JP3176015B2 - Joint of ceramic and metal - Google Patents
Joint of ceramic and metalInfo
- Publication number
- JP3176015B2 JP3176015B2 JP33063394A JP33063394A JP3176015B2 JP 3176015 B2 JP3176015 B2 JP 3176015B2 JP 33063394 A JP33063394 A JP 33063394A JP 33063394 A JP33063394 A JP 33063394A JP 3176015 B2 JP3176015 B2 JP 3176015B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- ceramic
- filler layer
- brazing material
- joined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 102
- 239000002184 metal Substances 0.000 title claims description 102
- 239000000919 ceramic Substances 0.000 title claims description 69
- 239000000945 filler Substances 0.000 claims description 62
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 229910045601 alloy Inorganic materials 0.000 claims description 23
- 239000000956 alloy Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 239000012535 impurity Substances 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000005219 brazing Methods 0.000 description 67
- 239000000463 material Substances 0.000 description 67
- 239000010936 titanium Substances 0.000 description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 36
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 31
- 229910052710 silicon Inorganic materials 0.000 description 19
- 239000011888 foil Substances 0.000 description 18
- 229910052796 boron Inorganic materials 0.000 description 16
- 238000005304 joining Methods 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 229910052719 titanium Inorganic materials 0.000 description 12
- 239000000523 sample Substances 0.000 description 11
- 229910052763 palladium Inorganic materials 0.000 description 10
- 238000005452 bending Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 9
- 230000035882 stress Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000008646 thermal stress Effects 0.000 description 6
- 229910017945 Cu—Ti Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000013001 point bending Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910001000 nickel titanium Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical group O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- -1 Discalloy Substances 0.000 description 1
- 229910000942 Elinvar Inorganic materials 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910034327 TiC Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、セラミックスと金属の
接合体に関し、さらに詳しくは自動車部品、産業用機械
部品等の、特に高温での機械的強度を要求される部品に
好適な接合体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body of ceramics and metal, and more particularly to a joined body suitable for parts requiring mechanical strength at high temperatures, such as automobile parts and industrial machine parts. .
【0002】[0002]
【従来の技術】セラミックスは、その高温強度、耐摩耗
性、電気絶縁性等の優れた特性を活かし、自動車用部品
をはじめ様々な産業分野に適用される。しかし、材料の
脆さに起因する信頼性の問題や、難加工材であるため加
工コストが高くつくなどの点から、従来よりセラミック
スは金属材料と組み合わせて用いられることが多い。2. Description of the Related Art Ceramics are applied to various industrial fields such as automobile parts by making use of their excellent properties such as high-temperature strength, wear resistance and electric insulation. However, ceramics are often used in combination with metal materials from the viewpoints of reliability problems due to the brittleness of the material and high processing costs due to the difficulty in processing the material.
【0003】この際重要となるのが、セラミックスと金
属の接合技術である。これには従来より多くの手法が提
案されており、一例を挙げれば焼きばめ、圧入、ロー付
け、固相拡散接合などであるが、接合部の機械加工等前
処理の簡便さからロー付けによる接合が行われることが
多い。特に、Ti、Zr、Hfなどの活性金属を含むロ
ー材を用いる活性金属法は、セラミックスにメタライズ
処理を施すことなく1回の加熱操作で接合でき、接合強
度も高いため工業的にメリットが大きい。In this case, what is important is a technique for joining ceramics and metal. Many methods have been proposed for this purpose, such as shrink fit, press fitting, brazing, and solid phase diffusion bonding, for example. Bonding is often performed. In particular, the active metal method using a brazing material containing an active metal such as Ti, Zr, and Hf can be joined by a single heating operation without performing metallizing treatment on ceramics, and has high industrial strength because of high joining strength. .
【0004】このようなロー材としては、銀ローをベー
スにしたAg−Cu−Ti系、Ag−Cu−Ni−Ti
系、Ag−Cu−In−Ti系などのロー材が、比較的
高い接合強度を有し、強度のばらつきも小さく、信頼性
に優れているため広く用いられている。[0004] As such a brazing material, Ag-Cu-Ti based on silver brazing, Ag-Cu-Ni-Ti
Materials, such as Ag-Cu-In-Ti materials, are widely used because they have relatively high bonding strength, small variation in strength, and excellent reliability.
【0005】しかし、このようなAg系のロー材は、基
本となるAg−Cu二成分系の共晶点が780℃と低
く、また高温耐力も小さいため、その適用可能温度は3
00℃程度が限界であり、それよりも高温の用途には適
当でない。However, such an Ag-based brazing material has a low eutectic point of a basic Ag-Cu binary system of 780 ° C. and a low high-temperature proof stress.
The limit is about 00 ° C., which is not suitable for higher temperature applications.
【0006】そこで高温用のロー材として、Agを含ま
ないロー材が種々開発されている。このようなロー材と
しては、Tiと低融点の共晶を形成する組み合わせ、例
えばNi−Ti系、Cu−Ti系、Ni−Cu−Ti系
などをベースにしたものが知られている。これらのロー
材はAg系のロー材と比べて融点が高く、高温耐力を低
下させるAgを含有しないため、耐熱性の向上が期待で
きる。特に、Ti含有量を必要最小限に抑さえたロー材
(特開平2−124779号公報)は、600℃程度の
高温においても十分実用に供し得る強度が得られてい
る。ところがこれらのロー材を用いた場合、接合体の室
温での強度がAg系のロー材を用いた場合よりもやや低
くなるほか、接合体の強度のばらつきがあり、製造工程
での歩留まりの低下や最終製品の信頼性の低下などの問
題がある。Accordingly, various brazing materials containing no Ag have been developed as high-temperature brazing materials. As such a brazing material, those based on a combination forming a low melting point eutectic with Ti, for example, a Ni-Ti system, a Cu-Ti system, or a Ni-Cu-Ti system are known. Since these brazing materials have a higher melting point than Ag-based brazing materials and do not contain Ag which lowers the high-temperature proof stress, improvement in heat resistance can be expected. In particular, the brazing material (Japanese Unexamined Patent Publication (Kokai) No. 2-124779) in which the Ti content is suppressed to a necessary minimum has a sufficient strength for practical use even at a high temperature of about 600 ° C. However, when these brazing materials are used, the strength of the joined body at room temperature is slightly lower than when the Ag-based brazing material is used, and the strength of the joined body varies, which lowers the yield in the manufacturing process. And the reliability of the final product is reduced.
【0007】[0007]
【発明が解決しようとする課題】本発明の課題は、室温
及び高温のいずれにおいても強度が優れ、かつ安定した
信頼性を有するセラミックスと金属の接合体を提供する
ことにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a ceramic / metal bonded body which has excellent strength at both room temperature and high temperature and has stable reliability.
【0008】[0008]
【課題を解決するための手段】本発明者らは、Ni(ニ
ッケル)及びCu(銅)をベース金属とし、活性金属と
してTi(チタン)を含むロー材に所定量のSi(硅
素)及びB(ホウ素)、又はこれらに更にPd(パラジ
ウム)を添加した場合に、これを用いて接合したセラミ
ックスと金属の接合体が、室温と高温のいずれにおいて
も優れた強度を有することを見いだしたものである。図
1に模式的に示すように、セラミックス体(1)と金属
体(2)の接合の際、両者間においてセラミックス側に
接合反応層(3)が、金属側にフィラー層(4)が形成
されるが、そのフィラー層は次のような組成を有する。
Ti:15重量%以下、Si:0.1〜5重量%、B:
0.1〜5重量%、不可避的に混入する不純物、残部:
Ni及びCu。Means for Solving the Problems The inventors of the present invention have prepared a predetermined amount of Si (silicon) and B in a brazing material containing Ni (nickel) and Cu (copper) as base metals and containing Ti (titanium) as an active metal. It has been found that, when (boron) or Pd (palladium) is further added thereto, a joined body of ceramic and metal joined using the same has excellent strength at both room temperature and high temperature. is there. As schematically shown in FIG. 1, when the ceramic body (1) and the metal body (2) are bonded, a bonding reaction layer (3) is formed on the ceramic side and a filler layer (4) is formed on the metal side between the two. However, the filler layer has the following composition.
Ti: 15% by weight or less, Si: 0.1 to 5% by weight, B:
0.1 to 5% by weight, impurities unavoidably mixed, balance:
Ni and Cu.
【0009】なお、上記フィラー層にさらに25重量%
以下のPd(パラジウム)を加えることができる。ま
た、被接合体としての金属体は、Ni又はNiを主成分
とする合金とすることができる。さらに、図3に概念的
に示すように、金属体にさらに第二の金属体(5)を接
合した接合体とすることもできる。The filler layer further contains 25% by weight.
The following Pd (palladium) can be added. Further, the metal body as the body to be joined may be Ni or an alloy containing Ni as a main component. Furthermore, as conceptually shown in FIG. 3, a joined body in which a second metallic body (5) is further joined to a metallic body may be used.
【0010】上記接合反応層及びフィラー層は、セラミ
ックス体と金属体とをロー付けすることにより形成され
るものである。接合反応層は主に、Tiとセラミックス
体の成分とが反応して生ずる各種Ti化合物からなる。
一方、フィラー層は、金属体とロー材との間の相互拡散
ないし金属間反応により形成され、前記組成範囲のT
i、Si、B、又はさらにPd、不可避不純物及び残部
のNi及びCuによって構成される一種の合金層とな
る。このフィラー層の範囲は、上記接合反応層との境界
から始まるが、フィラー層の上記金属体側の境界は、次
のように二通りに分けて定義することができる。第一
に、上記金属体がフィラー層中の成分であるTi、S
i、BやPd等を含まないものである場合は、それらの
成分が実質的にゼロとなるところまでをフィラー層と、
また第二に、上記金属体が上述のTi、Si、BやPd
等を含むものである場合は、フィラー層の上記金属体と
の相互拡散や金属間反応の影響が実質的になくなるとこ
ろまでをフィラー層と、それぞれいうことができる。[0010] The bonding reaction layer and the filler layer are formed by brazing a ceramic body and a metal body. The bonding reaction layer is mainly composed of various Ti compounds generated by the reaction between Ti and components of the ceramic body.
On the other hand, the filler layer is formed by interdiffusion or an intermetallic reaction between the metal body and the brazing material, and has a T content in the above composition range.
It becomes a kind of alloy layer composed of i, Si, B, or Pd, unavoidable impurities, and the balance of Ni and Cu. The range of the filler layer starts from the boundary with the bonding reaction layer. The boundary of the filler layer on the metal body side can be defined in two ways as follows. First, the metal body is composed of Ti, S which is a component in the filler layer.
In the case where i, B, Pd and the like are not contained, a filler layer is formed up to a point where those components become substantially zero,
Second, the metal body is made of Ti, Si, B or Pd.
In such a case, the filler layer can be referred to as a portion where the effect of the interdiffusion of the filler layer with the metal body or the reaction between metals is substantially eliminated.
【0011】上記拡散ないし反応の影響は、フィラー層
と金属体との境界部において実質的に及ばなくなるた
め、フィラー層内のTi、Si、BあるいはPd等の濃
度は一般的には、接合反応層に面する側で高く、金属体
との境界部に向けて低くなり、その境界部においてもと
の金属体の組成に依存して定まる値に到達する傾向を有
するものとなる。また、Ti、Si、B、Pd等の濃度
は、局所的な合金相の形成等により不均一部を生ずる場
合がある。このようなことから、フィラー層中のTi、
Si、B及びPd等の含有量は、層内全体にわたるこれ
ら成分の平均濃度を意味するものとする。また、フィラ
ー層の厚みは、接合に使用するロー材の厚み及び接合条
件に依存して変化する。なお、フィラー層における各々
の組成範囲の臨界的意義については、接合手法及び接合
部の挙動の説明と併せて後に詳述する。Since the influence of the diffusion or the reaction does not substantially reach the boundary between the filler layer and the metal body, the concentration of Ti, Si, B or Pd in the filler layer generally depends on the bonding reaction. It is high on the side facing the layer and decreases toward the boundary with the metal body, and tends to reach a value determined at the boundary depending on the composition of the original metal body. In addition, the concentration of Ti, Si, B, Pd, etc. may cause an uneven portion due to local formation of an alloy phase or the like. Because of this, Ti in the filler layer,
The content of Si, B, Pd, etc. shall mean the average concentration of these components throughout the layer. Further, the thickness of the filler layer varies depending on the thickness of the brazing material used for joining and joining conditions. Note that the critical significance of each composition range in the filler layer will be described later in detail together with the description of the bonding method and the behavior of the bonded portion.
【0012】なお、上記Ti、Si、B、(更にPd)
等を含むフィラー層の組成は、公知の方法で特定可能で
あり、例えば電子プローブ・マイクロ・アナライザ(E
PMA)、X線マイクロ・アナライザ(XMA)、エネ
ルギー分散型X線分析(EDX)、波長分散分光法(W
DS)、オージェ電子分光法(AES)などが用いられ
る。The above Ti, Si, B, (and Pd)
The composition of the filler layer containing such as can be specified by a known method, for example, an electron probe microanalyzer (E
PMA), X-ray micro analyzer (XMA), energy dispersive X-ray analysis (EDX), wavelength dispersion spectroscopy (W
DS), Auger electron spectroscopy (AES) and the like.
【0013】本発明の接合体の作製に用いられるロー材
は、NiとCuをベースとし、これにSi及びB(又は
更にPd)と、セラミックス体の成分と反応活性を有す
る金属、すなわち活性金属としてのTiとを含有するも
のである。ロー材は、全体を均一な組成を有する合金板
としてもよいが、例えば図2に示すように、Tiなど、
特定の金属成分の一部又は全体を単体金属もしくはその
成分を主体とする合金箔5として、ロー材本体から分離
することもできる。分離形成された単体金属箔又は合金
箔は、接合処理時にロー材本体と互いに溶融しあって液
相を発生する。分離形成された単体金属箔又は合金箔と
ロー材本体の積層順序は特に限定されないが、この場合
図2に示すように、Ti箔(5)をセラミックス体と隣
接するように配置して接合処理を施すと、セラミックス
体とTi成分の接触効率が上昇し、セラミックス体とT
iとの反応をより促進することができる。The brazing material used for producing the joined body of the present invention is based on Ni and Cu, and is a metal having a reaction activity with Si and B (or further Pd) and components of the ceramic body, that is, an active metal. As Ti. The brazing material may be an alloy plate having a uniform composition as a whole, for example, as shown in FIG.
