[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3178616B2 - Outer rotor type stepping motor - Google Patents

Outer rotor type stepping motor

Info

Publication number
JP3178616B2
JP3178616B2 JP32832991A JP32832991A JP3178616B2 JP 3178616 B2 JP3178616 B2 JP 3178616B2 JP 32832991 A JP32832991 A JP 32832991A JP 32832991 A JP32832991 A JP 32832991A JP 3178616 B2 JP3178616 B2 JP 3178616B2
Authority
JP
Japan
Prior art keywords
stator
rotor
magnetic poles
phase
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32832991A
Other languages
Japanese (ja)
Other versions
JPH05146136A (en
Inventor
正文 坂本
Original Assignee
日本サーボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本サーボ株式会社 filed Critical 日本サーボ株式会社
Priority to JP32832991A priority Critical patent/JP3178616B2/en
Publication of JPH05146136A publication Critical patent/JPH05146136A/en
Application granted granted Critical
Publication of JP3178616B2 publication Critical patent/JP3178616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Stepping Motors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業用の利用分野】本発明は、固定子に永久磁石と励
磁巻線を備え、回転子を可変レラクタンス式としたアウ
タ−ロ−タ型ステッピングモ−タに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an outer rotor type stepping motor in which a stator is provided with a permanent magnet and an exciting winding and a rotor is of a variable reluctance type.

【0002】[0002]

【従来の技術】円環状の永久磁石と、該永久磁石を挟持
するごとく配設され、複数の磁極を放射状に形成し夫々
の磁極に励磁巻線が巻装された固定子鉄芯とで固定子を
構成し、該固定子の内周面に可変レラクタンス式回転子
を配したアウタ−ロ−タ型ステッピングモ−タは従来技
術として存在する。図5及び図6は従来技術に成るイン
ナ−ロ−タ型ステッピングモータの例を示す正面図と側
面断面図である。
2. Description of the Related Art An annular permanent magnet is fixed to a stator iron core which is disposed so as to sandwich the permanent magnet, has a plurality of magnetic poles formed radially, and an excitation winding is wound around each magnetic pole. 2. Description of the Related Art An outer rotor type stepping motor in which a stator is formed and a variable reluctance rotor is disposed on an inner peripheral surface of the stator exists as a conventional technique. 5 and 6 are a front view and a side sectional view showing an example of an inner rotor type stepping motor according to the prior art.

【0003】固定子鉄心21は、図5に示す如く偶数個
(本図では8)の固定子磁極が内側へ放射状に突設され
てそれぞれの磁極に卷線22, 28が巻装されている。
回転子鉄心23, 24は永久磁石25を挟持する様に配
設され、軸方向に着磁された該永久磁石25により、本
図では23がN極、24がS極に磁化され、それぞれ固
定子磁極の内周面とエアギャップ26, 27を介して対
向する如く回転自在に軸支されている。
As shown in FIG. 5, the stator core 21 has an even number (eight in this figure) of stator magnetic poles projecting radially inward, and windings 22, 28 are wound around the respective magnetic poles. .
The rotor cores 23, 24 are disposed so as to sandwich the permanent magnet 25, and in the present figure, the permanent magnet 25 magnetized in the axial direction is magnetized to an N pole and 24 to an S pole, and is fixed respectively. It is rotatably supported so as to face the inner peripheral surface of the daughter magnetic pole via air gaps 26 and 27.

【0004】永久磁石25から出た磁束は一方の回転子
鉄芯23, エアギャップ26を通過して固定子鉄芯21
に入り、別の位置のエアギャップ27を通って他方の回
転子鉄芯24に帰る磁路を形成する。本図に於いて、卷
線22に交番電流を流し固定子磁極がS極に磁化される
場合は、卷線22によって一方の回転子鉄芯23に対向
している固定子磁極では、巻線22と差交する磁束が回
転子鉄芯23の磁束と重なって強め合うので、該回転子
鉄芯23の極歯と巻線22で励磁される固定子側の極歯
とは互いに吸引し合い他方、回転子鉄芯24と対向して
巻線22で磁化される固定子側の極歯は、同じく巻線2
2でS極に磁化されており、回転子鉄芯24も又S極な
ので磁束は互いに弱め合う(減算)事になる。
The magnetic flux emitted from the permanent magnet 25 passes through the rotor core 23 and the air gap 26 and passes through the stator core 21.
To form a magnetic path returning to the other rotor core 24 through the air gap 27 at another position. In this figure, when an alternating current is applied to the winding 22 and the stator magnetic pole is magnetized to the S pole, the stator magnetic pole opposed to one rotor iron core 23 by the winding 22 has a winding. Since the magnetic flux intersecting with the magnetic flux 22 overlaps and strengthens the magnetic flux of the rotor iron core 23, the pole teeth of the rotor iron core 23 and the pole teeth of the stator side excited by the winding 22 attract each other. On the other hand, the pole teeth on the stator side, which are magnetized by the windings 22 facing the rotor core 24,
2, the magnetic flux weakens (subtracts) each other because the rotor iron core 24 is also an S pole.

【0005】回転子の固定子に対する位置決めは、エア
ギャップ26で対向している固定子磁極の極歯と回転子
鉄芯23の極歯により成され、エアギャップ27で対向
している固定子磁極の極歯と回転子鉄芯24の極歯はパ
−ミアンスの最小の位置関係に向おうとする。即ちエア
ギャップ26では、巻線による磁束と永久磁石の磁束が
強め合う加算状態となり、エアギャップ27では弱め合
う減算状態となる。こうして巻線22に交番電流を流す
ことによりエアギャップ26, 27の加算・減算状態が
交互に変わり、巻線22, 28に電気角で90゜位相の
異なる交番電流を流すことにより、回転子は歩進回転す
る。これが、いわゆるインナ−ロ−タ・HB(ハイブリ
ッド)型ステッピングモ−タの回転原理である。
The positioning of the rotor with respect to the stator is made up of the pole teeth of the stator magnetic pole facing the air gap 26 and the pole teeth of the rotor iron core 23, and the stator magnetic pole facing the air gap 27. And the pole teeth of the rotor iron core 24 tend to have a minimum permeance positional relationship. That is, in the air gap 26, the magnetic flux generated by the winding and the magnetic flux of the permanent magnet are in an additive state in which the magnetic flux is strengthened, and in the air gap 27, the magnetic flux is in a subtractive state in which the magnetic flux is weakened. By passing the alternating current through the winding 22 in this way, the addition and subtraction states of the air gaps 26 and 27 are alternately changed. By passing the alternating currents having a 90 ° electrical angle and different phases through the windings 22 and 28, the rotor Rotate step by step. This is the principle of rotation of a so-called inner rotor / HB (hybrid) type stepping motor.

【0006】そして、図7, 図8は上述図5, 図6のも
のと全く同一原理で回転するアウタ−ロ−タ型ステッピ
ングモ−タの従来技術の例である。図7は正面図、図8
はその側面断面図を示すもので、固定子鉄芯31, 3
1’は永久磁石33を挟んで対向し、それぞれの固定子
磁極31−1〜31−8及び31−1’〜31−8’
は、その先端にそれぞれ複数の極歯を備え、夫々対を成
す固定子磁極毎に双方に跨る様に巻線32−1〜32−
8が卷装されている。そして上述の対を成す固定子鉄芯
31, 31’は、それぞれの固定子磁極31ー1〜31
ー8と31ー1’〜31ー8’が互いにロ−タ歯ピッチ
の1/2ピッチずれた位置となる様に配置される。一方
の固定子磁極31−1〜31−8はエアギャプ34を、
他方の固定子磁極31ー1´〜31−8´はエアギャッ
プ35を介して回転子36と対向し、該回転子36の内
周には固定子磁極31ー1〜31−8の外周先端に設け
られた極歯と同ピッチの極歯が等ピッチで設けてある。
そして、エアギャップ34, 35において図5, 図6に
示すインナ−ロ−タ型ステッピングモ−タと同様に巻線
の磁束と永久磁石の磁束の強め合い、弱め合いが発生
し、巻線群32−1, 32−3, 32−5, 32−7を
一つの相として交番電流を流し、残りの巻線群32−
2,32−4, 32−6, 32−8を第2相として90
゜位相の異なる電流を流すことで回転子は歩進回転す
る。
FIGS. 7 and 8 show examples of the prior art of an outer rotor type stepping motor which rotates on the same principle as that of FIGS. 5 and 6 described above. FIG. 7 is a front view, FIG.
Shows a side sectional view of the stator iron cores 31 and 3.
1 ′ oppose each other with the permanent magnet 33 interposed therebetween, and the respective stator magnetic poles 31-1 to 31-8 and 31-1 ′ to 31-8 ′
Are provided with a plurality of pole teeth at the ends thereof, and windings 32-1 to 32-32 are provided so as to straddle both of the stator magnetic poles forming a pair.
8 is wound. The stator iron cores 31 and 31 'forming the above-mentioned pair are respectively provided with the stator magnetic poles 31-1 to 31-31.
-8 and 31-1 'to 31-8' are arranged so as to be shifted from each other by a half of the rotor tooth pitch. One of the stator magnetic poles 31-1 to 31-8 has an air gap 34,
The other stator magnetic poles 31-1 ′ to 31-8 ′ face the rotor 36 via the air gap 35, and the inner circumference of the rotor 36 has outer circumferential tips of the stator magnetic poles 31-1 to 31-8. The pole teeth of the same pitch as the pole teeth provided in are provided at an equal pitch.
In the air gaps 34 and 35, as in the case of the inner rotor type stepping motor shown in FIGS. -1, 32-3, 32-5, and 32-7 as one phase, and an alternating current is applied.
2,32-4, 32-6, 32-8 as the second phase 90
回 転 The rotor rotates stepwise by passing currents with different phases.

【0007】この図7, 図8の構造のものは、図5, 図
6のものに比べて回転子直径が大きく取れる為、高トル
クを出すことができる長所がある。しかし該構造の従来
技術は、例えば特公平3−4153にも記載されている
様に、固定子磁極の数が4以上の偶数である必要があ
り、図7, 図8において、例えば対を成す固定子磁極3
1−1と31−1´は回転子の極歯ピッチの1/2だけ
位相ずれを設ける必要があった。
The structure shown in FIGS. 7 and 8 has a merit that a large torque can be obtained since the rotor diameter can be made larger than those shown in FIGS. However, the prior art of this structure requires that the number of stator magnetic poles be an even number of 4 or more, as described in, for example, Japanese Patent Publication No. 3-4153. For example, in FIGS. Stator magnetic pole 3
1-1 and 31-1 'had to be provided with a phase shift of 1/2 of the rotor tooth pitch.

【0008】この場合、固定子と回転子間のラジアル方
向の吸引力は、例えば、固定子磁極31−1と同31−
5では機械角で180゜ずれた点で引合う為回転軸の軸
心に働く力は理論的にはキャンセルされて零となる筈で
あるが、該構成では固定子が内側に配置される為、回転
子36を軸支する軸受構造が片持構造となり、軸支の剛
性や精度を考えると現実にはエアギャップ34, 35を
360゜全周に亘って均一に保つことは困難である。
又、対を成す固定子磁極31−1, 31−1’を1/2
ピッチずらせる事は、同じ寸法形状の固定子鉄心を併用
する場合、巻線を巻装するスロットを1/2ピッチずら
せる事になり、巻線を困難とする。一方、対の固定子磁
極31−1と31−1’を予め1/2ピッチだけずらせ
た異なる形状の別部材とし、これを併用する事は必然的
に経済上の問題を伴う。
In this case, the radial attractive force between the stator and the rotor is, for example, the stator magnetic poles 31-1 and 31-.
In FIG. 5, the force acting on the axis of the rotating shaft should theoretically be canceled and become zero because the magnetic force is drawn at a point shifted by 180 ° in mechanical angle. However, in this configuration, the stator is disposed inside. Since the bearing structure for supporting the rotor 36 is a cantilever structure, it is actually difficult to keep the air gaps 34 and 35 uniform over the entire 360 ° in view of the rigidity and accuracy of the shaft support.
Further, the stator magnetic poles 31-1 and 31-1 'forming a pair are reduced by half.
When the pitch is shifted, when a stator core having the same size and shape is used together, the slot for winding the winding is shifted by ピ ッ チ pitch, which makes the winding difficult. On the other hand, using the pair of stator magnetic poles 31-1 and 31-1 'as separate members having different shapes shifted in advance by ピ ッ チ pitch inevitably involves an economic problem.

【0009】[0009]

【発明が解決しようとする課題】本発明になるアウター
ローター型ステッピングモータにおいては上述の如き従
来構造での問題点を解決し、下記の如き課題を実現する
事を目的とする。 (1)アウタ−ロ−タ型で高トルクを確保しながら、片
持構造の侭での低振動と位置決め精度を向上させる。 (2)ロ−コストでの微小ステップ角が得られる構造と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide an outer rotor type stepping motor which solves the above-mentioned problems in the conventional structure and realizes the following objects. (1) While maintaining a high torque with the outer-rotor type, low vibration and positioning accuracy are improved while maintaining the cantilever structure. (2) A structure in which a small step angle can be obtained at low cost.

【0010】[0010]

【課題を解決するための手段】本発明に成るアウターロ
ータ型ステッピングモータは、円環状ヨ−ク外側方向放
射状に等ピッチでQ個の磁極が植設され、該Q個の磁極
それぞれの外周に1以上で等数の極歯が設けられている
固定子鉄心を2ケ同心に配置し、該2ケの固定子鉄芯で
円環状の永久磁石を同軸状として挟む様に配設し、固定
子巻線をP相とした時、Q=mP(但し、mは1以上の
奇数、Pは3又は5、Qは15以下の奇数)の関係を有
し、前記永久磁石を挟んで対向するポ−ル対を回転軸方
向に同位置に配置すると共に、該ポ−ル対に跨って巻線
を巻装して固定子と成し、高透磁率の磁性体より成り、
その内周面の全周に亘ってZr個の極歯を等ピッチで設
け、軸方向に略2分する如く互いに1/2ピッチで歯ず
らしした状態で磁気的に結合せしめ回転子とし、且つ数
1に示す関係を有し、且つ/若しくは給電端子数を固定
子卷線の相数と等しくする如く構成される。
In the outer rotor type stepping motor according to the present invention, Q magnetic poles are implanted at equal pitches radially outward in an annular yoke, and the outer periphery of each of the Q magnetic poles is provided. Two or more stator cores having the same number of pole teeth are arranged concentrically, and the two stator iron cores are arranged so that an annular permanent magnet is coaxially sandwiched therebetween and fixed. When the child winding is a P-phase, Q = mP (where m is an odd number of 1 or more, P is 3 or 5, and Q is an odd number of 15 or less), and oppose each other across the permanent magnet. A pair of poles is arranged at the same position in the direction of the rotation axis, and a winding is wound over the pair of poles to form a stator, which is made of a magnetic material having high magnetic permeability.
Zr pole teeth are provided at an equal pitch over the entire circumference of the inner peripheral surface, and are magnetically coupled to each other in a state where the teeth are shifted at a half pitch so as to be approximately divided in the axial direction to form a rotor, and It is configured to have the relationship shown in Equation 1 and / or to make the number of power supply terminals equal to the number of phases of the stator winding.

【数1】(Equation 1)

【0011】[0011]

【作用】上述の如き構成においては、高トルクを実現す
るアウターロータ構造の有利性を損なう事無しに、安価
な高精度の微小角動作の可能なステッピングモータを実
現できる如き作用効果をもたらす。
According to the above-described structure, an operation effect can be provided such that an inexpensive high-precision stepping motor capable of performing a minute angle operation can be realized without impairing the advantage of the outer rotor structure for realizing high torque.

【0012】[0012]

【実施例】図1, 図2は本発明の一実施例の正面図と側
面断面図である。本発明は、固定子鉄芯1に植設される
磁極数が奇数である事を特徴とする。該実施例では9ケ
の構成とし図1にQ1 〜Q9 で該磁極群を示すが、説明
の簡略化の為に実際にはそれぞれの磁極先端に形成され
る複数の極歯を省略している。又、上記9ケの固定子磁
極Q1 〜Q9 にはそれぞれ巻線6が巻装され、該巻線6
は前記9ケの固定子磁極Q1 〜Q9 の機械角で120゜
離れたものを同相として接続され3相巻線として形成さ
れるもので、第1の相に属す巻線6は、図1に示す如く
磁極Q1, Q4, Q7 に巻装され接続されており、図1で
は省略している第2相に属す巻線6は磁極Q2, Q5, Q
8 に、同じく第3相に属する巻線6は磁極Q3, Q6, Q
9 に、それぞれ巻装される。従って例えば第1の相の巻
線6に通電すると、磁極Q1, Q4, Q7 が同極に磁化さ
れるが、永久磁石2を挟んで配置される固定子鉄芯1と
固定子鉄芯1’とは双方の磁極位置を同じとして軸方向
に対向し、しかもそれぞれが同じ巻線6で磁化される。
1 and 2 are a front view and a side sectional view, respectively, of an embodiment of the present invention. The present invention is characterized in that the number of magnetic poles implanted in the stator core 1 is an odd number. In this embodiment, the magnetic pole group is indicated by Q 1 to Q 9 in FIG. 1 with 9 parts, but a plurality of pole teeth formed at each magnetic pole tip are actually omitted for simplification of description. ing. A winding 6 is wound around each of the nine stator magnetic poles Q 1 to Q 9.
Is the mechanical angle of the nine stator poles Q 1 to Q 9 of 120 °.
The windings 6 belonging to the first phase are connected and wound around magnetic poles Q 1 , Q 4 , Q 7 as shown in FIG. The windings 6 belonging to the second phase, which are omitted in FIG. 1, have magnetic poles Q 2 , Q 5 , Q
8 , the winding 6 also belonging to the third phase has magnetic poles Q 3 , Q 6 , Q
9 , each is wound. Therefore, for example, when the first phase winding 6 is energized, the magnetic poles Q 1 , Q 4 , Q 7 are magnetized to the same polarity, but the stator iron core 1 and the stator iron The core 1 ′ is axially opposed with the same magnetic pole position, and each is magnetized by the same winding 6.

【0013】一方回転子は、9ケの固定子磁極Q1 〜Q
9 の外周面にエアギャップを介して対向する様に配設さ
れ、前記固定子磁極Q1 〜Q9 と対向する内周面に24
ケの回転子側極歯を形成している。該回転子は軸方向に
ほぼ2分する構造をしており、前記固定子鉄芯1とエア
ギャップ4を介して対向する一方の側3の内周面には所
定のピッチと数の極歯が形成され、他方の固定子鉄芯
1’と対向するエアギャップ5側3’の内周面には、等
ピッチ, 同数ではあるが前記極歯ピッチの1/2角度だ
け円周方向にずらせて極歯が位置する様に両者が一体固
着され回転自在に軸支される。
On the other hand, the rotor has nine stator magnetic poles Q 1 to Q 1.
9 is disposed so as to face an air gap on the outer peripheral surface of 24 on the inner peripheral surface opposite to the stator poles Q 1 to Q 9
The rotor-side pole teeth are formed. The rotor has a structure that is substantially bisected in the axial direction, and has a predetermined pitch and a predetermined number of pole teeth on an inner peripheral surface of one side 3 which faces the stator core 1 via an air gap 4. Is formed on the inner peripheral surface of the air gap 5 side 3 'facing the other stator iron core 1', which is circumferentially shifted by an equal pitch and the same number, but by an angle of 1/2 of the pole tooth pitch. The two are integrally fixed so that the pole teeth are positioned, and are rotatably supported.

【0014】上述構成で、図1, 図2に見る様に巻線6
に通電する事により、回転子が固定子鉄芯1の磁極Q1,
4, Q7 と対向するエアギャップ4においては磁束は
強め合う事になり、固定子鉄芯1’の磁極Q1', Q4',
7'側のエアギャップ5では弱め合う事になる。即ち、
巻線6に交番電流を通電する事によりエアギャップ4,
5での磁束の強め合い, 弱め合いが交番し、第2相巻
線, 第3相巻線にそれぞれ電気角60゜ の位相差の交番
電流を通電する事で歩進, 回転する。
With the above configuration, as shown in FIGS.
When the rotor is energized, the rotor is driven by the magnetic poles Q 1 ,
In the air gap 4 opposed to Q 4 , Q 7 , the magnetic flux is strengthened, and the magnetic poles Q 1 ′, Q 4 ′,
Q 7 'will be destructive in the air gap 5 of the side. That is,
By applying an alternating current to the winding 6, the air gap 4,
The magnetic flux at step 5 alternates between strengthening and weakening, and the second and third phase windings are stepped and rotated by supplying an alternating current having a phase difference of 60 ° in electrical angle to each of the second and third phase windings.

【0015】本構成で3相2励磁の場合は、第2相の磁
極の磁化を第1相と逆極性とする。例えば第1相に属す
る磁極Q1, Q4, Q7 がN極で強められる時は、第2相
に属する磁極Q2', Q5', Q8'がS極で強められる為、
磁極Q1, Q4, Q7 を出た磁束はエアギャップ4, 一方
の回転子極歯部3, 他方の回転子極歯部3’を通ってS
極の磁極Q2',Q5', Q8'に進む事になる。回転子鉄芯
をほぼ2分し両者を互いに極歯ピッチで1/2ずらせて
配置する目的は、上述磁路を形成する事にある。
In this configuration, in the case of three-phase two-excitation, the magnetization of the magnetic pole of the second phase is opposite in polarity to the first phase. For example, when the magnetic poles Q 1 , Q 4 , Q 7 belonging to the first phase are strengthened by the north pole, the magnetic poles Q 2 ′, Q 5 ′, Q 8 ′ belonging to the second phase are strengthened by the south pole,
The magnetic flux exiting the magnetic poles Q 1 , Q 4 and Q 7 passes through the air gap 4, one rotor pole tooth 3 and the other rotor pole tooth 3 ′, and
The process proceeds to the poles Q 2 ′, Q 5 ′, and Q 8 ′. The purpose of arranging the rotor iron core in approximately two parts and displacing the two at a pole tooth pitch of 1/2 is to form the above-described magnetic path.

【0016】図3は本発明に成る第2の実施例で、固定
子の磁極数が15, 回転子極歯数が21の組み合わせで
5相巻線を備える例である。第1相巻線は磁極Q1 〜Q
15の内、機械的に120゜分離されたQ1, Q6及びQ11
に巻装され、第2相分は磁極Q2, Q7, Q12、第3相分
は磁極Q3, Q8及びQ13、第4相分はQ4, Q9, Q14
第5相分はQ5, Q10, Q15に、それぞれ巻装される。
該第2の例でも説明を簡単にする為、固定子磁極Q1
15の先端の複数の極歯はこれを省略しており、前述第
1の例と同じく固定子、回転子の構造及びエアギャップ
での磁束の強め合い、弱め合いの状態も同じであるので
説明は省略する。
FIG. 3 shows a second embodiment according to the present invention, in which the stator has 15 magnetic poles and the rotor has 21 teeth, and a five-phase winding is provided. The first phase winding has magnetic poles Q 1 to Q
Of the 15 , Q 1 , Q 6 and Q 11 mechanically separated by 120 °
The second phase component is magnetic poles Q 2 , Q 7 , Q 12 , the third phase component is magnetic poles Q 3 , Q 8 and Q 13 , the fourth phase component is Q 4 , Q 9 , Q 14 ,
The fifth phase is wound around Q 5 , Q 10 , and Q 15 , respectively.
To simplify the description in the example of the second stator magnetic poles Q 1 ~
A plurality of pole teeth of the distal end of the Q 15 has been omitted, as well stator with the aforementioned first embodiment, constructive flux in the structure and the air gap of the rotor, since the state of destructive are the same Description is omitted.

【0017】図4は更に別の実施例で、固定子磁極数が
3で、該例では各磁極先端に極歯を3ケ形成しており、
回転子極歯数を16としたもので、磁極Q1, Q2, Q3
にはそれぞれ巻線C1, C2, C3 が巻装されている。該
例は、図1, 図2に示す第1の例や図3に示す第2の例
と少しその目的が異なるもので、固定子磁極Q1, Q2,
3 と、永久磁石を挟んでこれと対向する他方の固定子
磁極Q1´,Q2´, Q3´(図示を省略している)とは同
じ位置に配置される。
FIG. 4 shows still another embodiment in which the number of stator magnetic poles is three, and in this example, three pole teeth are formed at the tip of each magnetic pole.
The number of rotor pole teeth is 16, and the magnetic poles Q 1 , Q 2 , Q 3
Are wound with windings C 1 , C 2 and C 3 respectively. The purpose of this example is slightly different from the first example shown in FIGS. 1 and 2 and the second example shown in FIG. 3, and the stator poles Q 1 , Q 2 ,
Q 3 and the other stator magnetic poles Q 1 ′, Q 2 ′, Q 3 ′ (not shown) opposed to the permanent magnet across the permanent magnet are arranged at the same position.

【0018】固定子側の磁極数と回転子側の極歯数との
組合せは同じであるが、第1相分の巻線C1 が磁極Q1
のみに、第2相分の巻線C2 が磁極Q2 のみ、第3相分
巻線C3 が磁極Q3 のみに巻装される為、上述の2つの
実施例でのラジアル力のキャンセル効果は無いが、磁極
数が3で構造がシンプルである為コストの面で有利であ
る他、3相の構造である効果で、2相構造のものに対し
同一サイズではスッテップ角度を小さく出来るという効
果がある。
The combination of the number of magnetic poles on the stator side and the number of pole teeth on the rotor side is the same, but the winding C 1 for the first phase has the magnetic pole Q 1.
Only, the second phase winding C 2 is wound only on the magnetic pole Q 2 , and the third phase winding C 3 is wound only on the magnetic pole Q 3 , so that the radial force is canceled in the above two embodiments. Although there is no effect, the number of magnetic poles is 3 and the structure is simple, which is advantageous in terms of cost. In addition, the effect of the three-phase structure is that the step angle can be reduced with the same size as that of the two-phase structure. effective.

【0019】本発明は前述の通り固定子磁極数Qを奇数
とすることにより、Q=mPでm=3とすることによ
り、図1, 図2に示す如く1相分の固定子磁極の極歯と
回転子側の極歯間の吸引力が120゜分離した点で回転
軸に作用する為、3点のベクトル合成でキャンセルされ
る事になり、従来技術での偶数個の磁極での180゜分
離した2点でのキャンセルに対し、キャンセル度がより
改善される訳である。又、アウタ−ロ−タ構造では、回
転子を軸支する軸受は片持構造となる為、エアギャップ
を均一に保持する事は難しく、この面からも吸引力の作
用する箇所が2点より3点、3点より5点と増加させて
吸引力のラジアル力を分散してキャンセルした方がキャ
ンセル度がより改善される。このベクトル和が零でない
と回転時に振動・騒音の原因になり易く、ステップ角精
度や回転子の位置決め精度も悪化し易い。
According to the present invention, as described above, by setting the number of stator magnetic poles Q to an odd number, by setting Q = mP and m = 3, as shown in FIGS. Since the attractive force between the teeth and the rotor-side pole teeth is applied to the rotating shaft at a point separated by 120 °, it is canceled by the vector synthesis of three points. (4) The degree of cancellation is further improved with respect to cancellation at two separated points. Also, in the outer-rotor structure, since the bearing that supports the rotor is a cantilever structure, it is difficult to keep the air gap uniform, and there are two points where suction force acts from this surface. The cancellation degree is further improved by increasing the number of points to three points and increasing the number of points to five points to cancel the radial force of the suction force. If this vector sum is not zero, it tends to cause vibration and noise during rotation, and the step angle accuracy and the positioning accuracy of the rotor tend to deteriorate.

【0020】しかし、多点にラジアル力を分散させると
いう事は固定子磁極数Qが大きくなる事であり、磁極の
増加は巻線を複雑にするので経済的には限界がある。本
発明に成るアウターロータ型ステッピングモ−タの用途
は、OA機器の、例えばレ−ザ−ビ−ムプリンタのドラ
ム駆動の如き定速回転制御用を主目的としている為、実
用上からQは15以下とした。
However, dispersing the radial force at multiple points means increasing the number of stator magnetic poles Q, and increasing the number of magnetic poles complicates the winding, so there is an economic limit. The outer rotor type stepping motor according to the present invention is mainly used for constant speed rotation control of OA equipment such as a drum drive of a laser beam printer. It was as follows.

【0021】Q=mPでm=1とするとP=3の場合で
は、実施例の図4の様になり、前述した低振動・低騒音
の効果は無くなるが磁極が少なく経済的に有利になる
為、振動・騒音のあまり問題にならない用途にはm=1
とする構造も利用可能である。ステッピングモ−タのス
テップ角θs は、数2で決まる為、固定子磁極数Qが小
さくても相数Pが3又は5で、回転子側極歯数Zrが2
相構造のものと同程度ならθsは小さくできる。
Assuming that Q = mP and m = 1, in the case of P = 3, the result is as shown in FIG. 4 of the embodiment, and the above-mentioned effects of low vibration and low noise are lost, but the number of magnetic poles is small and economically advantageous. Therefore, m = 1 for applications where vibration / noise is not a major problem.
Is also available. Since the step angle θs of the stepping motor is determined by Equation 2, even if the number of stator magnetic poles Q is small, the number of phases P is 3 or 5, and the number of rotor-side pole teeth Zr is 2
Θs can be reduced as long as it has the same phase structure.

【数2】 (Equation 2)

【0022】周知の通り、ステッピングモ−タの位置決
め精度は一般的に、ステップ角θsが小さい程向上す
る。これは位置決め量θをθ=Nθs とすると、θs が
小さいとNが大きくなり、ステッピングモ−タの誤差が
θs の3〜6%程度の水準でほぼ一定である事から、相
対的に精度が向上するのである。従って、2相モ−タよ
り磁極数Qが小さくても相数Pの効果で位置決め精度が
良くなる場合があり、m=1の存在理由がここにある。
As is well known, the positioning accuracy of the stepping motor generally improves as the step angle θs decreases. This is because if the positioning amount θ is θ = Nθs, N increases when θs is small, and the error of the stepping motor is almost constant at a level of about 3 to 6% of θs, so that the accuracy is relatively improved. You do it. Therefore, even if the number of magnetic poles Q is smaller than that of the two-phase motor, the positioning accuracy may be improved by the effect of the number of phases P, which is why m = 1.

【0023】本発明でのQ=mPの範囲を表1に示す。Table 1 shows the range of Q = mP in the present invention.

【表1】 P=5で、m=5ではQ=25となるが、経済的理由で
実用上Qは15以下と限定してある。
[Table 1] When P = 5 and m = 5, Q = 25. However, for economic reasons, Q is practically limited to 15 or less.

【0024】前述のZrを限定した数1は、数3にQ=
mPを代入し、Zrについて解くことで求められる。
The above-described equation (1) limiting Zr is obtained by adding Q =
It is obtained by substituting mP and solving for Zr.

【数3】 数3の左辺, 右辺は、いずれも回転子側極歯数がZrで
P相ステッピングモ−タのステップ角を表している。数
1でP=3、m=3の場合、nをパラメ−タとした時の
回転子側極歯数Zrとステップ角θs の関係を表2に示
す。
(Equation 3) The left side and the right side of Equation 3 each represent the step angle of the P-phase stepping motor with the number of rotor-side pole teeth being Zr. Table 2 shows the relationship between the number of pole teeth Zr on the rotor side and the step angle θs when n = parameter when P = 3 and m = 3 in Equation 1.

【表2】 [Table 2]

【0025】表1に示す通りm=5の場合、P=3でQ
=15であるが、この場合は1相が5個の磁極で構成さ
れており、前述のラジアル吸引力を機械角72゜離れた
5点で分散キャンセルさせる事になり、より低振動、低
騒音化に適したものと言える。 又、別の構成例として
数1でP=5、m=3の場合、nをパラメ−タとした時
の回転子側極歯数Zrとステップ角θs の関係を表3に
示す。
As shown in Table 1, when m = 5, P = 3 and Q
= 15, but in this case, one phase is composed of five magnetic poles, and the above-described radial suction force is dispersed and canceled at five points separated by a mechanical angle of 72 °, resulting in lower vibration and lower noise. It can be said that it is suitable for conversion. Table 3 shows the relationship between the number of pole teeth Zr on the rotor side and the step angle θs when n is a parameter when P = 5 and m = 3 as another example of the configuration.

【表3】 表1に示す通りm=5の場合、P=3でQ=15である
が、この場合は1相が5個の磁極で構成されており、前
述のラジアル吸引力を機械角72゜離れた5点で分散し
てキャンセルさせる事になり、より低振動・低騒音化に
適したものと言える。
[Table 3] As shown in Table 1, when m = 5, P = 3 and Q = 15. In this case, one phase is composed of five magnetic poles, and the above-mentioned radial attractive force is separated from the above-mentioned radial angle by a mechanical angle of 72 °. The five points are dispersed and canceled, and it can be said that this is suitable for lowering vibration and noise.

【0026】又3相モ−タ、5相モ−タでは駆動手段の
選択によりト−タルコストを小さくする事ができる。3
相ステッピングモ−タ、5相ステッピングモ−タ共に、
各相巻線の巻始め同士, 巻終わり同士を短絡する方法が
ある。図9はa, a',b, b',c, c' で示す6端子構
造の3相モ−タで、磁極A,B, CがそれぞれN, S,S
に磁化された状態を示し、図10は各巻線の巻終わり端
同士を短絡して入力端子をa, b, cの3とした例で、
aを(+)電源に、bとcを(ー)電源にスイッチング
素子で接続する事により各磁極A, B, Cの極性をそれ
ぞれN、S、Sとする事ができる。各入力端子a, b,
cの極性は自由に選べる為、各磁極, A, B, Cの極性
もその範囲内で自由度があり、回転磁界を作る事がで
き、本発明のステッピングモ−タを駆動することができ
る。
In a three-phase motor and a five-phase motor, the total cost can be reduced by selecting the driving means. 3
Both phase stepping motor and 5-phase stepping motor
There is a method of shorting the winding start and winding end of each phase winding. FIG. 9 shows a three-phase motor having a six-terminal structure indicated by a, a ', b, b', c, and c '. The magnetic poles A, B, and C have N, S, and S, respectively.
FIG. 10 shows an example in which the winding ends of each winding are short-circuited and the input terminals are a, b, and c.
By connecting a to the (+) power supply and connecting b and c to the (-) power supply by switching elements, the polarities of the magnetic poles A, B, and C can be set to N, S, and S, respectively. Each input terminal a, b,
Since the polarity of c can be freely selected, the polarities of the magnetic poles A, B, and C also have a degree of freedom within the range, a rotating magnetic field can be created, and the stepping motor of the present invention can be driven.

【0027】図11は端子数が10ケの5相ステッピン
グモ−タの簡略図であり、磁極A,B, C, D, Eが
N,N,S,S,O(無極性,Eは無励磁)に磁化され
た状態を示すもので、図12は該5相ステッピングモ−
タの各巻線の巻終わり端同士を短絡した構成であり、該
構成では入力端子が5ケとなり、端子a, bを(+)電
源に、端子c, dを(ー)電源に、端子eは電源に非接
続とする事で、磁極A,B, C, D, Eが図11と同様
な極性となり、これは前述図10に示す3相の場合と同
じであり、図12においても各端子a, b, c, d, e
の電源の極性は自由に選択できる事から、その範囲内で
各磁極A〜Eの極性も任意に選択する事ができ、従って
回転磁界ができる様に各端子a, b,c, d, eの電源
極性をスイッチング素子で選べば、本発明の5相ステッ
ピングモ−タを駆動できる。
FIG. 11 is a simplified diagram of a five-phase stepping motor having ten terminals, in which the magnetic poles A, B, C, D, and E are N, N, S, S, O (non-polarity, E is no polarity). FIG. 12 shows the state of the five-phase stepping mode.
In this configuration, the number of input terminals is five, terminals a and b are (+) power supply, terminals c and d are (−) power supply, and terminal e is Are not connected to the power supply, the magnetic poles A, B, C, D, and E have the same polarity as in FIG. 11, which is the same as the three-phase case shown in FIG. Terminals a, b, c, d, e
Since the polarity of the power supply can be freely selected, the polarity of each of the magnetic poles A to E can be arbitrarily selected within the range, so that the terminals a, b, c, d, and e can generate a rotating magnetic field. If the power supply polarity is selected by a switching element, the five-phase stepping motor of the present invention can be driven.

【0028】又、3相及び5相ステッピングモ−タは,
各相巻線の巻終わりと巻始めを順にリング状に結合する
事によっても給電端子数を減らすことができる。図13
は、前述図9において、端子aとb, bとc, cとaと
をそれぞれ結合し、その結合点をa, b, cとして3端
子とし、aを(+)、bを(ー)、cを(+)とした状
態を示し、各磁極A, B, Cの極性はそれぞれN,S,
O(無極性)となる。磁極Cの巻線には端子aと端子c
が(+)の同電位となり電流が流れない。
The three-phase and five-phase stepping motors are
The number of power supply terminals can also be reduced by sequentially connecting the winding end and winding start of each phase winding in a ring shape. FIG.
In FIG. 9 described above, terminals a and b, b and c, and c and a are respectively connected, and the connection points are a, b, and c, and three terminals are used, a is (+), and b is (-). , C are (+), and the polarities of the magnetic poles A, B, C are N, S,
O (no polarity). Terminal a and terminal c are connected to the winding of the magnetic pole C.
Becomes the same potential as (+), and no current flows.

【0029】同様に図14は、図11の各巻線の巻終わ
り端と巻始め端を順にリング状に結合しその結合点を5
つの入力端子とした場合であり、aとeを(+)、cを
(−)に、bとdを電源に非接続とする事で各磁極A,
B、C,D, Eを図11及び図12と同様な極性を得ら
れる事を示している。こうして図13, 図14も回転磁
界を作る事が可能で、本発明のステッピングモ−タを駆
動させることができる。
Similarly, FIG. 14 shows that the winding end and winding start of each winding of FIG.
In this case, a and e are set to (+), c is set to (-), and b and d are not connected to the power supply, so that each magnetic pole A,
B, C, D, and E indicate that the same polarity as in FIGS. 11 and 12 can be obtained. 13 and 14 can also generate a rotating magnetic field, and can drive the stepping motor of the present invention.

【0030】本発明で相数Pを3又は5の奇数にする理
由は、相数Pが偶数であると図13や図14の如くリン
グ状結線にした時に回転磁界がうまくできないので、3
入力端子、5入力端子を実現する為である。例えば図1
3で磁極AはN極で出発して次にS極となる必要がある
が、4相モ−タ等の偶数ではS極に変わらず又N極とな
り、この様なリング結線で回転磁界を実現するには特別
な工夫を要するのである。
The reason why the phase number P is set to an odd number of 3 or 5 in the present invention is that if the phase number P is an even number, the rotating magnetic field cannot be made well when a ring connection is made as shown in FIGS.
This is to realize an input terminal and five input terminals. For example, FIG.
At 3, the magnetic pole A needs to start from the N pole and then to the S pole. However, even numbers such as a four-phase motor do not change to the S pole and also become the N pole. To do so requires special ingenuity.

【0031】[0031]

【発明の効果】(1)Q=mPにおいてm=3若しくは
m=5の場合は、片持軸受構造でも低振動・低騒音で、
且つ高トルク・高精度のアウタ−ロ−タ型ステッピング
モ−タを提供できる。 (2)Q=mPにおいてm=1の場合には、3相又は5
相モ−タの効果を残しながら安価で高トルクのアウタ−
ロ−タ型ステッピングモ−タを提供できる。 (3)永久磁石を固定子側に配設するので、回転子側に
設けるより面積を大きく取れ効率が良い。 (4)永久磁石を挟んだ2つの固定子のスロットがずれ
ていない為、巻線が容易である。 (5)相数を奇数とし3端子又は5端子入力でも駆動出
来、安価な駆動手段で高トルクが出せる。
(1) When m = 3 or m = 5 in Q = mP, low vibration and low noise can be obtained even in a cantilever bearing structure.
In addition, it is possible to provide an outer rotor type stepping motor with high torque and high accuracy. (2) When m = 1 when Q = mP, three phases or five
Inexpensive and high torque outer while retaining the effect of phase motor
A rotor type stepping motor can be provided. (3) Since the permanent magnets are provided on the stator side, the area is larger than that provided on the rotor side, and the efficiency is good. (4) Since the slots of the two stators sandwiching the permanent magnet are not displaced, winding is easy. (5) The number of phases can be set to an odd number, and driving can be performed even with a three-terminal or five-terminal input, and high torque can be output by inexpensive driving means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の正面図である。FIG. 1 is a front view of one embodiment of the present invention.

【図2】図1に示す例の側面断面図である。FIG. 2 is a side sectional view of the example shown in FIG.

【図3】本発明の別の実施例の正面図である。FIG. 3 is a front view of another embodiment of the present invention.

【図4】本発明の更に別の実施例の正面図である。FIG. 4 is a front view of still another embodiment of the present invention.

【図5】従来技術のインナ−ロ−タの例を示す正面図で
ある。
FIG. 5 is a front view showing an example of a conventional inner rotor.

【図6】図5に示す例の側断面図である。FIG. 6 is a side sectional view of the example shown in FIG. 5;

【図7】従来技術のアウタ−ロ−タの例を示す正面図で
ある。
FIG. 7 is a front view showing an example of a conventional outer rotor.

【図8】図7に示す例の側面断面図である。FIG. 8 is a side sectional view of the example shown in FIG. 7;

【図9】3相で6入力端子の簡略図である。FIG. 9 is a simplified diagram of six input terminals with three phases.

【図10】3相で3入力端子の簡略図である。FIG. 10 is a simplified diagram of three input terminals with three phases.

【図11】5相で10入力端子の簡略図である。FIG. 11 is a simplified diagram of five phase and ten input terminals.

【図12】5相で5入力端子の簡略図である。FIG. 12 is a simplified diagram of five input terminals with five phases.

【図13】3相で3入力端子の別の簡略図である。FIG. 13 is another simplified diagram of three input terminals with three phases.

【図14】5相で5入力端子の別の簡略図である。FIG. 14 is another simplified diagram of five input terminals with five phases.

【符号の説明】[Explanation of symbols]

1,1',21,31,31'
:固定子鉄芯 2,25,33
:永久磁石 3,3',23,14
:回転子鉄芯 36
:回転子 4,5,26,27,34,35
:エアギャップ 6,C1〜C3,22,28,32−1〜32−8 :
巻線 31−1〜31−8,31−1'〜31−8',Q1〜Q
15,Q1'〜Q15':固定子磁極
1,1 ', 21,31,31'
: Stator iron core 2, 25, 33
: Permanent magnet 3,3 ', 23,14
: Rotor iron core 36
: Rotor 4,5,26,27,34,35
: Air gap 6, C 1 ~C 3, 22,28,32-1~32-8 :
Winding 31-1~31-8,31-1'~31-8 ', Q 1 ~Q
15, Q 1 '~Q 15' : stator magnetic pole

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円環状ヨ−ク外側方向放射状に等ピッチで
Q個の磁極が植設され、該Q個の磁極それぞれの外周に
1以上で等数の極歯が設けられている固定子鉄心を2ケ
同心に配置し、該2ケの固定子鉄芯で円環状の永久磁石
を同軸状として挟む様にした構造のアウタ−ロ−タ型ス
テッピングモ−タにおいて、固定子巻線をP相とした
時、Q=mP(但し、mは、3以上の奇数である、Pは
3又は5、Qは15以下の奇数)の関係を有し、前記永
久磁石を挟んで対向するポ−ル対を回転軸方向に同位置
に配置し該ポ−ル対に跨って巻線を巻装して固定子と成
し、高透磁率の磁性体より成り、その内周面の全周に亘
ってZr個の極歯を等ピッチで設け、軸方向に略2分す
る如く互いに1/2ピッチで歯ずらしした状態で磁気的
に結合せしめ回転子とし、且つ数1に示す関係を有する
こと、を特徴とする固定子に永久磁石を有するアウタ−
ロ−タ型ステッピングモ−タ。 【数1】Zr=m(P・n±(1−P)/2) (但しnは2以上の自然数)
1. A stator in which Q magnetic poles are implanted at equal pitches radially outward in an annular yoke, and one or more equal number of pole teeth are provided on the outer periphery of each of the Q magnetic poles. In an outer rotor type stepping motor having a structure in which two cores are arranged concentrically and an annular permanent magnet is coaxially sandwiched between the two stator iron cores, the stator windings are set to P. When it is a phase, Q = mP (where m is an odd number of 3 or more , P is 3 or 5, and Q is an odd number of 15 or less). A pair of coils are arranged at the same position in the direction of the rotation axis, and a winding is wound over the pair of poles to form a stator. The stator is made of a magnetic material having high magnetic permeability. Zr pole teeth are provided at an equal pitch over the rotor, and magnetically coupled with the teeth shifted by a half pitch so as to be approximately bisected in the axial direction. And an outer having a permanent magnet in the stator, characterized by having the relationship shown in Equation 1.
Rotor type stepping motor. ## EQU1 ## Zr = m (Pn + (1-P) / 2) (where n is a natural number of 2 or more)
【請求項2】給電端子数を固定子巻線の相数と等しくし
たこと、を特徴とする請求項1記載のアウターロータ型
ステッピングモータ。
2. The outer rotor type stepping motor according to claim 1, wherein the number of power supply terminals is equal to the number of phases of the stator winding.
JP32832991A 1991-11-18 1991-11-18 Outer rotor type stepping motor Expired - Fee Related JP3178616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32832991A JP3178616B2 (en) 1991-11-18 1991-11-18 Outer rotor type stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32832991A JP3178616B2 (en) 1991-11-18 1991-11-18 Outer rotor type stepping motor

Publications (2)

Publication Number Publication Date
JPH05146136A JPH05146136A (en) 1993-06-11
JP3178616B2 true JP3178616B2 (en) 2001-06-25

Family

ID=18209018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32832991A Expired - Fee Related JP3178616B2 (en) 1991-11-18 1991-11-18 Outer rotor type stepping motor

Country Status (1)

Country Link
JP (1) JP3178616B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100301165B1 (en) * 1999-06-24 2001-11-01 이형도 Stepping motor
DE102011009557A1 (en) * 2011-01-24 2012-07-26 Sbs Feintechnik Gmbh & Co.Kg Electronically commutated stepper motor for actuator utilized for exhaust valve of internal combustion engine, has rotor whose teeth are arranged facing stator arms, where number of teeth is greater than number of stator arms

Also Published As

Publication number Publication date
JPH05146136A (en) 1993-06-11

Similar Documents

Publication Publication Date Title
US6329729B1 (en) Hybrid stepping motor
JP3140814B2 (en) Permanent magnet type stepping motor
JPH0614514A (en) Permanent magnet type stepping motor
JPH11225466A (en) Polyphese outer rotor pm stepping motor
JP3084220B2 (en) Hybrid type step motor
JPH0239180B2 (en)
JP2003134788A (en) Permanent magnet rotary electric machine
JP3178616B2 (en) Outer rotor type stepping motor
JPH0775302A (en) Ring-shaped coil type three-phase claw pole type permanent magnet type electric rotary machine
JP3410519B2 (en) Three-phase claw-pole type permanent magnet type rotating electric machine
JP3591660B2 (en) Three-phase claw pole type permanent magnet type rotating electric machine
JP3679294B2 (en) Ring coil type rotating electrical machine
JP3357817B2 (en) Multi-phase PM type stepping motor
JP3905872B2 (en) Permanent magnet type stepping motor
JP2599082B2 (en) 4-phase stepping motor
JP3778216B2 (en) Hybrid type stepping motor
JP3537904B2 (en) Permanent magnet type stepping motor and driving method thereof
JP3594892B2 (en) Stepping motor
JPH07222419A (en) Rotating electric machine
JPS63198559A (en) Rotor magnet for motor
JP3138627B2 (en) Driving method of hybrid type step motor
JP3138628B2 (en) Driving method of hybrid type step motor
JP3466059B2 (en) Hybrid type three-phase step motor
JP2531101Y2 (en) Hybrid type step motor
JPH1155927A (en) Polyphase permanent magnet stepping motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees