagating through the transmission line in one direction with high accuracy.
【0003】従来においては、このような伝送線路長の
測定において、特開平3−30947号に記載されてい
るように、たとえば図5に示すごとく、第一のブロック
1において、伝送線路の遠端を開放したときに進行波に
反射波が重畳されて得られる階段波の、1)進行波によ
るエッジaの波形と、2)反射波によるエッジbの波形
と、3)進行波によるエッジから反射波によるエッジま
での時間差Tとの3要素を測定し、第二のブロック2お
よび第三のブロック3において、それら3要素から当該
伝送線路の伝達関数を決定し、第四のブロック4におい
て、個別の入力信号に対する出力信号応答を算出し、第
五のブロック5において、この出力信号応答の時間遅れ
を解析することによって当該伝送線路の伝搬遅延時間を
高精度に算出する方法が提案されている。Conventionally, in such a measurement of the transmission line length, as shown in FIG. 5, for example, as shown in FIG. Of a staircase wave obtained by superimposing a reflected wave on a traveling wave when opening is opened, 1) a waveform of an edge a due to a traveling wave, 2) a waveform of an edge b due to a reflected wave, and 3) reflection from an edge due to a traveling wave The three elements with the time difference T to the edge due to the wave are measured, and the transfer function of the transmission line is determined from the three elements in the second block 3 and the third block 3. The fifth block 5 calculates the propagation delay time of the transmission line with high accuracy by analyzing the time delay of the output signal response. The law has been proposed.
【0004】この方法は、伝送線路の周波数帯域制限や
入力信号のスルーレートによって決まる波形劣化による
遅延時間の増加を進行波成分と反射波成分とに分離して
測定できるため、観測された往復路の伝搬遅延時間から
往路のみの伝搬遅延時間を精度よく算出することが可能
である。According to this method, an increase in delay time due to waveform degradation determined by a frequency band limitation of a transmission line and a slew rate of an input signal can be measured separately for a traveling wave component and a reflected wave component. It is possible to accurately calculate the propagation delay time of only the forward path from the propagation delay time.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、伝送路
の遠端がICソケットやパッケージ等によって構成さ
れ、それら構造物による容量成分などの周波数帯域制限
要因が局在し、かつ遠端に至るまでの線路上での周波数
帯域制限と同程度の影響を及ぼす場合には以下のような
理由により、測定誤差が増大してしまう。すなわち、入
射端と遠端の間において生ずる周波数帯域制限は進行波
と反射波の双方に波形劣化、言い換えれば立ち上がり/
立ち下がり時間の増加を生じせしめ、反射波に対してよ
り大きな遅延時間増を与える。従って、観測された往復
路の伝搬遅延時間を単純に1/2した値に対して実際の
往路のみの伝搬遅延時間は若干小さくなる。それに対し
て、遠端において生ずる周波数帯域制限は進行波に対し
てのみ波形劣化を生じせしめ、反射経路においては一切
影響を与えない。従って、遠端における周波数帯域制限
による遅延時間増は往路の伝搬遅延時間のみに寄与する
ため、観測された往復路の伝搬遅延時間を単純に1/2
した値に対して実際の往路のみの伝搬遅延時間は逆に若
干大きくなる。具体例を挙げると、特性インピーダンス
50オームの無損失伝送路に立ち上がり時間200ps
のパルスを印加する場合、入射端と遠端の中間点に周波
数帯域制限要因として5pFの容量を付加すると反射波
測定で得られる往復路の伝搬遅延時間を単純に1/2し
た値に対して実際の往路のみの伝搬遅延時間は約20p
s小さい。ところが、遠端に5pFの容量を付加すると
実際の往路のみの伝搬遅延時間は逆に約10ps大きく
なる。よって、周波数帯域制限要因の分布を把握しなけ
れば、観測された往復路の伝搬遅延時間から往路のみの
伝搬遅延時間を正確に推定することは困難である。しか
しながら、従来においては、入射端と遠端の間において
生ずる周波数帯域制限要因と遠端に局在する周波数帯域
制限要因とを分離することは不可能であった。However, the far end of the transmission line is constituted by an IC socket, a package, or the like, and a frequency band limiting factor such as a capacitance component due to such a structure is localized and reaches the far end. When the influence is almost the same as the frequency band limitation on the line, the measurement error increases for the following reason. In other words, the frequency band limitation that occurs between the incident end and the far end causes waveform deterioration in both the traveling wave and the reflected wave, in other words, the rising /
This causes an increase in the fall time, giving a greater delay time to the reflected wave. Accordingly, the propagation delay time of only the actual outward path is slightly smaller than the value obtained by simply halving the observed propagation delay time of the round trip path. On the other hand, the frequency band limitation occurring at the far end causes waveform deterioration only for the traveling wave, and has no effect on the reflection path. Therefore, the increase in the delay time due to the frequency band limitation at the far end contributes only to the propagation delay time in the forward path, so that the observed propagation delay time in the return path is simply reduced by half.
Conversely, the propagation delay time of only the actual forward path slightly increases with respect to the set value. As a specific example, the rise time is 200 ps in a lossless transmission line having a characteristic impedance of 50 ohms.
When a 5 pF capacitance is added as a frequency band limiting factor at the midpoint between the incident end and the far end when the pulse of (1) is applied, the propagation delay time of the reciprocating path obtained by the reflected wave measurement is simply halved. Propagation delay time of only the actual outward path is about 20p
s small. However, if a capacitance of 5 pF is added to the far end, the actual propagation delay time of only the forward path increases by about 10 ps. Therefore, unless the distribution of the frequency band limiting factor is grasped, it is difficult to accurately estimate the propagation delay time of only the outward path from the observed propagation delay time of the round trip path. However, conventionally, it has not been possible to separate the frequency band limiting factor occurring between the incident end and the far end from the frequency band limiting factor located at the far end.
【0006】そこで、本発明の目的は、従来の問題点を
解決し、高精度に伝送線路長を測定する方法を提供する
ことにある。An object of the present invention is to solve the conventional problems and to provide a method for measuring a transmission line length with high accuracy.
【0007】[0007]
【課題を解決するための手段】このような目的を達成す
るために、本発明の第一の形態は、遠端開放の伝送線路
にパルスを送出して観測される反射波形から当該伝送線
路の伝達関数を決定し、個別の入力信号に対する出力信
号応答の時間遅れを解析することによって当該伝送線路
の伝搬遅延時間を算出して伝送線路長を測定する方法に
おいて、周波数帯域制限を生ずる構造物が遠端部に付随
する伝送線路に対して、当該構造物を除外した伝送線路
に対して前記反射波形を観測する第一のステップと、第
一のステップで得られた反射波形から前記構造物を除外
した伝送線路の伝達関数H1を決定する第二のステップ
と、前記構造物を付随した伝送線路に対して前記反射波
形を観測する第三のステップと、第三のステップで得ら
れた反射波形と第二のステップで得られた伝達関数H1
とから前記構造物を付随する伝送線路の伝達関数H2を
決定する第四のステップと、第四のステップで得られた
伝達関数H2を用いて個別の入力信号に対する出力信号
応答の時間遅れを算出することによって、前記周波数帯
域制限を生ずる構造物が遠端部に付随する伝送線路の伝
搬遅延時間を測定する第五のステップとを具えたことを
特徴とする。In order to achieve such an object, a first aspect of the present invention is to transmit a pulse to a transmission line having a far open end and to measure a reflected waveform of the transmission line based on a reflected waveform observed. In a method of determining a transfer function and calculating a propagation delay time of the transmission line by analyzing a time delay of an output signal response to an individual input signal to measure a transmission line length, a structure that causes a frequency band limitation is used. For the transmission line associated with the far end, the first step of observing the reflected waveform on the transmission line excluding the structure, and the structure from the reflected waveform obtained in the first step A second step of determining the transfer function H1 of the excluded transmission line, a third step of observing the reflected waveform on the transmission line with the structure, and a reflected waveform obtained in the third step And the second Transfer functions H1 obtained in step
A fourth step of determining a transfer function H2 of a transmission line associated with the structure from the above, and calculating a time delay of an output signal response to an individual input signal using the transfer function H2 obtained in the fourth step A fifth step of measuring the propagation delay time of the transmission line associated with the far end by the structure causing the frequency band limitation.
【0008】本発明の第二の形態は、前記伝達関数H1
およびH2を決定する際に、前記周波数帯域制限を生ず
る構造物および該構造物を除外した伝送線路の各々を、
固定遅延時間と、当該伝送線路の特性インピーダンスと
容量成分との積で与えられる時定数成分との縦続接続で
近似したことを特徴とする。[0008] A second embodiment of the present invention relates to the transfer function H1.
In determining H2 and H2, each of the structure causing the frequency band limitation and the transmission line excluding the structure is
It is characterized by approximation by cascade connection of a fixed delay time and a time constant component given by a product of a characteristic impedance of the transmission line and a capacitance component.
【0009】[0009]
【作用】本発明では、周波数帯域制限を生ずる構造物が
遠端部に付随する伝送線路に対して、その構造物を除外
した伝送線路と構造物を付随した伝送線路の各々に対し
て遠端開放状態で反射波形を観測し、両観測データを用
いて入射端と遠端との間において生ずる周波数帯域制限
要因と遠端に局在する周波数帯域制限要因とを分離して
表しうる伝達関数を求め、この伝達関数を用いることに
よって、伝送線路伝搬遅延時間を求める。According to the present invention, the structure causing the frequency band limitation is located at the far end with respect to the transmission line excluding the structure and the transmission line excluding the structure with respect to the transmission line having the structure. Observing the reflected waveform in the open state, the transfer function that can separately express the frequency band limiting factor generated between the incident end and the far end and the frequency band limiting factor localized at the far end using both observation data Then, the transmission line propagation delay time is obtained by using this transfer function.
【0010】[0010]
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0011】図1は本発明における伝送線路長の測定方
法の一実施例を示すフローチャートである。FIG. 1 is a flowchart showing one embodiment of a method for measuring a transmission line length according to the present invention.
【0012】伝送線路の一方の端点(以下遠端とする)
を開放状態にし、他方の端点(以下近端とする)からこ
の伝送線路にパルス信号を印加すると、近端の出力イン
ピーダンスが伝送線路の特性インピーダンスと整合して
いる場合には、図2に示すように、近端では進行波に反
射波が重畳した階段状の波形が観測される。ここで、遠
端における入射波vINC ,透過波vTRANS ,反射波v
REFLには以下の関係が成り立つ。One end point of the transmission line (hereinafter referred to as far end)
Is opened, and a pulse signal is applied to this transmission line from the other end point (hereinafter, referred to as the near end). When the output impedance at the near end matches the characteristic impedance of the transmission line, the state shown in FIG. Thus, at the near end, a step-like waveform in which the reflected wave is superimposed on the traveling wave is observed. Here, the incident wave v INC , the transmitted wave v TRANS , and the reflected wave v at the far end
The following relationship holds for REFL .
【0013】[0013]
【数1】 vREFL =vTRANS−vINC …(1) 遠端に容量成分等の周波数帯域制限要因としての構造物
Aが付随しない場合は透過波vTRANS は入射波vINC の
全反射であるから単純に振幅が2倍になるだけである。
よって(2)式のとおり反射波vREFLは入射波vINC と
一致する。## EQU1 ## v REFL = v TRANS −v INC (1) When the structure A as a frequency band limiting factor such as a capacitance component is not attached to the far end, the transmitted wave v TRANS is the total reflection of the incident wave v INC. Because of this, the amplitude simply doubles.
Therefore, as shown in equation (2), the reflected wave v REFL matches the incident wave v INC .
【0014】[0014]
【数2】 vREFL=2vINC −vINC=vINC …(2) 従って入射端、すなわち観測端へ到達した反射波は、入
射波が該伝送線路を2度伝搬した応答波形に等しい。言
い換えれば、この伝送線路を2段直列接続した線路を伝
搬した応答波形に等しい。これは往路の伝達関数と復路
の伝達関数とが一致することを意味するから、例えば特
願平3−30947号の実施例に記載されているよう
に、構造物Aを除外した伝送線路を遠端開放にして入射
端で観測される反射波形、すなわち往復路を伝搬した波
形と入射波形、および入射波から反射波までの遅延時間
の3要素を測定(図1の第1のステップ11に相当)す
れば、往路のみの伝達関数を求めることが可能である
(図1の第2のステップ12に相当)。[Number 2] v REFL = 2v INC -v INC = v INC ... (2) Therefore the incident end, i.e. the reflected wave has reached the observation end is equal to the response waveform incident wave has propagated through the transmission line twice. In other words, the response waveform is equal to a response waveform transmitted through a line in which the transmission lines are connected in two stages in series. This means that the transfer function of the forward path and the transfer function of the return path coincide with each other. For example, as described in the embodiment of Japanese Patent Application No. Hei. Measure the three components of the reflected waveform observed at the incident end with the end open, that is, the waveform and the incident waveform propagated on the round trip path, and the delay time from the incident wave to the reflected wave (corresponding to the first step 11 in FIG. 1). ), It is possible to obtain a transfer function only for the outward path (corresponding to the second step 12 in FIG. 1).
【0015】一方、遠端に周波数帯域制限要因としての
構造物Aの容量成分が負荷された場合を例にとって入射
波vINC ,透過波vTRANS ,反射波vREFLの関係を図3
に示す。図3に示すように、入射波が容量成分によって
波形鈍りを生じて透過波となる。遠端における反射波に
はその波形鈍りの影響が現われる。しかしながら、その
反射波が入射端までの復路を伝搬する際には当然のこと
ながら該容量成分の影響は一切受けない。従って、往路
の伝達関数と復路の伝達関数とが一致しないため、入射
端で観測される反射波形、すなわち往復路を伝搬した波
形から、往路のみの伝達関数を一意に求めることは不可
能である。On the other hand, the relationship between the incident wave v INC , the transmitted wave v TRANS , and the reflected wave v REFL is shown in FIG. 3 in a case where the capacitance component of the structure A as a frequency band limiting factor is loaded at the far end.
Shown in As shown in FIG. 3, the incident wave becomes blunt due to the capacitance component and becomes a transmitted wave. The reflected wave at the far end is affected by the waveform dullness. However, when the reflected wave propagates on the return path to the incident end, the capacitance component is naturally not affected at all. Therefore, since the transfer function of the forward path and the transfer function of the return path do not match, it is impossible to uniquely determine the transfer function of only the forward path from the reflected waveform observed at the incident end, that is, the waveform propagated on the return path. .
【0016】ところで、(1)式のように遠端における
反射波が遠端における入射波と透過波との差分で表せる
ことから、入射端まで折り返し伝搬した反射波形は、透
過波がさらに復路を伝搬した応答波形と遠端における入
射波がさらに復路を伝搬した応答波形との差分で表すこ
とができる。周波数空間(s空間)において遠端の周波
数帯域制限要因を除外した伝送線路の単路の伝達関数を
H1 (s)、遠端の周波数帯域制限要因の伝達関数をH
0 (s)とすれば、入射端における反射波応答VRFL
(s)は透過波の振幅が入射波VIN(s)の2倍である
ことに注意して次式で表せる。Since the reflected wave at the far end can be represented by the difference between the incident wave and the transmitted wave at the far end as in the equation (1), the reflected wave that has propagated back to the incident end further passes through the return path. The difference between the transmitted response waveform and the response waveform of the incident wave at the far end further propagated on the return path can be expressed. In the frequency space (s space), the transfer function of the single path of the transmission line excluding the far-end frequency band limiting factor is H 1 (s), and the transfer function of the far-end frequency band limiting factor is H
0 (s), the reflected wave response V RFL at the incident end
Note that (s) can be expressed by the following equation, noting that the transmitted wave has twice the amplitude of the incident wave V IN (s).
【0017】[0017]
【数3】 VRFL(s) = (2H0(s)−1) H1 2(s)VIN(s) …(3) 先に述べたとおり、遠端の周波数帯域制限要因を除外し
た伝送線路の単路の伝達関数H1 (s)は遠端の周波数
帯域制限要因を除外した伝送線路から求めることができ
るので、さらに、遠端の周波数帯域制限要因としての構
造物Aを付加した伝送線路の遠端開放状態での反射応答
を同様に測定し(図1の第3のステップ13に相当)、
その測定結果が(3)式を満足するように数値解析によ
って遠端の周波数帯域制限要因の伝達関数H0 (s)を
求めることが可能である。かくして遠端に周波数帯域制
限要因としての構造物Aを付随する伝送線路の単路の伝
達関数H2 (s)が求められ、遠端における透過波V
TRANS (s)は次式のとおりに得られる(図1の第4の
ステップ14に相当)。Equation 3] V RFL (s) = (2H 0 (s) -1) H 1 2 (s) V IN (s) ... (3) As mentioned earlier, excluding a frequency band limiting factor for the far-end Since the transfer function H 1 (s) of a single line of the transmission line can be obtained from the transmission line excluding the frequency band limiting factor at the far end, a structure A as a frequency band limiting factor at the far end is further added. The reflection response of the transmission line in the open state at the far end is similarly measured (corresponding to the third step 13 in FIG. 1),
The transfer function H 0 (s) of the frequency band limiting factor at the far end can be obtained by numerical analysis so that the measurement result satisfies the expression (3). Thus, a single-path transfer function H 2 (s) of the transmission line accompanied by the structure A as a frequency band limiting factor at the far end is obtained, and the transmitted wave V at the far end is obtained.
TRANS (s) is obtained as follows (corresponding to the fourth step 14 in FIG. 1).
【0018】[0018]
【数4】 VTRANS(s) =2H1(s)H0(s)VIN(s) =H2(s)VIN(s) …(4) (4)式を例えばラプラス逆変換によって時間空間に変
換すれば遠端における透過波の時間応答vTRANS (t)
が求められ、最終目的である入射波が往路を伝搬する伝
搬遅延時間が算出できる(図1の第5のステップ15に
相当)。V TRANS (s) = 2H 1 (s) H 0 (s) V IN (s) = H 2 (s) V IN (s) (4) Equation (4) is transformed by, for example, Laplace inversion. If converted to time space, the time response v TRANS (t) of the transmitted wave at the far end
Is calculated, and the propagation delay time for the incident wave, which is the final object, to propagate on the outward path can be calculated (corresponding to the fifth step 15 in FIG. 1).
【0019】例えば、現在の集積回路試験装置と被試験
素子との接続状態を想定すると、伝送路を構成するマイ
クロストリップラインや細線同軸ケーブル、およびコネ
クタ等の帯域制限によって高周波成分が減衰せしめられ
る。さらに伝送路の遠端において被試験素子の入力端子
やパッケージ、ソケットなどが存在する場合には、それ
ら構造物Aの有する容量成分と線路の特性インピーダン
スで決まる時定数成分によって高周波成分が減衰せしめ
られる。この効果が、伝送線路の出力端から得られる信
号波形の入力信号に対する劣化の主たる要因となってい
る。For example, assuming a current connection state between an integrated circuit test apparatus and a device under test, a high-frequency component is attenuated by band limitation of a microstrip line, a fine coaxial cable, a connector, and the like that constitute a transmission line. Further, when an input terminal, a package, a socket, and the like of the device under test are present at the far end of the transmission line, the high-frequency component is attenuated by the time constant component determined by the capacitance component of the structure A and the characteristic impedance of the line. . This effect is a main cause of deterioration of the signal waveform obtained from the output end of the transmission line with respect to the input signal.
【0020】そこで、例えば図4に示す本発明の構成要
素である、伝送線路の近似モデルの一実施例のごとく、
遠端において周波数帯域制限を生ずる構造物Aを除外し
た伝送線路Bを、固定遅延時間tと、該伝送線路Bの特
性インピーダンスZ0 と構造物Aを除外した伝送線路B
の容量成分C1 との積で与えられる時定数成分τ1 との
縦続接続でモデル化し、同様に構造物Aを、固定遅延時
間dtと、該伝送線路Bの特性インピーダンスZ0 と構
造物Aの容量成分C0 との積で与えられる時定数成分τ
0 との縦続接続でモデル化し、これらモデルの縦続接続
として往路の伝達関数を近似することができる。以上の
モデルはすべて遅延成分と時定数成分との縦続接続で構
成できるから、ラプラス変換/ラプラス逆変換を用いて
簡単に時間領域における電圧応答を求めることができ
る。従って、本モデルを用いることにより、比較的簡便
に遠端の構造物Aに付随した周波数帯域制限要因に起因
する遅延増加分を考慮した高精度な伝送線路の伝搬遅延
時間測定が実現できる。Therefore, for example, as in the embodiment of the approximate model of the transmission line, which is a component of the present invention shown in FIG.
The transmission line B excluding the structure A causing the frequency band limitation at the far end is replaced with a fixed delay time t, the characteristic impedance Z 0 of the transmission line B and the transmission line B excluding the structure A.
Similarly, the structure A is similarly modeled by a cascade connection of a time constant component τ 1 given by the product of the capacitance component C 1 and the fixed delay time dt, the characteristic impedance Z 0 of the transmission line B and the structure A Time constant component τ given by the product of the capacitance component C 0 and
Modeling is performed by cascade connection with 0, and the transfer function of the outward path can be approximated as cascade connection of these models. Since all of the above models can be configured by cascade connection of the delay component and the time constant component, the voltage response in the time domain can be easily obtained using the Laplace transform / Laplace inverse transform. Therefore, by using the present model, it is possible to relatively easily realize a highly accurate measurement of the propagation delay time of the transmission line in consideration of the delay increase caused by the frequency band limiting factor associated with the structure A at the far end.
【0021】ここで、実際に波形観測を行うオシロスコ
ープなどの測定回路を想定すると、測定回路の入力端容
量が微小ではあるが存在する。その影響を考慮して、予
めその入力端容量を測定しておき、上記の伝送線路モデ
ルに加えることも可能である。具体的には、例えば、線
路の特性インピーダンスZ0 とかかる入力端容量との積
で与えられる既知の時定数成分として記述すればよい。Here, assuming a measuring circuit such as an oscilloscope for actually observing a waveform, the measuring circuit has a small input terminal capacitance. In consideration of the influence, it is also possible to measure the input terminal capacitance in advance and add it to the above transmission line model. Specifically, for example, it may be described as a known time constant component given by the product of the characteristic impedance Z 0 of the line and the input terminal capacitance.
【0022】なお、本発明を実施するにあたっては、上
述した伝送線路の近似モデル以外にも種々の変形例が考
えられ、例えば、観測した反射波形から高速フーリエ変
換によって周波数の多項式で伝達関数を表わしてもよ
い。要するに、遠端の周波数帯域制限要因を除外した伝
送線路と、この要因を付随した伝送線路の双方に対して
反射波形を観測することにより、入射端と遠端との間に
おいて分布的に生ずる周波数帯域制限要因と遠端に局在
する周波数帯域制限要因とを分離した形式で伝達関数を
求めればよいのである。In practicing the present invention, various modifications other than the above-described approximate model of the transmission line are conceivable. For example, a transfer function is represented by a frequency polynomial by a fast Fourier transform from an observed reflected waveform. You may. In short, by observing the reflected waveforms on both the transmission line excluding the far-end frequency band limiting factor and the transmission line with this factor, the frequency that occurs in a distributed manner between the incident end and the far end The transfer function may be obtained in a form in which the band limiting factor and the frequency band limiting factor located at the far end are separated.
【0023】[0023]
【発明の効果】以上の説明から明らかなごとく、本発明
によれば、伝送線路の周波数特性や入力信号の周波数特
性によって決まる波形劣化による遅延時間の増加を、入
射端と遠端との間において分布的に生ずる周波数帯域制
限要因と遠端に局在する周波数帯域制限要因とに分離で
きるため、遠端における周波数帯域制限が大きい場合で
も伝送線路長を高精度に測定することが実現できる。As is apparent from the above description, according to the present invention, the increase in delay time due to waveform deterioration determined by the frequency characteristics of the transmission line and the frequency characteristics of the input signal is reduced between the incident end and the far end. Since the frequency band limiting factor occurring in a distributed manner and the frequency band limiting factor localized at the far end can be separated, the transmission line length can be measured with high accuracy even when the frequency band limitation at the far end is large.
【図1】本発明による伝送線路長の測定方法の一実施例
を示すフローチャートである。FIG. 1 is a flowchart showing one embodiment of a transmission line length measuring method according to the present invention.
【図2】伝送線路の遠端を開放した状態で近端よりパル
スを送出した際に近端において観測される反射波形を示
す模式図である。FIG. 2 is a schematic diagram showing a reflection waveform observed at the near end when a pulse is transmitted from the near end with the far end of the transmission line open.
【図3】伝送線路の遠端を開放した状態で近端よりパル
スを送出した際の、遠端における入射波成分、透過波成
分、および反射波成分を示す模式図である。FIG. 3 is a schematic diagram showing an incident wave component, a transmitted wave component, and a reflected wave component at the far end when a pulse is transmitted from the near end with the far end of the transmission line open.
【図4】本発明において伝送線路伝達関数の算出を行う
際に使用する、遠端に周波数帯域制限要因を付随する伝
送線路の往路の近似モデルの一例である。FIG. 4 is an example of an approximate model of a forward path of a transmission line with a frequency band limiting factor attached to a far end, which is used when calculating a transmission line transfer function in the present invention.
【図5】従来の伝送線路長の測定方法の一例を示すフロ
ーチャートである。FIG. 5 is a flowchart showing an example of a conventional transmission line length measuring method.
11 第一のステップ 12 第二のステップ 13 第三のステップ 14 第四のステップ 15 第五のステップ 11 first step 12 second step 13 third step 14 fourth step 15 fifth step
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−269675(JP,A) 特開 平2−16462(JP,A) 特開 平2−98674(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 31/28 G01R 27/04 G01R 27/28 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-269675 (JP, A) JP-A-2-16462 (JP, A) JP-A-2-98674 (JP, A) (58) Field (Int.Cl. 7 , DB name) G01R 31/28 G01R 27/04 G01R 27/28
Claims (2)
観測される反射波形から当該伝送線路の伝達関数を決定
し、個別の入力信号に対する出力信号応答の時間遅れを
解析することによって当該伝送線路の伝搬遅延時間を算
出して伝送線路長を測定する方法において、 周波数帯域制限を生ずる構造物が遠端部に付随する伝送
線路に対して、当該構造物を除外した伝送線路に対して
前記反射波形を観測する第一のステップと、 第一のステップで得られた反射波形から前記構造物を除
外した伝送線路の伝達関数H1を決定する第二のステッ
プと、 前記構造物を付随した伝送線路に対して前記反射波形を
観測する第三のステップと、 第三のステップで得られた反射波形と第二のステップで
得られた伝達関数H1とから前記構造物を付随する伝送
線路の伝達関数H2を決定する第四のステップと、 第四のステップで得られた伝達関数H2を用いて個別の
入力信号に対する出力信号応答の時間遅れを算出するこ
とによって、前記周波数帯域制限を生ずる構造物が遠端
部に付随する伝送線路の伝搬遅延時間を測定する第五の
ステップとを具えたことを特徴とする伝送線路長の測定
方法。1. A transfer function of a transmission line is determined from a reflection waveform observed by transmitting a pulse to a transmission line having an open end, and a time delay of an output signal response to an individual input signal is analyzed. In the method of calculating the propagation delay time of a transmission line and measuring the transmission line length, a structure causing a frequency band limitation is applied to a transmission line attached to a far end and to a transmission line excluding the structure. A first step of observing the reflection waveform; a second step of determining a transfer function H1 of the transmission line excluding the structure from the reflection waveform obtained in the first step; A third step of observing the reflection waveform with respect to the transmission line; and a transmission line associated with the structure from the reflection waveform obtained in the third step and the transfer function H1 obtained in the second step. A fourth step of determining the transfer function H2 of the following, and calculating the time delay of the output signal response to the individual input signal using the transfer function H2 obtained in the fourth step, thereby causing the frequency band limitation. A fifth step of measuring a propagation delay time of the transmission line associated with the far end portion of the structure.
際に、前記周波数帯域制限を生ずる構造物および該構造
物を除外した伝送線路の各々を、固定遅延時間と、当該
伝送線路の特性インピーダンスと容量成分との積で与え
られる時定数成分との縦続接続で近似したことを特徴と
する請求項1に記載の伝送線路長の測定方法。2. When determining the transfer functions H1 and H2, each of the structure that causes the frequency band limitation and the transmission line excluding the structure is subjected to a fixed delay time, a characteristic impedance of the transmission line, 2. The method of measuring a transmission line length according to claim 1, wherein the transmission line length is approximated by cascade connection with a time constant component given by a product of the capacitance component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04259825A JP3109626B2 (en) | 1992-09-29 | 1992-09-29 | Transmission line length measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04259825A JP3109626B2 (en) | 1992-09-29 | 1992-09-29 | Transmission line length measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06130129A JPH06130129A (en) | 1994-05-13 |
JP3109626B2 true JP3109626B2 (en) | 2000-11-20 |
Family
ID=17339521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04259825A Expired - Lifetime JP3109626B2 (en) | 1992-09-29 | 1992-09-29 | Transmission line length measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3109626B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100709468B1 (en) * | 2004-11-09 | 2007-04-18 | 주식회사 하이닉스반도체 | Method for forming floating gate in flash memory device |
JP2006300688A (en) * | 2005-04-20 | 2006-11-02 | Agilent Technol Inc | Calibration method and calibration system |
JP4757166B2 (en) * | 2006-10-06 | 2011-08-24 | 日置電機株式会社 | Multi-core cable length measuring device |
JP4501951B2 (en) | 2007-03-27 | 2010-07-14 | 日本電気株式会社 | Differential transmission circuit, disk array device, and output signal setting method |
-
1992
- 1992-09-29 JP JP04259825A patent/JP3109626B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06130129A (en) | 1994-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7545152B2 (en) | Transmission line pulse measurement system for measuring the response of a device under test | |
US7098670B2 (en) | Method and system of characterizing a device under test | |
US8339141B2 (en) | Method and apparatus for locating a fault in an electrical conductor, with interference compensation | |
EP0736773B1 (en) | Transmission line length measurement method and apparatus | |
Paulter | An assessment on the accuracy of time-domain reflectometry for measuring the characteristic impedance of transmission lines | |
TW201339590A (en) | Time interval measurement method with bandwidth calibration | |
US8659315B2 (en) | Method for printed circuit board trace characterization | |
KR102090014B1 (en) | Time domain measuring method with calibration in the frequency range | |
US8645091B2 (en) | Evaluating high frequency time domain in embedded device probing | |
US20070073499A1 (en) | Method and apparatus for determining one or more s-parameters associated with a device under test (DUT) | |
JPH0836037A (en) | Circuit for measuring propagation delay time of transmitting route | |
JP3109626B2 (en) | Transmission line length measurement method | |
US5471145A (en) | Calibrating transition dependent timing errors in automatic test equipment using a precise pulse width generator | |
JP4141961B2 (en) | Method of measuring effective directivity and / or effective source port consistency of system calibrated vector network analyzer, method of creating calibration standard set | |
Siccardi et al. | Delay measurements of PPS signals in timing systems | |
JP7565443B2 (en) | System and method for compensating for power loss due to radio frequency (RF) signal probe mismatch in conducted signal testing - Patents.com | |
JP2853753B2 (en) | Transmission line length measurement method | |
US6828799B2 (en) | Propagation delay time measuring method and testing apparatus | |
JP4506154B2 (en) | Characteristic impedance measuring method and measuring apparatus | |
US4748403A (en) | Apparatus for measuring circuit element characteristics with VHF signal | |
JPH0210277A (en) | Circuit testing method and apparatus | |
US20240019480A1 (en) | Apparatus and method for determining a response of a device under test to an electrical pulse generated by a pulse generator | |
Mao et al. | Synthesis of coupled transmission lines | |
Ricchiuti | Measurements for signal integrity | |
Paulter et al. | Low-impedance time-domain reflectometry for measuring the impedance characteristics of low-impedance transmission lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 13 |