Part or all of the specific metal component can be separated from the brazing material body as a single metal or an alloy foil 5 mainly containing the component. The separately formed single metal foil or alloy foil fuses with the brazing material main body during the bonding process to generate a liquid phase. The order of lamination of the separately formed single metal foil or alloy foil and the brazing material body is not particularly limited. In this case, as shown in FIG. 2, a Ti foil (5) is arranged so as to be adjacent to the ceramic body and a bonding process is performed. , The contact efficiency between the ceramic body and the Ti component increases, and the ceramic body and T
The reaction with i can be further promoted.
【0014】このようなロー材が適用可能なセラミック
ス体は種々に及び、公知のTi−Ni−Cu系ロー材が
適用できるセラミックス体とほぼ同じ種類のものであっ
て、例えばSi3N4、SiC、TiC、Al2O3、Mg
O、ZrO2、TiO2、又はそれらの一種又はそれ以上
のセラミックス成分を含む複合セラミックス体などがあ
る。また、金属体も同様にNi、Fe、Nb、Ti、Z
r、Mo、Mn、W、Pt、Pd、Ta及びそれらを主
成分とする合金を用いることができる。There are various types of ceramic bodies to which such a brazing material can be applied, and they are of substantially the same type as ceramic bodies to which known Ti-Ni-Cu-based brazing materials can be applied. For example, Si 3 N 4 , SiC, TiC, Al 2 O 3 , Mg
Examples include O, ZrO 2 , TiO 2 , or a composite ceramic body containing one or more ceramic components thereof. Similarly, Ni, Fe, Nb, Ti, Z
r, Mo, Mn, W, Pt, Pd, Ta and alloys containing these as main components can be used.
【0015】そして、セラミックス体と金属体の間に上
述のロー材をはさんで互いに接触させ、所定の雰囲気の
もとで加熱する等の接合処理を施すことにより、セラミ
ックス体と金属体が接合される。用いられる雰囲気とし
ては、真空雰囲気のほか、Arなどの不活性ガス雰囲気
を用いることも可能である。また処理温度は、用いるセ
ラミックス体、金属体及びロー材の組成によって適宜選
定されるが、概ね1000℃から1300℃の範囲内で
あって、公知のNi−Cu−Ti系ロー材を用いて接合
体を作製する場合とほぼ同じ条件を用いることができ
る。Then, the ceramic body and the metal body are joined by performing a bonding process such as heating under a predetermined atmosphere by contacting the ceramic material and the metal body with the above-mentioned brazing material interposed therebetween. Is done. As an atmosphere to be used, an inert gas atmosphere such as Ar can be used in addition to a vacuum atmosphere. The processing temperature is appropriately selected depending on the composition of the ceramic body, the metal body and the brazing material to be used, but is generally in a range of 1000 ° C. to 1300 ° C., and is bonded using a known Ni—Cu—Ti-based brazing material. Approximately the same conditions can be used as for producing the body.
【0016】上記接合処理により、ロー材中のTi成分
はセラミックス体とロー材の接触界面を通じて化学反応
し、セラミックス体の接触界面近傍部が変質して、Ti
化合物を主体とする前述の接合反応層を形成する。Ti
化合物の種類は、セラミックス体の成分によって異な
り、例えば、セラミックス体が酸素を含むときは酸化チ
タン、窒素を含むときは窒化チタン、ケイ素を含むとき
はケイ化チタン、炭素を含むときは炭化チタン等により
構成される。その厚さは、処理温度や圧力等により変動
するが、通常数μm程度である。[0016] By the above-mentioned joining process, the Ti component in the brazing material chemically reacts through the contact interface between the ceramic body and the brazing material, and the vicinity of the contact interface of the ceramic body is altered, and
The aforementioned bonding reaction layer mainly composed of a compound is formed. Ti
The type of compound varies depending on the components of the ceramic body.For example, when the ceramic body contains oxygen, titanium oxide, when it contains nitrogen, titanium nitride, when it contains silicon, titanium silicide, when it contains carbon, titanium carbide, etc. It consists of. The thickness varies depending on the processing temperature, pressure and the like, but is usually about several μm.
【0017】ロー材中のTi、Ni及びCuは共晶を形
成するため、接合処理時に液相を生ずる。この液相はT
i成分を多く溶かし込んでロー材とセラミックス体の接
触界面の隅々にまで行き渡るので、セラミックス体なら
びに金属体とロー材の反応効率が高められる。なお、T
i以外のロー材成分も若干セラミックス体中に拡散し、
接合反応層中に含まれる場合がある。セラミックス体の
前記接触界面から隔たった部分は、Ti成分との反応の
影響が小さく、ほぼもとのセラミックス体の組成を保持
する。Since Ti, Ni and Cu in the brazing material form a eutectic, a liquid phase is generated during the joining process. This liquid phase is T
Since a large amount of the i component is dissolved and spread to every corner of the contact interface between the brazing material and the ceramic body, the reaction efficiency between the ceramic body and the metal body and the brazing material is improved. Note that T
The brazing material components other than i slightly diffuse into the ceramic body,
It may be contained in the bonding reaction layer. The portion of the ceramic body separated from the contact interface is less affected by the reaction with the Ti component, and substantially retains the original composition of the ceramic body.
【0018】このようにして形成された接合反応層は、
おもにセラミックス体成分とTiの化学反応に伴う物質
移動により、図1に概念を示すように、その両端部でセ
ラミックス体ならびにフィラー層と強固に密着し、セラ
ミックス体と金属体との接合強度を実質的に支配する。
また、フィラー層は、その一方の端部は上記接合反応層
と密着する一方、金属体とロー材の間の金属間反応もし
くは相互拡散により金属体と密着し、金属体を接合反応
層に接合する。The bonding reaction layer thus formed is
Mainly due to mass transfer due to the chemical reaction between the ceramic body component and Ti, as shown in the concept of FIG. 1, the ceramic body and the filler layer are firmly adhered to both ends thereof to substantially reduce the bonding strength between the ceramic body and the metal body. Rule.
The filler layer has one end in close contact with the bonding reaction layer, while the filler layer is in close contact with the metal body by a metal-metal reaction or mutual diffusion between the metal body and the brazing material, and the metal body is bonded to the bonding reaction layer. I do.
【0019】ロー材中の各成分は接合処理により、金属
体にも拡散等によって流出する。そして、これを補う形
で両側に隣接するセラミックス体ならびに金属体からの
成分がロー材部に流入し、ロー材自身の残留成分と共に
フィラー層を形成する。ロー材が前記共晶を形成して液
相を生ずることは、ロー材成分を金属体内に拡散させる
うえでも有効に働く。接合処理後の金属体もセラミック
ス体と同様、ロー材との接触界面から隔たった部分は、
ロー材成分の拡散の影響が小さく、ほぼもとの金属体の
組成を保持する。すなわち、上記拡散の影響が実質的に
及ばない部分ということになる。Each component in the brazing material flows out to the metal body by diffusion or the like due to the joining process. Then, components from the ceramic body and the metal body adjacent on both sides flow into the brazing material portion in a form complementing this, and form a filler layer together with residual components of the brazing material itself. The fact that the brazing material forms the eutectic and forms a liquid phase also works effectively in diffusing the brazing material component into the metal body. Like the ceramic body, the metal body after the joining process is separated from the contact interface with the brazing material,
The effect of the diffusion of the brazing material component is small, and the composition of the metal body is almost maintained. In other words, it is a portion that is not substantially affected by the diffusion.
【0020】また、フィラー層はNiやCuの含有量が
高いため、比較的耐力が小さく延性に富むものとなる。
その結果、接合温度から室温まで冷却する過程でフィラ
ー層自身が塑性変形を起こすことにより、金属体とセラ
ミックス体の線膨張係数の差に起因して接合体内に生ず
る熱応力を緩和し、接合体が破壊するのを防止する役割
も果たす。なお、このような塑性変形による応力緩和機
能は当然のことながら、フィラー層に接合されている金
属体も有しており、特に金属体とセラミックス体の線膨
張係数の差が大きい場合は、フィラー層のみでは応力を
緩和し切れず、むしろ金属体の塑性変形が応力緩和にお
いて主体的となる。Further, since the filler layer contains a high content of Ni or Cu, it has relatively low proof stress and high ductility.
As a result, the filler layer itself undergoes plastic deformation during the process of cooling from the joining temperature to room temperature, thereby relieving the thermal stress generated in the joined body due to the difference in linear expansion coefficient between the metal body and the ceramic body. Also serves to prevent destruction. It should be noted that such a stress relaxation function due to plastic deformation naturally has a metal body joined to the filler layer. Particularly, when the difference in linear expansion coefficient between the metal body and the ceramic body is large, the filler is not filled. The layer alone cannot relax the stress, but rather, the plastic deformation of the metal body becomes dominant in the stress relaxation.
【0021】フィラー層中のTi成分は、ロー材中のT
i成分のうち、接合反応層形成に消費されなかった部分
が取り込まれたものである。ここで、フィラー層中のT
i含有量は15重量%以下とされる。Ni−Cu−Ti
3元系において、TiのCu−Ni固溶体に対する最大
固溶量は約15重量%であり、Ti含有量がこれより大
きくなるとNi3TiさらにはNiTiなどの脆弱な金
属間化合物が内部に生成したり、セラミックス層との反
応が過度に進行したりして、接合強度の低下につなが
る。従って、フィラー層中のTi含有量は15重量%以
下とする必要があり、望ましくは12重量%以下、さら
に望ましくは8重量%以下とするのがよい。The Ti component in the filler layer is determined by the T content in the brazing material.
The portion of the i component that was not consumed for forming the bonding reaction layer was taken in. Here, T in the filler layer
The i content is 15% by weight or less. Ni-Cu-Ti
In the ternary system, the maximum solid solution amount of Ti to the Cu-Ni solid solution is about 15% by weight, and when the Ti content is larger than this, fragile intermetallic compounds such as Ni 3 Ti and NiTi are formed inside. Or the reaction with the ceramic layer proceeds excessively, leading to a decrease in bonding strength. Therefore, the Ti content in the filler layer needs to be 15% by weight or less, preferably 12% by weight or less, and more preferably 8% by weight or less.
【0022】フィラー層中のSiおよびB(Pdについ
ては後述する)は、ロー材成分として含まれるもののほ
か、セラミックス体がSiまたはBを構成元素として含
む場合に、接合処理中にそれらがロー材中に拡散して供
給されるものも含む。そして、フィラー層中のSi含有
量は0.1〜5重量%とされる。Si成分はロー材のフ
ィラー層の流動性を高め、ロー付け間隙の充填性を高め
るものであるが、0.1重量%未満ではそのような効果
が充分得られず、接合強度が低下する。Si含有量が5
重量%を越えると、脆いNi珪化物を生成し、この場合
も強度低下を招く。従って、Si含有量は0.1〜5重
量%とする必要があり、なかでも0.4〜2.0重量
%、特に0.6〜1.0重量%とするのが望ましい。In the filler layer, Si and B (Pd will be described later) are not only included as a brazing material component, but also when the ceramic body contains Si or B as a constituent element, they are formed during the bonding process. Includes those supplied by diffusion. And the Si content in the filler layer is set to 0.1 to 5% by weight. The Si component enhances the fluidity of the filler layer of the brazing material and enhances the filling property of the brazing gap. However, if the content is less than 0.1% by weight, such an effect cannot be sufficiently obtained, and the bonding strength is reduced. Si content is 5
If the content is more than 10% by weight, brittle Ni silicide is generated, and in this case, the strength is reduced. Therefore, the Si content needs to be 0.1 to 5% by weight, preferably 0.4 to 2.0% by weight, particularly preferably 0.6 to 1.0% by weight.
【0023】フィラー層中のB含有量は0.1〜5重量
%とされる。このB成分は、Siと同様にフィラー層の
流動性を高めるもので、0.1重量%以下ではその効果
が不充分であるが、5重量%を越えると脆いホウ化物を
生成し、接合強度の低下につながるので好ましくない。
従って、Bの含有量は0.1〜5重量%とする必要があ
り、なかでも0.5〜3重量%、特に0.8〜1.5重
量%とするのが望ましい。The B content in the filler layer is 0.1 to 5% by weight. This B component enhances the fluidity of the filler layer in the same manner as Si. When the content is less than 0.1% by weight, its effect is insufficient, but when it exceeds 5% by weight, a brittle boride is formed, and the bonding strength is increased. Is not preferred because it leads to a decrease in
Therefore, the content of B needs to be 0.1 to 5% by weight, preferably 0.5 to 3% by weight, particularly preferably 0.8 to 1.5% by weight.
【0024】また、フィラー層中の不可避不純物は、ロ
ー材もしくは接合前の金属体中に含まれる不可避不純物
がフィラー層中に混入したもの、セラミックス体からの
拡散成分等がある。前者はその総量が通常3重量%以下
であり、後者は通常15重量%程度以下である。通常の
範囲内であればフィラー層にこのような不可避不純物が
存在していても差しつかえない。The unavoidable impurities in the filler layer include unavoidable impurities contained in the brazing material or the metal body before joining mixed into the filler layer, and diffusion components from the ceramic body. The former usually has a total amount of 3% by weight or less, and the latter usually has a total amount of about 15% by weight or less. If it is within the normal range, such unavoidable impurities may be present in the filler layer.
【0025】ロー材もしくは金属体中に含まれる不可避
不純物は、C、P、Mn、Fe等である。金属体は不可
避不純物としてSiを含む場合があるが、その一部はフ
ィラー層に拡散して、フィラー層のSi含量の一部を構
成する。The unavoidable impurities contained in the brazing material or the metal body are C, P, Mn, Fe and the like. The metal body may contain Si as an unavoidable impurity, but part of the metal diffuses into the filler layer to constitute a part of the Si content of the filler layer.
【0026】他方、セラミックス体からの拡散成分は、
接合処理中に接合反応層を介してフィラー層中に拡散す
るセラミックス体の構成成分であって、使用するセラミ
ックス体の種類により異なる。例えばセラミックス体が
窒化硅素の場合はSiとN、炭化硅素の場合はSiと
C、アルミナの場合はAlとO、ジルコニアの場合はZ
rとO等が拡散して、不純物となる。ただし、金属体の
場合と同様、Siはフィラー層のSi含量の一部を構成
することになる。On the other hand, the diffusion component from the ceramic body is
It is a component of the ceramic body that diffuses into the filler layer via the bonding reaction layer during the bonding process, and differs depending on the type of the ceramic body used. For example, when the ceramic body is silicon nitride, it is Si and N; when it is silicon carbide, it is Si and C; when it is alumina, it is Al and O; when it is zirconia, it is Z.
r and O diffuse and become impurities. However, as in the case of the metal body, Si constitutes a part of the Si content of the filler layer.
【0027】本発明の接合体のフィラー層は、上記範囲
内のTi、Si及びBに加え、25重量%以下のPdを
さらに含有することも可能である。この場合、上記範囲
のPdをフィラー層が含有するように、ロー材中に所定
量のPdが添加され、接合処理が施される。フィラー層
中のPdの含有量は、層内全体にわたるPd成分の平均
濃度をいう。The filler layer of the joined body of the present invention may further contain up to 25% by weight of Pd in addition to Ti, Si and B in the above-mentioned range. In this case, a predetermined amount of Pd is added to the brazing material so that the filler layer contains Pd in the above range, and a joining process is performed. The Pd content in the filler layer refers to the average concentration of the Pd component throughout the entire layer.
【0028】フィラー層が上記範囲内のPdをさらに含
有することにより、接合体の強度はより向上する。ただ
し、Pdの含有量が25重量%を越えると、接合処理時
に生ずる液相の粘性が上昇し流動性が低下する結果、接
合反応層形成及びフィラー層と金属体間の相互拡散が進
行しにくくなり、接合強度の低下を招く。従ってPdの
含有量は25重量%以下とすることが必要で、望ましく
は20重量%以下、さらに望ましくは17重量%以下と
するのがよい。When the filler layer further contains Pd in the above range, the strength of the joined body is further improved. However, if the Pd content exceeds 25% by weight, the viscosity of the liquid phase generated during the bonding treatment increases and the fluidity decreases, so that the formation of the bonding reaction layer and the interdiffusion between the filler layer and the metal body hardly proceed. This causes a decrease in bonding strength. Therefore, the content of Pd must be 25% by weight or less, preferably 20% by weight or less, and more preferably 17% by weight or less.
【0029】また、本発明のセラミックスと金属の接合
体は、その被接合金属体がNi又はNiを主成分とする
合金で構成された態様を含む。ここで、NiはNiの単
体金属を意味するが、Si、C、P、Mn、Fe等の不
可避不純物を含んでいてもよい。その総量は通常3重量
%以下である。一方、Niを主成分とする合金の場合
は、通常はNiを少なくとも75重量%以上含む合金と
することができる。この場合、Ni以外の合金成分は、
例えばCr、Co、Al、Moなどであり、それらの2
種以上を併用することもできる。また、この場合も同様
に、不可避不純物を含んでいてもよい。Further, the bonded body of ceramics and metal of the present invention includes an embodiment in which the metal body to be bonded is made of Ni or an alloy containing Ni as a main component. Here, Ni means a single metal of Ni, but may include unavoidable impurities such as Si, C, P, Mn, and Fe. The total amount is usually not more than 3% by weight. On the other hand, in the case of an alloy containing Ni as a main component, usually, an alloy containing at least 75% by weight of Ni can be used. In this case, alloy components other than Ni are:
For example, Cr, Co, Al, Mo, etc.
More than one species may be used in combination. Also, in this case, it may contain unavoidable impurities.
【0030】この場合、ロー材はNiの含有量の大きい
ものを用いてもよいが、接合処理中に金属体から相当量
のNi成分がフィラー層中に拡散するため、Niの含有
量の少ないロー材、さらにはNiを全く含まないロー材
の使用も可能となる。前述の積層板状のロー材を用いる
場合はNi板の厚みを小さくしたり、省略したりでき
る。また、Niを主体に構成される金属体は耐力が比較
的低く、非常に延性に富んだものとなるため、セラミッ
クス体と金属体の線膨張係数の差に基づく熱応力を緩和
する機能に優れている。さらに、合金成分としてCr、
Co、Al及びMoが含まれる場合は、金属体の硬度が
適度に上昇し、延性と強度のバランスがとれたものとな
る。その結果、金属体は良好な応力緩和機能を損なうこ
となく、その強度も上昇し、接合体は優れた熱応力緩和
機能と高い構造的強度を兼ね備えたものとなる。In this case, the brazing material having a large Ni content may be used. However, since a considerable amount of the Ni component diffuses from the metal body into the filler layer during the joining process, the Ni content is low. It is also possible to use a brazing material, or a brazing material containing no Ni. When the above-mentioned laminated plate-shaped brazing material is used, the thickness of the Ni plate can be reduced or omitted. In addition, since a metal body mainly composed of Ni has a relatively low proof stress and a very high ductility, it has an excellent function of relieving thermal stress based on a difference in linear expansion coefficient between a ceramic body and a metal body. ing. Further, Cr,
When Co, Al, and Mo are contained, the hardness of the metal body is appropriately increased, and the ductility and the strength are balanced. As a result, the strength of the metal body is increased without impairing the good stress relaxation function, and the joined body has both excellent thermal stress relaxation function and high structural strength.
【0031】本発明はさらに、図3に模式的に示すよう
に、被接合体である金属体1の、フィラー層と隣接しな
い側に、さらに第二の金属体が接合されている態様も含
む。ここで第二の金属体は、接合体の使用用途に応じて
適宜選択されものであり、例えば炭素鋼、合金鋼、ステ
ンレス鋼、さらにはコバール、インバー、エリンバー、
Fe−42%Ni合金(42合金)などの鉄基低膨張係
数合金、インコロイ、ディスカロイなどの鉄基耐熱合
金、インコネルなどのNi基耐熱合金、タングステン、
モリブデン、及びそれらの合金、超硬合金、サーメット
など各種材料で構成することが可能である。The present invention further includes an embodiment in which, as schematically shown in FIG. 3, a second metal body is further bonded to a side of the metal body 1 to be bonded which is not adjacent to the filler layer. . Here, the second metal body is appropriately selected according to the intended use of the joined body, for example, carbon steel, alloy steel, stainless steel, and further Kovar, Invar, Elinvar,
Iron-based low expansion coefficient alloys such as Fe-42% Ni alloy (42 alloy), iron-based heat-resistant alloys such as Incoloy, Discalloy, Ni-based heat-resistant alloys such as Inconel, tungsten,
It can be made of various materials such as molybdenum, their alloys, cemented carbides, and cermets.
【0032】ここで例えば、比較的長い金属体を線膨張
係数の大きい合金で構成する場合、セラミックス体の線
膨張係数はそれよりもかなり小さいため、接合体に温度
変化が加わったときの応力を緩和するためには、その金
属体に生ずべき塑性変形量が大きくなり、熱応力を緩和
しきれない場合が生じたりする。そこで、ロー材と接触
する部分のみを第一の金属体として前記線膨張係数の大
きい合金で作製し、これに第二の金属体として線膨張係
数の小さい金属又は合金を接合すれば、全体として接合
体に生ずる熱歪量を低減できる。なお、この第二の金属
体にさらに第三、第四の金属体を接合することも可能で
ある。これら複数の金属体を接合することにより、個々
の金属体の特質が相乗的に作用して、より強度の優れた
接合体を得ることができる。Here, for example, when a relatively long metal body is made of an alloy having a large coefficient of linear expansion, the coefficient of linear expansion of the ceramic body is considerably smaller than that of the alloy. In order to relax, the amount of plastic deformation to be generated in the metal body becomes large, and there are cases where thermal stress cannot be fully relaxed. Therefore, only the part in contact with the brazing material is made of an alloy having a large linear expansion coefficient as the first metal body, and a metal or an alloy having a small linear expansion coefficient is joined to the second metal body as a whole. The amount of thermal strain generated in the joined body can be reduced. In addition, it is also possible to further join the third and fourth metal members to the second metal member. By joining these multiple metal bodies, the characteristics of the individual metal bodies act synergistically, and a joined body having better strength can be obtained.
【0033】[0033]
【実施例】以下、本発明の実施例を説明する。 (実施例1)Si3N4焼結体(直径10 mm、長さ20 m
m)、Ti箔ロー材(直径10 mm、厚さ0.05 mm)、Ni
板(直径10 mm、厚さ0.5 mm)を図4に示す位置関係で
重ね合わせ、図示しない治具を用いてこれらを固定し
た。なお、接合処理後のフィラー層のTi、Si及びB
含有量が各種値となるように、適宜ロー材の組成及びT
i箔の厚さを調節した。そして、上述の治具に固定され
た試料を真空加熱炉中に入れ、1.0×10-5 torrまで真空
排気を行った後、1200℃に加熱してロー付けを行い接合
体を得た。Embodiments of the present invention will be described below. Example 1 Si 3 N 4 sintered body (diameter 10 mm, length 20 m)
m), Ti foil brazing material (diameter 10 mm, thickness 0.05 mm), Ni
The plates (diameter: 10 mm, thickness: 0.5 mm) were overlaid in the positional relationship shown in FIG. 4 and fixed using a jig (not shown). In addition, Ti, Si, and B of the filler layer after the bonding process are used.
The composition and T of the brazing material are appropriately adjusted so that the content becomes various values.
The thickness of the i foil was adjusted. Then, the sample fixed to the jig was placed in a vacuum heating furnace, evacuated to 1.0 × 10 −5 torr, heated to 1200 ° C. and brazed to obtain a joined body.
【0034】得られた接合体から幅4 mm、厚さ3 mmの角
柱状の抗折試験片を切り出し、JISR1601(セラミックス
の曲げ強度試験方法)に記載された方法に基づいて、試
験片の4点曲げ強度を測定した。なお、試験は大気中で
室温と600 ℃の2条件行い、試験条件は下部スパンが30
mm、上部スパンが10 mm、クロスヘッド速度が0.5 mm/
分であった。なお、各試料とも試験片の個数はn=3で
行った。A prismatic bending test specimen having a width of 4 mm and a thickness of 3 mm was cut out from the obtained joined body, and the test piece was cut out according to the method described in JISR1601 (Bending strength test method for ceramics). The point bending strength was measured. The test was conducted in the atmosphere under the two conditions of room temperature and 600 ° C.
mm, top span 10 mm, crosshead speed 0.5 mm /
Minutes. In each sample, the number of test pieces was n = 3.
【0035】また、曲げ試験終了後に、試験片を接合面
に対して垂直に切断し、X線マイクロアナライザ(XM
A)を用い、フィラー層の組成を分析した。フィラー層
中のSiならびにB含有量の定量は、電子線ビームがフ
ィラー層の厚さ方向に過不足なくかかるように、そのビ
ーム径を調節して行った。測定は、一つの試料に対し5
ケ所測定を行い、その平均値を採用した。After the completion of the bending test, the test piece was cut perpendicularly to the joint surface, and the sample was cut with an X-ray microanalyzer (XM
The composition of the filler layer was analyzed using A). The quantitative determination of the Si and B contents in the filler layer was performed by adjusting the beam diameter so that the electron beam could be applied in the thickness direction of the filler layer without excess or deficiency. The measurement was performed on 5 samples per sample.
Measurements were made at several places, and the average value was adopted.
【0036】その組成の分析値と関連づけて、上述の曲
げ強度試験の結果を表1に示す。表に示すように、本発
明による接合体は室温と高温のいずれにおいても優れた
曲げ強度を有しており、そのばらつきも小さかった。Table 1 shows the results of the bending strength test described above in relation to the analysis values of the composition. As shown in the table, the joined body according to the present invention had excellent bending strength at both room temperature and high temperature, and its variation was small.
【0037】[0037]
【表1】 [Table 1]
【0038】(実施例2)図5に示すような順番で、S
i3N4焼結体(直径10 mm、長さ20 mm)、ロー材(直径
10 mm、厚さ0.05 mm)、Ni板(直径10 mm、厚さ0.5 m
m)、Ti箔、Pd箔を重ね合わせ、図示しない治具を
用いてこれらを固定した。また、接合処理後のフィラー
層のTi、Pd、Si及びB含有量が各種値となるよう
に、適宜ロー材の組成及びTi箔ならびにPd箔の厚み
を調節した。そして、上述の治具に固定された試料を真
空加熱炉中に入れ、1.0×10-5 torrまで真空排気を行っ
た後、1200℃に加熱してロー付けを行い、接合体を得
た。(Embodiment 2) In the order shown in FIG.
i 3 N 4 sintered body (diameter 10 mm, length 20 mm), brazing material (diameter
10 mm, thickness 0.05 mm), Ni plate (diameter 10 mm, thickness 0.5 m)
m), a Ti foil and a Pd foil were overlaid and fixed using a jig (not shown). Further, the composition of the brazing material and the thicknesses of the Ti foil and the Pd foil were appropriately adjusted so that the contents of Ti, Pd, Si and B of the filler layer after the bonding treatment became various values. Then, the sample fixed to the jig was placed in a vacuum heating furnace, evacuated to 1.0 × 10 −5 torr, and then heated to 1200 ° C. and brazed to obtain a joined body.
【0039】得られた接合体から幅4 mm、厚さ3 mmの角
柱状の抗折試験片を切り出し、実施例1と同様に試験片
の4点曲げ強度を測定するとともに、フィラー層の組成
をX線マイクロアナライザを用いて分析した。また、各
試料とも試験片の個数はn=3で行った。結果を表2に
示す。本発明による接合体は室温と高温のいずれにおい
ても優れた曲げ強度を有しており、そのばらつきも小さ
いことがわかる。A 4 mm-wide, 3 mm-thick prismatic bending test piece was cut out from the obtained joined body, and the four-point bending strength of the test piece was measured in the same manner as in Example 1, and the composition of the filler layer was measured. Was analyzed using an X-ray microanalyzer. In each sample, the number of test pieces was n = 3. Table 2 shows the results. It can be seen that the joined body according to the present invention has excellent bending strength at both room temperature and high temperature, and its variation is small.
【0040】[0040]
【表2】 [Table 2]
【0041】(実施例3)図6に示すように、Si3N4
焼結体(直径10 mm、長さ20 mm)と、これと同寸法のS
US403(ステンレス金属体)の間に、ロー材(直径
10 mm、厚さ0.05mm)、Ni板(直径10 mm、厚さ0.5 m
m)、W(タングステン)板(直径10 mm、厚さ1.5 m
m)、Ti箔を積層し、図示しない治具を用いてこれら
を固定した。また、接合処理後のフィラー層のTi、S
i及びB含有量が各種値となるように、適宜ロー材の組
成及びTi箔の厚みを調節した。そして、上述の治具に
固定された試料を真空加熱炉中に入れ、1.0×10-5 torr
まで真空排気を行った後、1200℃に加熱してロー付けを
行い、接合体を得た。Embodiment 3 As shown in FIG. 6, Si 3 N 4
A sintered body (diameter 10 mm, length 20 mm) and S of the same dimensions
Between US 403 (stainless metal body), brazing material (diameter)
10 mm, thickness 0.05 mm), Ni plate (diameter 10 mm, thickness 0.5 m)
m), W (tungsten) plate (diameter 10 mm, thickness 1.5 m)
m), Ti foils were laminated, and these were fixed using a jig (not shown). Further, Ti, S of the filler layer after the bonding process is used.
The composition of the brazing material and the thickness of the Ti foil were appropriately adjusted so that the i and B contents had various values. Then, the sample fixed in the above jig is put in a vacuum heating furnace, and 1.0 × 10 −5 torr
After evacuating to a temperature of 1200 ° C., brazing was performed by heating to 1200 ° C. to obtain a joined body.
【0042】得られた接合体から幅4 mm、厚さ3 mmの角
柱状の抗折試験片を切り出し、実施例1と同様に試験片
の室温における4点曲げ強度を測定するとともに、フィ
ラー層の組成をX線マイクロアナライザを用いて分析し
た。また、各試料とも試験片の個数はn=3で行った。
結果を表3に示す。本実施例から明らかなように、Si
3N4焼結体(セラミックス体)に接合されたNi板を介
して、線膨張係数の小さいW板を接合することにより、
強度に優れたセラミックス体とステンレス鋼の接合体を
得ることができた。A 4 mm-wide and 3 mm-thick prismatic bending test piece was cut out from the obtained joined body, and the four-point bending strength of the test piece at room temperature was measured in the same manner as in Example 1. Was analyzed using an X-ray microanalyzer. In each sample, the number of test pieces was n = 3.
Table 3 shows the results. As is clear from this example, Si
By joining a W plate having a small coefficient of linear expansion via a Ni plate joined to a 3 N 4 sintered body (ceramic body),
A joined body of a ceramic body and stainless steel having excellent strength was obtained.
【0043】[0043]
【表3】 [Table 3]
【0044】(実施例4)図7に示すように、Si3N4
焼結体(直径10 mm、長さ20 mm)と、これと同寸法のS
US403(ステンレス金属体)の間に、ロー材(直径
10 mm、厚さ0.05mm)、Ni板(直径10 mm、厚さ0.5 m
m)、W板(直径10 mm、厚さ1.5 mm)、Ti箔及びPd
箔を積層し、図示しない治具を用いてこれらを固定し
た。また、接合処理後のフィラー層のTi、Pd、Si
及びB含有量が各種値となるように、適宜ロー材の組成
及びTi箔ならびにPd箔の厚みを調節した。そして、
上述の治具に固定された試料を真空加熱炉中に入れ、1.
0×10-5 torrまで真空排気を行った後、1200℃に加熱し
てロー付けを行い、接合体を得た。Embodiment 4 As shown in FIG. 7, Si 3 N 4
A sintered body (diameter 10 mm, length 20 mm) and S of the same dimensions
Between US 403 (stainless metal body), brazing material (diameter)
10 mm, thickness 0.05 mm), Ni plate (diameter 10 mm, thickness 0.5 m)
m), W plate (diameter 10 mm, thickness 1.5 mm), Ti foil and Pd
The foils were stacked and fixed using a jig (not shown). Further, Ti, Pd, Si of the filler layer after the bonding process is used.
The composition of the brazing material and the thickness of the Ti foil and the Pd foil were appropriately adjusted so that the B content and the B content became various values. And
Put the sample fixed in the above jig into a vacuum heating furnace, and 1.
After evacuating to 0 × 10 −5 torr, it was heated to 1200 ° C. and brazed to obtain a joined body.
【0045】得られた接合体から幅4 mm、厚さ3 mmの角
柱状の抗折試験片を切り出し、実施例1と同様に試験片
の室温における4点曲げ強度を測定するとともに、フィ
ラー層の組成をX線マイクロアナライザを用いて分析し
た。また、各試料とも試験片の個数はn=3で行った。
結果を表4に示す。本実施例から明らかなように、Si
3N4焼結体(セラミックス体)に接合されたNi板を介
して、線膨張係数の小さいW板を接合することにより、
強度に優れたセラミックス体とステンレス鋼の接合体を
得ることができた。A 4 mm-wide and 3 mm-thick prismatic bending test piece was cut out from the obtained joined body, and the four-point bending strength of the test piece at room temperature was measured in the same manner as in Example 1. Was analyzed using an X-ray microanalyzer. In each sample, the number of test pieces was n = 3.
Table 4 shows the results. As is clear from this example, Si
By joining a W plate having a small coefficient of linear expansion via a Ni plate joined to a 3 N 4 sintered body (ceramic body),
A joined body of a ceramic body and stainless steel having excellent strength was obtained.
【0046】[0046]
【表4】 [Table 4]
【0047】[0047]
【発明の作用及び効果】本発明のセラミックスと金属の
接合体は、そのフィラー層を15重量%以下のTiと、
0.1〜5重量%のSiと、0.1〜5重量%のBと、
残部のNi及びCuとにより構成することによって、室
温と高温のいずれにおいても高い接合強度を有し、その
ばらつきも小さい。According to the present invention, there is provided a joined body of a ceramic and a metal according to the present invention, wherein the filler layer comprises 15% by weight or less of Ti,
0.1-5% by weight of Si, 0.1-5% by weight of B,
By being composed of the balance of Ni and Cu, it has high bonding strength at both room temperature and high temperature, and its variation is small.
【0048】また、本発明の接合体のフィラー層は、N
iとCuを多く含むため塑性変形を起こしやすく、接合
されるセラミックス体と金属体の線膨張係数の差に基づ
く熱応力を緩和するので、接合体の強度ならびに耐熱衝
撃性が向上する。The filler layer of the joined body of the present invention is
Since a large amount of i and Cu is included, plastic deformation is likely to occur, and thermal stress based on a difference in linear expansion coefficient between the ceramic body and the metal body to be bonded is reduced, so that the strength and thermal shock resistance of the bonded body are improved.
【0049】また、フィラー層がさらに25重量%以下
のPdを含有する発明では、接合体の強度がより向上す
る。In the invention in which the filler layer further contains 25% by weight or less of Pd, the strength of the joined body is further improved.
【0050】また、被接合金属体をNi又はNiを主成
分とする合金で構成する発明では、被接合金属体が延性
に富んだものとなるため、セラミックス体と金属体の線
膨張係数の差に基づく熱応力を緩和する機能に優れてい
る。Further, in the invention in which the metal body to be joined is made of Ni or an alloy containing Ni as a main component, the metal body to be joined becomes rich in ductility, so that the difference in linear expansion coefficient between the ceramic body and the metal body is increased. It is excellent in the function of relieving thermal stress based on.
【0051】また、金属体のフィラー層と隣接しない側
に、さらに第二の金属体が接合された発明では、金属体
とそれに接合される第二の金属体との両方の性質を接合
体に付与させることができ、あるいはそれらの相乗作用
により、より強度の優れた接合体を得ることができる。In the invention in which the second metal body is further joined to the side of the metal body that is not adjacent to the filler layer, the properties of both the metal body and the second metal body joined to the metal body are added to the joined body. Can be imparted, or a synergistic action thereof can provide a joined body having superior strength.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明のセラミックスと金属の接合体の模式
図。FIG. 1 is a schematic view of a joined body of a ceramic and a metal according to the present invention.
【図2】積層板状の金属板もしくは合金板によりロー材
を構成する例を示す説明図。FIG. 2 is an explanatory view showing an example in which a brazing material is formed by a laminated metal plate or an alloy plate.
【図3】第二の金属体が接合された発明の模式図。FIG. 3 is a schematic view of the invention in which a second metal body is joined.
【図4】実施例1の接合体を作製するための、セラミッ
クス体、ロー材及び金属体等の配置を示す図。FIG. 4 is a diagram showing an arrangement of ceramic bodies, a brazing material, a metal body, and the like for producing the joined body of Example 1.
【図5】実施例2の接合体を作製するための、セラミッ
クス体、ロー材及び金属体等の配置を示す図。FIG. 5 is a diagram showing an arrangement of ceramic bodies, a brazing material, a metal body, and the like for producing the joined body of Example 2.
【図6】実施例3の接合体を作製するための、セラミッ
クス体、ロー材及び金属体等の配置を示す図。FIG. 6 is a diagram showing an arrangement of ceramic bodies, a brazing material, a metal body, and the like for producing the joined body of Example 3.
【図7】実施例4の接合体を作製するための、セラミッ
クス体、ロー材及び金属体等の配置を示す図。FIG. 7 is a diagram showing an arrangement of ceramic bodies, a brazing material, a metal body, and the like for producing a joined body of Example 4.
1 セラミックス体 2 金属体 3 接合反応層 4 フィラー層 5 第二の金属体 DESCRIPTION OF SYMBOLS 1 Ceramic body 2 Metal body 3 Joining reaction layer 4 Filler layer 5 Second metal body
───────────────────────────────────────────────────── フロントページの続き (72)発明者 成田 敏夫 北海道札幌市北区新琴似1条9丁目7番 8号 (56)参考文献 特開 平2−124779(JP,A) 特開 平5−32463(JP,A) 特開 平4−342479(JP,A) 特開 平4−154678(JP,A) 実開 平4−48234(JP,U) (58)調査した分野(Int.Cl.7,DB名) C04B 37/02 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Narita 1-9-9-8 Shintokinai, Kita-ku, Sapporo-shi, Hokkaido (56) References JP-A-2-124779 (JP, A) JP-A-5-32463 (JP, A) JP-A-4-342479 (JP, A) JP-A-4-154678 (JP, A) JP-A-4-48234 (JP, U) (58) Fields investigated (Int. Cl. 7) , DB name) C04B 37/02
Claims (4)
合体であるセラミックス体と金属体の間のセラミックス
側に接合反応層が、金属側にフィラー層が形成された接
合体において、そのフィラー層が15重量%以下のTi
と、0.1〜5重量%のSiと、0.1〜5重量%のB
と、不可避的に混入する不純物と、残部のNi及びCu
と、 によって構成されることを特徴とするセラミックスと金
属の接合体。When a ceramic is bonded to a metal, a bonding reaction layer is formed on the ceramic side between the ceramic body and the metal body to be bonded and a filler layer is formed on the metal side. Ti with less than 15% by weight of layer
And 0.1 to 5% by weight of Si and 0.1 to 5% by weight of B
And impurities unavoidably mixed with the balance of Ni and Cu
And a joined body of ceramic and metal, characterized by comprising:
合体であるセラミックス体と金属体の間のセラミックス
側に接合反応層が、金属側にフィラー層が形成された接
合体において、そのフィラー層が15重量%以下のTi
と、0.1〜5重量%のSiと、0.1〜5重量%のB
と、25重量%以下のPdと、不可避的に混入する不純
物元素と、残部のNi及びCuと、 によって構成されることを特徴とするセラミックスと金
属の接合体。2. A method for bonding a ceramic and a metal, wherein a bonding reaction layer is formed on the ceramic side between the ceramic body and the metal body to be bonded and a filler layer is formed on the metal side. Ti with less than 15% by weight of layer
And 0.1 to 5% by weight of Si and 0.1 to 5% by weight of B
And Pd of 25% by weight or less, an impurity element inevitably mixed, and the balance of Ni and Cu.
iを主成分とする合金である請求項1又は2に記載の接
合体。3. The method according to claim 1, wherein the metal to be joined is Ni or N.
The joined body according to claim 1, wherein the joined body is an alloy containing i as a main component.
らに第二の金属体が接合されていることを特徴とする請
求項1ないし3のいずれかに記載の接合体。4. The joined body according to claim 1, wherein a second metal body is further joined via the metal body that is the joined body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33063394A JP3176015B2 (en) | 1994-12-06 | 1994-12-06 | Joint of ceramic and metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33063394A JP3176015B2 (en) | 1994-12-06 | 1994-12-06 | Joint of ceramic and metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08165174A JPH08165174A (en) | 1996-06-25 |
JP3176015B2 true JP3176015B2 (en) | 2001-06-11 |
Family
ID=18234855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33063394A Expired - Fee Related JP3176015B2 (en) | 1994-12-06 | 1994-12-06 | Joint of ceramic and metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3176015B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6480806B2 (en) | 2014-05-23 | 2019-03-13 | ゼネラル・エレクトリック・カンパニイ | Method for bonding ceramic and metal and sealing structure thereof |
-
1994
- 1994-12-06 JP JP33063394A patent/JP3176015B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08165174A (en) | 1996-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0829990B2 (en) | Bonded body of ceramics and metal | |
JPH0936540A (en) | Ceramic circuit board | |
US8220695B1 (en) | Method for bonding aluminum oxide to stainless steel | |
US5082161A (en) | Method of joining ceramics and metal with ti-co braze and ni | |
JP3949459B2 (en) | Joined body of different materials and manufacturing method thereof | |
JPH0367985B2 (en) | ||
EP0376092B1 (en) | Ceramic turbocharger rotor | |
US6436545B1 (en) | Joint body of ceramic member and metal member and method of producing the same | |
JPH0777989B2 (en) | Method for manufacturing ceramic-metal bonded body | |
JP3176015B2 (en) | Joint of ceramic and metal | |
US5129574A (en) | Braze bonding of oxidation-resistant foils | |
JP3365575B2 (en) | Joint of ceramic and metal | |
JP3504716B2 (en) | Ceramic bonded body with stress buffer metal layer | |
JP2006327888A (en) | Brazed structure of ceramic and metal | |
Paulasto et al. | Brazing of Si3N4 with Au-Ni-V-Mo filler alloy | |
Do Nascimento et al. | Brazing Al2O3 to sintered Fe-Ni-Co alloys | |
Johnson | Mechanical behavior of brazed silicon nitride | |
JPH0492871A (en) | Ceramic-metal binding body and production thereof | |
JP2001048670A (en) | Ceramics-metal joined body | |
JP4237460B2 (en) | Metal-ceramic bonded body and manufacturing method thereof | |
JP2003335585A (en) | Process for joining ceramics through active metal soldering | |
JP3153872B2 (en) | Metal-nitride ceramic bonding structure | |
JP3298235B2 (en) | Joining method of ceramics and nickel | |
JPH0662342B2 (en) | Method for joining silicon nitride ceramics and metal | |
JP2007237248A (en) | Method for manufacturing dissimilar material joined body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |