JP3104295B2 - Method for producing molten salt fuel cell - Google Patents
Method for producing molten salt fuel cellInfo
- Publication number
- JP3104295B2 JP3104295B2 JP03145751A JP14575191A JP3104295B2 JP 3104295 B2 JP3104295 B2 JP 3104295B2 JP 03145751 A JP03145751 A JP 03145751A JP 14575191 A JP14575191 A JP 14575191A JP 3104295 B2 JP3104295 B2 JP 3104295B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- electrode
- cathode electrode
- forming
- anode electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、溶融塩を電解質とす
る溶融塩型燃料電池の製造方法、特に電極と電解質保持
体を一体化して形成する溶融塩型燃料電池の製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a molten salt fuel cell using a molten salt as an electrolyte, and more particularly to a method for manufacturing a molten salt fuel cell in which an electrode and an electrolyte holder are integrally formed.
【0002】[0002]
【従来の技術】図3は従来の溶融塩型燃料電池を構成す
る単位セルの側面断面図である。図において、1は電解
質保持体、2は電解質である溶融塩を含浸させたアノー
ド電極、3は前記アノード電極2と同様の電解質を含浸
させたカソード電極である。2. Description of the Related Art FIG. 3 is a side sectional view of a unit cell constituting a conventional molten salt fuel cell. In the figure, 1 is an electrolyte holder, 2 is an anode electrode impregnated with a molten salt as an electrolyte, and 3 is a cathode electrode impregnated with the same electrolyte as the anode electrode 2.
【0003】このような従来の溶融塩型燃料電池を製造
する場合において、電解質保持体1およびアノード電極
2、カソード電極3はそれぞれ次のように個別に製造さ
れていた。例えば、電解質保持体1はその骨材であるセ
ラミクス粉体を有機溶媒、有機バインダーおよび可塑剤
の混合溶液に懸濁させて得たスラリーをドクターブレー
ド法により一定の厚みを持つシート状に成型し乾燥させ
る。そして、乾燥後のこのシートを数枚重ね合わせてプ
レスし所定の厚さとした後、切り出して所定の寸法に作
製していた。アノード電極2およびカソード電極3は、
金属粉体を懸濁させて得たスラリーを前記電解質保持体
1と同様にシート状に成型し、このシートを炉中で高温
焼結させた後、電解質を電極2,3上に散布して再度炉
中で昇温することによってこの電解質を溶かして電極
2,3に含浸させて作製する。このようにして作製した
各部材を図3に示したようにカソード電極3の上に電解
質保持体1を重ね、さらにこの上にアノード電極2を重
ねることで燃料電池の単位セルを構成していた。以上の
ように構成した単位セルを直列に重ね燃料電池たる積層
体を作製するには、アノード電極2には水素ガス、カソ
ード電極3には空気と二酸化炭素が流れるようにする必
要があり、このために各単位セル間にセパレータ板(図
示せず)を挟みこんでいた。In manufacturing such a conventional molten salt fuel cell, the electrolyte holder 1, the anode electrode 2, and the cathode electrode 3 are individually manufactured as follows. For example, the electrolyte holder 1 is obtained by suspending a ceramic powder as an aggregate thereof in a mixed solution of an organic solvent, an organic binder and a plasticizer, and forming a slurry into a sheet having a certain thickness by a doctor blade method. dry. Then, several sheets of this sheet after drying are stacked and pressed to have a predetermined thickness, and then cut out to produce a predetermined size. The anode electrode 2 and the cathode electrode 3 are
The slurry obtained by suspending the metal powder is formed into a sheet in the same manner as the electrolyte holder 1, and the sheet is sintered at a high temperature in a furnace, and the electrolyte is sprayed on the electrodes 2 and 3. This electrolyte is melted by raising the temperature again in a furnace, and the electrodes 2 and 3 are impregnated with the electrolyte. As shown in FIG. 3, each of the members thus manufactured was stacked on the electrolyte holder 1 on the cathode electrode 3 and further stacked on the anode electrode 2 to form a unit cell of the fuel cell. . In order to stack the unit cells constructed as described above in series to produce a fuel cell stack, hydrogen gas must flow through the anode electrode 2 and air and carbon dioxide must flow through the cathode electrode 3. For this purpose, a separator plate (not shown) was sandwiched between the unit cells.
【0004】[0004]
【発明が解決しようとする課題】上記のように各部材を
まず個々に作製して単位セルを構成した後、この単位セ
ルを積層させて燃料電池を製造する従来の溶融塩型燃料
電池の製造方法では個々に作製されたセパレータ板、電
解質保持体、アノード電極、カソード電極を一枚ずつ位
置決めしながら重ねていく必要があり非常に非能率的で
あった。また個々の電解質保持体、電極あるいはセパレ
ータ板等の平面度は数10μmに抑えるのが限界であ
り、このため積層体形成後の各部材間にはこの平面度の
バラツキによる隙間を生じることが多かった。この隙間
は作製した燃料電池を動作させて発電させる際に絶縁状
態となり、その結果、電極の一部分しか動作せず発電効
率が大きく低下していた。また、積層数の大きな積層体
を電池として動作させると前記隙間が電池の動作中に収
縮して積層体の寸法が大きく変化してしまうために製品
精度が低下する等の問題点があった。そこで、電解質保
持体及び電極を一体化して製造する方法が提案されてい
る。例えば、特開昭58−87774号公報では電解質
保持体と電極を加熱圧着させる方法が開示されている
が、この方法では電解質を溶融させて圧着させているた
め500℃もの高温で高圧プレスする必要があり装置・
工程ともにかなり複雑なものが必要となる。また、この
ような高温・高圧でプレスを行うと電極が収縮して最適
な空孔構造を持つ燃料電池を得ることが不可能となる等
の問題点がある。さらに、特開昭62−15768号公
報で開示されたドクターブレード法で形成した電解質保
持体上に、電極をドクターブレード法で形成する方法で
は、電解質保持体上に形成した電極の形状を単独に精度
良く制御する事が困難であり、また電極の焼結は電極及
び電解質保持体を積層した状態で行うので数百枚もの積
層体を構成すると、この上部と下部では面圧が数kg/cm2
も異なってしまい電極の最適空孔構造を制御することは
事実上不可能となる。また、電極の厚みは燃料電池の運
転時間につれて大きく縮んでいき、電極と電解質保持体
の間に隙間が生じやすくなり燃料電池の特性が大きく低
下する。こうなると、積層体の寸法も大きく変化してし
まいガス供給マニホールドとの取り合いや積層体の面圧
を保持する点で大きな支障をきたす等の問題点がある。As described above, each member is first manufactured individually to form a unit cell, and then the unit cells are stacked to manufacture a fuel cell. In the method, the separator plates, the electrolyte holder, the anode electrode, and the cathode electrode, which are individually manufactured, need to be stacked while being positioned one by one, which is very inefficient. Further, the flatness of individual electrolyte holders, electrodes, separator plates and the like is limited to several tens of μm, and therefore, a gap due to the unevenness of the flatness often occurs between members after forming the laminate. Was. This gap became insulated when the fuel cell thus manufactured was operated to generate power, and as a result, only a part of the electrode was operated and power generation efficiency was greatly reduced. In addition, when a stacked body having a large number of stacked layers is operated as a battery, the gap shrinks during the operation of the battery, and the dimensions of the stacked body are greatly changed. Therefore, a method of integrally manufacturing the electrolyte support and the electrode has been proposed. For example, Japanese Patent Application Laid-Open No. 58-87774 discloses a method in which an electrolyte holder and an electrode are heated and pressed together. In this method, the electrolyte is melted and pressed, so that high-pressure pressing at a high temperature of 500 ° C. is required. There is a device
Both processes require considerably complicated ones. Further, when pressing is performed at such a high temperature and a high pressure, there is a problem that the electrode shrinks and it becomes impossible to obtain a fuel cell having an optimal pore structure. Further, in the method of forming an electrode by the doctor blade method on the electrolyte holder formed by the doctor blade method disclosed in Japanese Patent Application Laid-Open No. 62-15768, the shape of the electrode formed on the electrolyte holder is solely determined. It is difficult to control with high accuracy, and sintering of the electrodes is performed in a state where the electrodes and the electrolyte holder are laminated.Therefore, when hundreds of laminated bodies are formed, the surface pressure is several kg / cm2 at the upper and lower parts.
Therefore, it is practically impossible to control the optimum hole structure of the electrode. Further, the thickness of the electrode is greatly reduced with the operation time of the fuel cell, and a gap is easily formed between the electrode and the electrolyte holder, so that the characteristics of the fuel cell are greatly reduced. In such a case, the dimensions of the laminate are greatly changed, and there is a problem that there is a great problem in connection with the gas supply manifold and in maintaining the surface pressure of the laminate.
【0005】本発明は上記のような問題点を解決するた
めになされたもので、電極と電解質保持体の間に隙間を
生じない一体化した溶融塩型燃料電池の単位セルを容易
に得られる製造方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and can easily provide an integrated unit cell of a molten salt fuel cell having no gap between an electrode and an electrolyte holder. It is intended to provide a manufacturing method.
【0006】[0006]
【課題を解決するための手段】この発明に係る溶融塩型
燃料電池の製造方法は、溶融させた炭酸塩からなる電解
質を金属焼結体に含浸させたアノード電極を形成する工
程と、前記電解質を金属焼結体に含浸させたカソード電
極を形成する工程と、有機物バインダーを含有し、前記
アノード電極およびカソード電極よりも軟化温度の低い
電解質保持体をドクターブレード法により形成する工程
と、前記アノード電極とカソード電極間に前記電解質保
持体を挟み込み単位セルを構成する工程と、前記単位セ
ルに対して所定の条件を満足する熱間圧着を行う工程と
を備えたものである。A method of manufacturing a molten salt fuel cell according to the present invention comprises the steps of: forming an anode electrode in which a metal sintered body is impregnated with an electrolyte made of molten carbonate; Forming a cathode electrode impregnated with a metal sintered body, forming an electrolyte holder containing an organic binder and having a lower softening temperature than the anode electrode and the cathode electrode by a doctor blade method, The method includes a step of sandwiching the electrolyte holder between an electrode and a cathode electrode to form a unit cell, and a step of performing hot press bonding that satisfies predetermined conditions on the unit cell.
【0007】第二の発明に係る溶融塩型燃料電池の製造
方法は、セラミクスからなる電解質保持体を形成する工
程と、溶融させた炭酸塩からなる電解質を金属焼結体に
含浸させたアノード電極を形成する工程と、前記電解質
を金属焼結体に含浸させたカソード電極を形成する工程
と、有機物バインダーを含有し、前記アノード電極、カ
ソード電極および電解質保持体より軟化温度が低い粘着
シートを形成する工程と、前記アノード電極およびカソ
ード電極と前記電解質保持体間に前記粘着シートを挟み
込み単位セルを構成する工程と、前記単位セルに対して
所定の条件を満足する熱間圧着を行う工程とを備えたも
のである。A method for manufacturing a molten salt fuel cell according to a second invention comprises a step of forming an electrolyte holder made of ceramics, and an anode electrode in which a metal carbonate is impregnated with an electrolyte made of molten carbonate. Forming a cathode electrode in which the electrolyte is impregnated in a metal sintered body, and forming an adhesive sheet containing an organic binder and having a lower softening temperature than the anode electrode, the cathode electrode and the electrolyte holder. And a step of sandwiching the adhesive sheet between the anode electrode and the cathode electrode and the electrolyte holder to form a unit cell, and a step of performing hot pressing that satisfies predetermined conditions on the unit cell. It is provided.
【0008】[0008]
【作用】この発明における溶融塩型燃料電池の製造方法
では、上記のように燃料電池の単位セルを構成した後、
熱間圧着を行うことで電解質保持体に含まれる有機物バ
インダーを軟化させて電極・電解質保持体間の隙間に入
り込ませてこの隙間を埋めさせる。In the method of manufacturing a molten salt fuel cell according to the present invention, after the unit cell of the fuel cell is constructed as described above,
By performing the hot pressing, the organic binder contained in the electrolyte holder is softened, and enters into the gap between the electrode and the electrolyte holder to fill the gap.
【0009】第二の発明における溶融塩型燃料電池の製
造方法では、上記のように燃料電池の単位セルを構成し
た後熱間圧着を行うことで粘着シートに含まれる有機物
バインダーを軟化させて電極・電解質保持体間の隙間に
入り込ませてこの隙間を埋めさせる。In the method for manufacturing a molten salt fuel cell according to the second invention, the organic binder contained in the pressure-sensitive adhesive sheet is softened by forming the unit cell of the fuel cell as described above and then performing hot pressing. -The gap is filled by filling the gap between the electrolyte holders.
【0010】[0010]
【実施例】実施例1.図1は本発明の一実施例を示す溶
融塩型燃料電池の単位セルの側面断面図である。図にお
いて1は骨材としてLiAlO2を64重量%、有機物
バインダーとしてポリビニルブチラールを21重量%、
可塑剤としてポリエチレングリコールを15重量%の組
成比としてドクターブレード法により作製した電解質保
持体、2は焼結させたNi・Al合金からなる多孔体の
空孔体積の90%に電解質である炭酸塩(Li2CO3+
K2CO3,モル比62:38)を650℃で含浸させて
作製したアノード電極、3は焼結させたNiからなる多
孔体の空孔体積の60%に電解質である炭酸塩(Li2
CO3+K2CO3,モル比62:38)を650℃で含
浸させて作製したカソード電極である。[Embodiment 1] FIG. 1 is a side sectional view of a unit cell of a molten salt fuel cell showing one embodiment of the present invention. In the figure, 1 is 64% by weight of LiAlO2 as an aggregate, 21% by weight of polyvinyl butyral as an organic binder,
An electrolyte holder prepared by a doctor blade method using polyethylene glycol as a plasticizer in a composition ratio of 15% by weight, 2 is a carbonate which is an electrolyte in 90% of the pore volume of a porous body made of a sintered Ni-Al alloy. (Li2CO3 +
K2CO3, molar ratio of 62:38) was impregnated at 650 DEG C. The anode electrode 3 contained carbonate (Li2) as an electrolyte in 60% of the pore volume of the sintered Ni porous body.
CO3 + K2 CO3, molar ratio 62:38) at 650 ° C.
【0011】まず、前記従来例に示したのと同様に電解
質保持体1、アノード電極2およびカソード電極3をそ
れぞれ個別に所定の形状に作製した後、プレス機の上に
カソード電極3、電解質保持体1、アノード電極2の順
に位置決めをして重ね合わせて燃料電池の単位セルを構
成する。次にこの単位セルを前記電解質保持体1に含ま
れた有機物バインダーの軟化点を越える100℃〜13
0℃まで昇温させる。また昇温と同時に加圧を行い電極
2,3と電解質保持体1を一体化させるのであるが、こ
の加圧圧力を決定するに当たっては予め同仕様の単位セ
ルによって熱間圧縮テストを行ったところ、面圧を50
kg/cm2にした時に電解質保持体1の厚み変形量が30〜
60μmとなり、それ以上の圧力を加えると電解質保持
体1がつぶれすぎて変形してしまい、またそれ以下の圧
力では電解質保持体1の変形量が少なすぎて電極2,3
と電解質保持体1が密着しなかったため本実施例では5
0kg/cm2の面圧力で数分間プレスした。この加圧圧力で
は電極2,3の変形量はアノード電極2が10μm以
下、カソード電極3が30μm以下であって、この電解
質保持体1、アノード電極2およびカソード電極3から
なる単位セルの厚みは熱間圧着を行う前の各部材の厚み
の和より70μm薄くなった。また、この一体化物の断
面を観察したところ電極2,3と電解質保持体1の隙間
に電解質保持体1が入り込み隙間なく一様に接合してい
ることが確認された。また、この単位セルを用いて電池
を動作させたところ前記従来例の方法で作製した単位セ
ルを用いた場合に比べ抵抗が50mΩcm2小さくでき
た。First, the electrolyte holder 1, the anode electrode 2 and the cathode electrode 3 are individually formed in a predetermined shape in the same manner as in the conventional example, and then the cathode electrode 3 and the electrolyte holder are placed on a press. The body 1 and the anode electrode 2 are positioned and superposed to form a unit cell of the fuel cell. Next, this unit cell is heated to 100 ° C. to 13 ° C., which exceeds the softening point of the organic binder contained in the electrolyte holder 1.
Raise the temperature to 0 ° C. In addition, the electrodes 2 and 3 are integrated with the electrolyte holder 1 by applying pressure at the same time as the temperature is raised. To determine the applied pressure, a hot compression test was performed in advance using unit cells having the same specifications. , Surface pressure 50
kg / cm2, the thickness deformation of the electrolyte holder 1 is 30 to
When a pressure higher than 60 μm is applied, the electrolyte holder 1 is excessively crushed and deformed. At a pressure lower than 60 μm, the deformation amount of the electrolyte holder 1 is too small and the electrodes 2 and 3 are deformed.
And the electrolyte holder 1 did not adhere to each other.
It was pressed for several minutes at a surface pressure of 0 kg / cm2. At this pressurized pressure, the deformation amount of the electrodes 2 and 3 is 10 μm or less for the anode electrode 2 and 30 μm or less for the cathode electrode 3. The unit cell including the electrolyte holder 1, the anode electrode 2 and the cathode electrode 3 has a thickness of The thickness was reduced by 70 μm from the sum of the thicknesses of the respective members before hot pressing. When the cross section of this integrated product was observed, it was confirmed that the electrolyte holder 1 entered the gap between the electrodes 2 and 3 and the electrolyte holder 1 and was uniformly joined without any gap. When the battery was operated using this unit cell, the resistance was reduced by 50 mΩcm 2 as compared with the case of using the unit cell manufactured by the method of the conventional example.
【0012】実施例2.図2は、第二の発明における溶
融塩型燃料電池の単位セルの側面断面図である。図にお
いて、1は骨材としてLiAlO2を65重量%、有機
物バインダーとしてポリビニルブチラールを20重量
%、可塑剤としてポリエチレングリコールを15重量%
の組成比として作製した電解質保持体、2は焼結させた
Ni・Al合金からなる多孔体の空孔体積の90%に電
解質である炭酸塩(Li2CO3+K2CO3,モル比6
2:38)を650℃で含浸させて作製したアノード電
極、3は焼結させたNiからなる多孔体の空孔体積の6
0%に電解質である炭酸塩(Li2CO3+K2CO3,モ
ル比62:38)を含浸させて作製したカソード電極、
4は骨材としてLiAlO2を63重量%、有機物バイ
ンダーとしてポリビニルブチラールを22重量%、可塑
剤としてポリエチレングリコールを15重量%の組成比
として作製した粘着シートである。Embodiment 2 FIG. FIG. 2 is a side sectional view of a unit cell of the molten salt fuel cell according to the second invention. In the figure, 1 is 65% by weight of LiAlO2 as an aggregate, 20% by weight of polyvinyl butyral as an organic binder, and 15% by weight of polyethylene glycol as a plasticizer.
The electrolyte holder 2 was prepared as the composition ratio of 2 and the carbonate (Li2CO3 + K2CO3, molar ratio of 6) was used as an electrolyte in 90% of the pore volume of the porous body composed of the sintered Ni.Al alloy.
2:38) is impregnated at 650 ° C., and 3 has a pore volume of 6 of a sintered Ni porous body.
A cathode electrode prepared by impregnating 0% with a carbonate (Li2CO3 + K2CO3, molar ratio 62:38) as an electrolyte;
Reference numeral 4 denotes a pressure-sensitive adhesive sheet prepared by using 63% by weight of LiAlO2 as an aggregate, 22% by weight of polyvinyl butyral as an organic binder, and 15% by weight of polyethylene glycol as a plasticizer.
【0013】まず、電解質保持体1、アノード電極2、
カソード電極3および粘着シート4を前記従来例と同様
にそれぞれ個別に所定の形状に作製した後、プレス機の
上にカソード電極3、粘着シート4、電解質保持体1、
粘着シート4、アノード電極2の順に位置決めをして重
ね合わせて燃料電池の単位セルを構成する。次にこの単
位セルを前記粘着シート4に含まれた有機物バインダー
の軟化点を越える100℃〜130℃まで昇温させる。
また、前記実施例1と同様の熱間圧着テストを行い加圧
圧力を50kg/cm2に決定して前記単位セルに対し
数分間のプレスを行った。この加圧圧力での電極2,3
の変形量はアノード電極2が10μm以下、カソード電
極3が30μm以下、電解質保持体1が10μm以下で
あって、この電解質保持体1、アノード電極2、カソー
ド電極3および粘着シート4からなる単位セルの厚みは
熱間圧着を行う前の各部材の厚みの和より9μm薄くな
った。またこの一体化物の断面を観察したところ粘着シ
ート4が電極2,3と電解質保持体1の間に隙間なく入
り込み一体化していることが確認された。さらに、この
単位セルを用いて電池を動作させたところ前記従来例の
方法で作製した単位セルを用いた場合に比べ抵抗が50
mΩcm2小さくできた。First, an electrolyte holder 1, an anode electrode 2,
After the cathode electrode 3 and the adhesive sheet 4 are individually formed into predetermined shapes as in the conventional example, the cathode electrode 3, the adhesive sheet 4, the electrolyte holder 1,
The pressure-sensitive adhesive sheet 4 and the anode electrode 2 are positioned and superimposed in this order to form a unit cell of the fuel cell. Next, the temperature of the unit cell is raised to 100 ° C. to 130 ° C. which exceeds the softening point of the organic binder contained in the pressure-sensitive adhesive sheet 4.
Further, the same hot pressing test as in Example 1 was performed, the pressing pressure was determined to be 50 kg / cm 2, and the unit cell was pressed for several minutes. Electrodes 2 and 3 at this pressure
The amount of deformation of the anode electrode 2 is 10 μm or less, the cathode electrode 3 is 30 μm or less, the electrolyte holder 1 is 10 μm or less, and a unit cell comprising the electrolyte holder 1, the anode electrode 2, the cathode electrode 3 and the adhesive sheet 4 Was 9 μm thinner than the sum of the thicknesses of the members before hot pressing. When the cross section of this integrated product was observed, it was confirmed that the pressure-sensitive adhesive sheet 4 penetrated without gap between the electrodes 2 and 3 and the electrolyte holder 1 and was integrated. Furthermore, when the battery was operated using this unit cell, the resistance was 50% higher than when the unit cell manufactured by the method of the conventional example was used.
mΩcm 2 could be reduced.
【0014】以上述べた実施例において、電解質保持体
1および粘着シート4のスラリーの調整に当たって有機
物バインダーとしてポリビニルブチラールを、可塑剤と
してポリエチレングリコールを用いているが、これらは
電解質として用いられる溶融塩の融点以下で軟化するも
のであれば他のものでも良い。また、電解質保持体1、
粘着シート4の骨材としてLiAlO2を用いている
が、これらも他のセラミクス粉体であっても良い。さら
に、粘着シート4では骨材の中に補強体として金属粉末
を混入させても良い。また、電解質保持体1や粘着シー
ト4に金属メッシュやセラミクス繊維等のクラック防止
用の補強体を埋設させても良い。またカソード電極は金
属焼結体の酸化物であっても良い。要するに、本発明は
電解質保持体1もしくは粘着シート4に含ませた有機物
を加熱することにより軟化させて電極2,3と電解質保
持体1の間の隙間に入り込ませることでこの隙間を埋め
させて燃料電池の単位セルである電極2,3および電解
質保持体の一体化物を製造するものであり、使用する材
料、組成、装置の組み合わせは以上述べてきた条件を満
足しさえすればいかなる組み合わせであっても良い。In the above-described embodiment, polyvinyl butyral is used as an organic binder and polyethylene glycol is used as a plasticizer in preparing the slurry for the electrolyte holder 1 and the adhesive sheet 4. Other materials that soften below the melting point may be used. Further, the electrolyte holder 1,
Although LiAlO2 is used as an aggregate of the adhesive sheet 4, these may be other ceramic powders. Further, in the pressure-sensitive adhesive sheet 4, a metal powder as a reinforcing body may be mixed into the aggregate. Further, a reinforcing member for preventing cracks, such as a metal mesh or a ceramic fiber, may be embedded in the electrolyte holder 1 or the adhesive sheet 4. The cathode electrode may be an oxide of a metal sintered body. In short, according to the present invention, the organic substance contained in the electrolyte holder 1 or the pressure-sensitive adhesive sheet 4 is heated to be softened so as to enter the gap between the electrodes 2 and 3 and the electrolyte holder 1 so as to fill the gap. This is for producing an integrated product of the electrodes 2, 3 and the electrolyte holder, which are unit cells of a fuel cell, and any combination of materials, compositions, and devices can be used as long as the conditions described above are satisfied. May be.
【0015】[0015]
【発明の効果】以上のようにこの発明によれば、電極と
電解質保持体間に隙間のない密着性の高い所定の形状を
もつ電極・電解質保持体の一体化物である燃料電池の単
位セルを容易に作製できる効果がある。As described above, according to the present invention, there is provided a unit cell of a fuel cell, which is an integrated electrode-electrolyte holder having a predetermined shape with no gap between the electrode and the electrolyte holder and having high adhesion. There is an effect that it can be easily manufactured.
【図1】本発明の一実施例である溶融塩型燃料電池の単
位セルを示す側面断面図である。FIG. 1 is a side sectional view showing a unit cell of a molten salt fuel cell according to one embodiment of the present invention.
【図2】第二の発明の実施例である溶融塩型燃料電池の
単位セルを示す側面断面図である。FIG. 2 is a side sectional view showing a unit cell of a molten salt fuel cell according to an embodiment of the second invention.
【図3】従来の溶融塩型燃料電池の単位セルを示す側面
断面図である。FIG. 3 is a side sectional view showing a unit cell of a conventional molten salt fuel cell.
1 電解質保持体 2 アノード電極 3 カソード電極 4 粘着シート DESCRIPTION OF SYMBOLS 1 Electrolyte holder 2 Anode electrode 3 Cathode electrode 4 Adhesive sheet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 省二 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (56)参考文献 特開 昭58−119169(JP,A) 特開 昭64−3967(JP,A) 特公 昭39−27392(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoji Yoshioka 8-1-1 Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory (56) References JP-A-58-119169 (JP, A) 1979-3967 (JP, A) JP 39-27392 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/00-8/24
Claims (2)
焼結体に含浸させてアノード電極を形成する工程と、前
記電解質を金属焼結体に含浸させたカソード電極を形成
する工程と、有機物バインダーを含有し、前記アノード
電極およびカソード電極よりも軟化温度の低い電解質保
持体をドクターブレード法により形成する工程と、前記
アノード電極とカソード電極との間に前記電解質保持体
を挟み込み単位セルを構成する工程と、前記単位セルに
対して、次の条件を満足する熱間圧着を行う工程とを備
えた溶融炭酸塩型燃料電池の製造方法。 (A) 前記有機物バインダーが軟化する温度であるこ
と。 (B) 前記アノード電極およびカソード電極が変形す
る圧力以下で圧着すること。A step of impregnating an electrolyte made of molten carbonate into a metal sintered body to form an anode electrode; a step of forming a cathode electrode impregnated with the electrolyte in a metal sintered body; A step of forming an electrolyte holder having a softening temperature lower than the anode electrode and the cathode electrode by a doctor blade method containing a binder, and forming a unit cell by sandwiching the electrolyte holder between the anode electrode and the cathode electrode And a step of hot pressing the unit cells to satisfy the following condition. (A) The temperature at which the organic binder softens. (B) Pressure bonding is performed at a pressure lower than a pressure at which the anode electrode and the cathode electrode are deformed.
成する工程と、溶融させた炭酸塩からなる電解質を金属
焼結体に含浸させたアノード電極を形成する工程と、前
記電解質を金属焼結体に含浸させたカソード電極を形成
する工程と、有機物バインダーを含有し、前記アノード
電極、カソード電極および電解質保持体より軟化温度が
低い粘着シートを形成する工程と、前記アノード電極お
よびカソード電極と前記電解質保持体との間に前記粘着
シートを挟み込み単位セルを構成する工程と、前記単位
セルに対して、次の条件を満足する熱間圧着を行う工程
とを備えた溶融炭酸塩型燃料電池の製造方法。(A) 前記有機物バインダーが軟化する温度であるこ
と。 (B) 前記アノード電極およびカソード電極および電
解質保持体が変形する圧力以下で圧着すること。 2. A step of forming an electrolyte holder made of ceramics, a step of forming an anode electrode in which a metal sintered body is impregnated with an electrolyte made of molten carbonate, and a step of applying the electrolyte to the metal sintered body. A step of forming an impregnated cathode electrode, a step of forming an adhesive sheet containing an organic binder and having a softening temperature lower than that of the anode electrode, the cathode electrode and the electrolyte holder, and the step of forming the anode electrode, the cathode electrode and the electrolyte holder A method for producing a molten carbonate fuel cell, comprising: a step of sandwiching the pressure-sensitive adhesive sheet between the body and a unit cell; and a step of hot pressing the unit cell to satisfy the following conditions. . (A) a temperature at which the organic binder softens.
When. (B) the anode electrode, the cathode electrode, and the electrode;
Crimping should be performed below the pressure at which the degraded holding body deforms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03145751A JP3104295B2 (en) | 1991-06-18 | 1991-06-18 | Method for producing molten salt fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03145751A JP3104295B2 (en) | 1991-06-18 | 1991-06-18 | Method for producing molten salt fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH056772A JPH056772A (en) | 1993-01-14 |
JP3104295B2 true JP3104295B2 (en) | 2000-10-30 |
Family
ID=15392316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03145751A Expired - Fee Related JP3104295B2 (en) | 1991-06-18 | 1991-06-18 | Method for producing molten salt fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3104295B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102530667B1 (en) | 2018-10-01 | 2023-05-09 | (주)아모레퍼시픽 | Cosmetic container |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102301841B1 (en) * | 2019-11-21 | 2021-09-14 | 한국에너지기술연구원 | Method for manufacturing membrane electrode assembly, membrane electrode assembly and fuel cell |
-
1991
- 1991-06-18 JP JP03145751A patent/JP3104295B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102530667B1 (en) | 2018-10-01 | 2023-05-09 | (주)아모레퍼시픽 | Cosmetic container |
Also Published As
Publication number | Publication date |
---|---|
JPH056772A (en) | 1993-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4927609B2 (en) | Method for producing solid electrolyte structure for all solid state battery and method for producing all solid state battery | |
JP4006020B2 (en) | Fabrication of devices containing thin ceramic layers. | |
US10135090B2 (en) | Method for manufacturing electrode assembly | |
KR101162806B1 (en) | Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same | |
US6843810B2 (en) | Electric double layer capacitor and method for preparing the same | |
JP7183529B2 (en) | LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF | |
JP2008538449A5 (en) | ||
CN110112457A (en) | A kind of all-solid-state battery and preparation method thereof | |
WO2017146133A1 (en) | Stacked green sheet, continuous stacked green sheet, stacked sintered body, continuous stacked sintered body, and all-solid secondary battery, and method for producing stacked green sheet, method for producing continuous stacked green sheet, and method for producing all-solid secondary battery | |
JP2018063850A (en) | Laminate green sheet, all-solid type secondary battery, and method for fabricating the same | |
JP3104295B2 (en) | Method for producing molten salt fuel cell | |
JP2960548B2 (en) | Two-layer tape for molten carbonate fuel cells | |
JP3230423B2 (en) | Hollow flat electrode substrate and method of manufacturing the same | |
JP2000243405A (en) | Manufacture of solid electrolyte fuel cell | |
JP2774227B2 (en) | Method for joining solid oxide fuel cell stack | |
JP3116455B2 (en) | Solid oxide fuel cell | |
JP3358640B2 (en) | Manufacturing method of electrode substrate | |
JP2017195033A (en) | All-solid type secondary battery, method for manufacturing the same, and laminate green sheet | |
CN219513175U (en) | All-solid-state battery cell and battery comprising same | |
JP2809841B2 (en) | Method for manufacturing solid oxide fuel cell | |
JP3249494B2 (en) | Molten carbonate fuel cell with electrolyte plate crack prevention structure | |
CN116190698A (en) | Multilayer anode composite ceramic material and preparation method and application thereof | |
KR101951101B1 (en) | Molten Carbonate Fuel Cell Module Capable of Block Assembly with Perforated Plate | |
JPH0935730A (en) | Molten carbonate fuel cell electrolyte matrix sheet and its manufacture | |
JPS62241263A (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |