JP3174145B2 - Lighting equipment - Google Patents
Lighting equipmentInfo
- Publication number
- JP3174145B2 JP3174145B2 JP14177992A JP14177992A JP3174145B2 JP 3174145 B2 JP3174145 B2 JP 3174145B2 JP 14177992 A JP14177992 A JP 14177992A JP 14177992 A JP14177992 A JP 14177992A JP 3174145 B2 JP3174145 B2 JP 3174145B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- light
- transmittance
- voltage
- crystal material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、光源からの照射光を印
加電圧に応じて透過率が変化する液晶素子によって調光
する調光機能付きの照明装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device having a dimming function for dimming irradiation light from a light source with a liquid crystal element whose transmittance changes according to an applied voltage.
【0002】[0002]
【従来の技術】いわゆるツイステッドネマチック(T
N)型の液晶素子は偏光子を必要とするため輝度を上げ
るのが困難であり、また、上記TN型の液晶素子を、大
光量の光源を用いる照明装置の調光素子として使用した
場合には、偏光子の吸光による発熱が避けられないとい
う問題がある。2. Description of the Related Art A so-called twisted nematic (T)
Since the N) type liquid crystal element requires a polarizer, it is difficult to increase the luminance. In addition, when the TN type liquid crystal element is used as a dimming element of a lighting device using a large amount of light source. However, there is a problem that heat generation due to the absorption of the polarizer is inevitable.
【0003】これに対し、スポンジ状の多孔構造を有す
る、高分子等の透明体マトリクスからなる担体膜の連続
した孔内に液晶材料が充填された構造、あるいは、透明
体マトリクスからなる担体膜中に液晶材料が粒状に分散
した構造の複合膜を、一対の透明電極で挟着した液晶素
子は、偏光子を必要としないため、上記の問題を解決す
ることができる。On the other hand, a structure in which a liquid crystal material is filled in continuous pores of a carrier film made of a transparent matrix such as a polymer having a sponge-like porous structure, or a carrier film made of a transparent matrix is used. The above problem can be solved because a liquid crystal element in which a composite film in which a liquid crystal material is dispersed in a granular manner is sandwiched between a pair of transparent electrodes does not require a polarizer.
【0004】上記液晶素子においては、無電圧時には、
液晶分子が、当該液晶分子と透明体マトリクスとの界面
の形状的な規制(界面作用)を受けてランダムな状態に
あるため、入射光が散乱されて、複合膜は不透明な状態
になっている。そして、複合膜を挾んだ一対の透明電極
間に電圧が印加されると、その印加電圧の大きさに応じ
て、正の誘電率異方性(Δε)をもつ液晶分子が電場方
向に配向し、配列の乱れが徐徐に解消されて光の透過率
が上昇し、最終的には透明な状態に至る。In the above liquid crystal element, when no voltage is applied,
Since the liquid crystal molecules are in a random state due to the shape regulation (interface action) of the interface between the liquid crystal molecule and the transparent matrix, the incident light is scattered and the composite film is in an opaque state. . When a voltage is applied between a pair of transparent electrodes sandwiching the composite film, liquid crystal molecules having a positive dielectric anisotropy (Δε) are oriented in an electric field direction according to the magnitude of the applied voltage. Then, the disorder of the arrangement is gradually eliminated, the light transmittance increases, and finally the transparent state is reached.
【0005】上記構成の液晶素子には、通常、ネマチッ
ク相を示す液晶材料が使用される。また、この液晶素子
の、電圧を印加していない不透明状態における透過光の
スペクトルは、液晶分子が充填された孔の大きさとその
分布、各材料の光学的性質等により制御することができ
る。A liquid crystal material having a nematic phase is usually used for the liquid crystal device having the above-described structure. Further, the spectrum of the transmitted light of the liquid crystal element in the opaque state where no voltage is applied can be controlled by the size and distribution of the holes filled with liquid crystal molecules, the optical properties of each material, and the like.
【0006】[0006]
【発明が解決しようとする課題】ところが、上記ネマチ
ック液晶を使用した液晶素子は、電圧を印加した状態で
の、透過光のスペクトルを制御することができない上、
特に、可視光全域が飽和透過率に達するまでの電圧範囲
において、透過光のスペクトルが大きく変動するという
問題がある。However, the liquid crystal device using the nematic liquid crystal cannot control the spectrum of the transmitted light when a voltage is applied.
In particular, there is a problem that the spectrum of the transmitted light greatly fluctuates in the voltage range until the entire visible light reaches the saturated transmittance.
【0007】つまり、上記液晶素子は、可視光全域が飽
和透過率に達するまでの電圧範囲において、各波長の光
の透過率と印加電圧との関係が一定でなく、同一電圧に
おける透過率が波長によって大きくばらつき、特に、長
波長側の光の透過率が、短波長側の光の透過率より大き
くなって、透過光のスペクトルが、長波長側に大きくず
れてしまう。また、印加電圧に応じて各波長の透過率の
割合が変化するので、透過率の変化に伴って、透過光の
色調も変化してしまうのである。That is, in the above liquid crystal element, the relationship between the transmittance of light of each wavelength and the applied voltage is not constant in the voltage range until the entire visible light region reaches the saturation transmittance, and the transmittance at the same voltage is equal to the wavelength. In particular, the transmittance of light on the long wavelength side becomes larger than the transmittance of light on the short wavelength side, and the spectrum of the transmitted light greatly shifts to the long wavelength side. Further, since the ratio of the transmittance of each wavelength changes according to the applied voltage, the color tone of the transmitted light changes with the change of the transmittance.
【0008】上記の原因を検討したところ、以下のこと
が明らかとなった。すなわち、ネマチック相を示す液晶
材料を使用した液晶素子に電圧を印加すると、前記のよ
うに、液晶分子が電場方向に配向するが、可視光全域が
飽和透過率に達するまでの電圧範囲では電界強度が十分
でないので、液晶分子と透明体マトリクスとの界面近傍
において、前記界面作用により、液晶分子の配向は保持
される。このため、この界面近傍の領域で、主として短
波長光が散乱されて、その透過率が、長波長光の透過率
よりも低くなり、透過光は、長波長側が優勢なスペクト
ルを示すものとなる。[0008] When the above-mentioned causes were examined, the following became clear. That is, when a voltage is applied to a liquid crystal element using a liquid crystal material exhibiting a nematic phase, the liquid crystal molecules are oriented in the direction of the electric field as described above, but the electric field strength is maintained in the voltage range until the entire visible light region reaches the saturation transmittance. Is not sufficient, the alignment of the liquid crystal molecules is maintained in the vicinity of the interface between the liquid crystal molecules and the transparent matrix due to the interfacial action. For this reason, in the region near this interface, short-wavelength light is mainly scattered, and its transmittance becomes lower than the transmittance of long-wavelength light, and the transmitted light shows a spectrum in which the long-wavelength side is dominant. .
【0009】また、どの波長の光がどの程度散乱される
かは、液晶分子の配向の不連続の程度(液晶分子の配向
が乱される領域の広さや、上記領域内における液晶分子
の乱れ具合等)に応じて変化し、この配向の不連続の程
度は、印加電圧と界面作用との力関係に対応するので、
印加電圧に応じて各波長の透過率の割合が変化し、透過
光の色調が変化してしまう。The wavelength of light and the extent to which the light is scattered are determined by the degree of discontinuity of the orientation of the liquid crystal molecules (the size of the region in which the orientation of the liquid crystal molecules is disturbed, the degree of disturbance of the liquid crystal molecules in the above-mentioned region). Etc.), and the degree of the discontinuity of the orientation corresponds to the force relationship between the applied voltage and the interfacial effect.
The ratio of the transmittance of each wavelength changes according to the applied voltage, and the color tone of the transmitted light changes.
【0010】このため、ネマチック相を示す通常の液晶
材料を使用した従来の液晶素子を、OA機器やAV機器
等に使用した場合には、表示の色調が不自然に変化する
という問題があり、照明装置の調光素子として使用した
場合には、短波長側が優勢な調光光や、波長依存性のな
い(つまり白色の)調光光が得られない他、調光光の色
調を一定にできないという問題がある。For this reason, when a conventional liquid crystal element using a normal liquid crystal material exhibiting a nematic phase is used for OA equipment, AV equipment, etc., there is a problem that the color tone of the display changes unnaturally. When used as a dimming element of a lighting device, it is not possible to obtain dimming light in which the short wavelength side is dominant, dimming light having no wavelength dependence (that is, white), and to keep the color tone of the dimming light constant. There is a problem that can not be.
【0011】したがって、上記液晶素子は、不透明な状
態と透明な状態の2段階の切り換えによる表示等には既
に実用されているが、その中間の透過状態を利用した表
示素子や、光の透過率を多段階で調整できる調光素子等
には、利用可能性が期待されながらも、未だ実用化され
ていないのが現状である。本発明は、以上の事情に鑑み
てなされたものであって、電圧無印加時、および可視光
全域が飽和透過率に達するまでの電圧範囲で、透過光の
スペクトル分布を自由に設定することができるととも
に、透過光の色調が、印加電圧に応じて不自然に変化し
たりせず、調光の程度によって色調が変化しない、すな
わち演色性の高い照明装置を提供することを目的として
いる。Therefore, the above-mentioned liquid crystal element has already been used for display or the like by switching between an opaque state and a transparent state in two stages. However, a display element utilizing an intermediate transmission state, a light transmittance, etc. Currently, it is not yet practically used, although it is expected that the dimming element and the like which can adjust the light intensity in multiple steps can be used. The present invention has been made in view of the above circumstances, and it is possible to freely set a spectral distribution of transmitted light when no voltage is applied and in a voltage range until the entire visible light reaches a saturated transmittance. It is an object of the present invention to provide a lighting device that is capable of not changing the color tone of transmitted light unnaturally in accordance with an applied voltage and changing the color tone depending on the degree of dimming, that is, having high color rendering properties.
【0012】[0012]
【課題を解決するための手段および作用】上記課題を解
決するため、本発明者らは、複合膜に使用する液晶材料
について種々検討を行い、その結果、コレステリック相
を示す液晶材料を使用すれば、界面作用による影響を軽
減できることを見出した。つまり、コレステリック相に
おいては、無電圧時の散乱状態が、上記界面作用だけで
なく、カイラルピッチに依存する選択散乱,選択反射効
果や、液晶分子の配列構造の不整による欠陥部位の発生
等によっても生じ、しかも、それぞれの現象に基づく散
乱波長域が異なっているとともに、それぞれの現象によ
る散乱状態を解消するための電界値も異なっていると考
えられる。In order to solve the above problems, the present inventors have conducted various studies on liquid crystal materials used for a composite film, and as a result, if a liquid crystal material exhibiting a cholesteric phase is used. It has been found that the influence of the interfacial action can be reduced. That is, in the cholesteric phase, the scattering state at the time of no voltage is caused not only by the above-mentioned interfacial effect but also by the selective scattering and selective reflection effect depending on the chiral pitch, and the occurrence of a defective site due to the irregular arrangement of the liquid crystal molecules. It is considered that the generated scattering wavelength ranges are different based on the respective phenomena, and the electric field values for eliminating the scattering state due to the respective phenomena are different.
【0013】このため、選択散乱効果を始めとする、界
面作用以外の要因を制御して、界面作用による透過率の
変動を打ち消すようにすれば、透過光のスペクトル分布
を自由に設定できるとともに、印加電圧に応じて透過光
の色調が変化しない演色性の高い照明装置が得られるの
である。したがって本発明の照明装置は、光源と、この
光源の投射光の光路上に配置され、透明体マトリクスか
らなる担体膜中にねじれ配向の選択散乱効果を持つコレ
ステリック相を示す液晶材料が保持された複合膜を、一
対の透明電極で挟着してなる液晶素子とを備え、可視光
全域が飽和透過率に達するまでの印加電圧範囲におい
て、および電圧無印加時の不透明な散乱状態において、
前記液晶素子の短波長域における光の透過率が長波長域
における光の透過率と同程度かまたはそれより大きい照
明装置において、前記コレステリック相を示す液晶材料
として、ネマチック相である液晶材料にカイラル成分を
添加したカイラルネマチック液晶を使用するとともに、
液晶材料中におけるカイラル成分の濃度を調整して、複
合膜を透過する光のスペクトルの、印加電圧に対する依
存性を制御したことを特徴としている。For this reason, by controlling factors other than the interfacial effect such as the selective scattering effect so as to cancel out the fluctuation of the transmittance due to the interfacial effect, the spectral distribution of the transmitted light can be freely set, and An illumination device with high color rendering properties in which the color tone of the transmitted light does not change according to the applied voltage can be obtained. Therefore, in the lighting device of the present invention, a light source and a liquid crystal material exhibiting a cholesteric phase having a selective scattering effect of twisted orientation are held in a carrier film made of a transparent matrix, which is arranged on an optical path of light projected from the light source. Comprising a liquid crystal element sandwiching the composite film between a pair of transparent electrodes, in an applied voltage range until the entire visible light region reaches a saturated transmittance, and in an opaque scattering state when no voltage is applied,
In a lighting device in which the transmittance of light in the short wavelength region of the liquid crystal element is equal to or greater than the transmittance of light in the long wavelength region, the liquid crystal material showing the cholesteric phase may be a chiral liquid crystal material that is a nematic phase. While using chiral nematic liquid crystal to which the component was added,
It is characterized in that the dependency of the spectrum of light passing through the composite film on the applied voltage is controlled by adjusting the concentration of the chiral component in the liquid crystal material.
【0014】複合膜を透過する光のスペクトルの分布を
制御するには、液晶材料の弾性率、平均的屈折率、屈折
率異方性等の物性を調整するか、担体膜の物性や、微細
孔の大きさ、形状、膜厚等を調整することが考えられる
が、特に、コレステリック相を示す液晶材料として、ネ
マチック相を示す液晶材料にカイラル成分を添加したカ
イラルネマチック液晶を使用するとともに、液晶材料中
におけるカイラル成分の濃度を調整して、液晶分子のら
せん配列を変化させる方法が好適である。上記の方法に
よれば、単に、カイラル成分の添加量を調整するだけ
で、複合膜を透過する光のスペクトルの、印加電圧に対
する依存性を制御して、透過光のスペクトル分布を設定
することが可能となる。In order to control the distribution of the spectrum of light transmitted through the composite film, the physical properties of the liquid crystal material such as the elastic modulus, average refractive index, and refractive index anisotropy are adjusted, or the physical properties of the carrier film and the fine It is conceivable to adjust the size, shape, film thickness, etc. of the pores.In particular, as a liquid crystal material showing a cholesteric phase, a chiral nematic liquid crystal obtained by adding a chiral component to a liquid crystal material showing a nematic phase is used. It is preferable to adjust the concentration of the chiral component in the material to change the helical arrangement of the liquid crystal molecules. According to the above method, it is possible to set the spectral distribution of the transmitted light by controlling the dependence of the spectrum of the light transmitted through the composite membrane on the applied voltage by simply adjusting the amount of the chiral component added. It becomes possible.
【0015】[0015]
【0016】[0016]
【0017】[0017]
【0018】図1に示すように、本発明の照明装置を構
成する液晶素子Lは、複合膜1を、一対の透明電極2,
2で挟着することで構成される。透明電極2,2として
は、ガラス、プラスチックフィルタ[例えばポリエチレ
ンテレフタレート(PET)、ポリエーテルサルホン
(PES)]等の透明支持体の表面に、ITO(インジ
ウム・チン・オキサイド)やSnO2等の導電膜を蒸着
法、スパッタリング法あるいは塗布法等で形成したもの
があげられる他、通常の液晶パネルに用いられる透明導
電ガラスやフィルタも使用できる。As shown in FIG. 1, a liquid crystal element L constituting a lighting device of the present invention comprises a composite film 1 comprising a pair of transparent electrodes 2 and
It is constituted by pinching with 2. As the transparent electrodes 2 and 2, a transparent support such as glass or a plastic filter (eg, polyethylene terephthalate (PET), polyethersulfone (PES)) or the like is provided on the surface of a transparent support such as ITO (indium tin oxide) or SnO 2 . In addition to a conductive film formed by a vapor deposition method, a sputtering method, a coating method, or the like, a transparent conductive glass or a filter used for a normal liquid crystal panel can also be used.
【0019】複合膜1としては、図2に示すように、ス
ポンジ状構造を有する透明体マトリクスからなる担体膜
11の連続した孔内に液晶材料12が充填された構造が
好適に採用される他、透明体マトリクスからなる担体膜
中に液晶材料が粒状に分散した構造を採用することもで
きる。前者の構造の複合膜は、透明体マトリクスを高分
子で構成する場合、当該高分子と液晶材料とを適当な溶
媒に溶解または分散させた塗布液を、一方の透明電極2
の表面に塗布し、溶媒を蒸発させて、高分子と液晶材料
とを相分離させることで形成される。この後、形成され
た複合膜1の表面に、もう一方の透明電極2を重ね合わ
せれば、図1に示す液晶素子が完成する。As the composite film 1, as shown in FIG. 2, a structure in which a liquid crystal material 12 is filled in continuous holes of a carrier film 11 made of a transparent matrix having a sponge-like structure is preferably employed. Alternatively, a structure in which a liquid crystal material is dispersed in a carrier film formed of a transparent matrix may be employed. In the composite film having the former structure, when the transparent matrix is composed of a polymer, a coating solution in which the polymer and a liquid crystal material are dissolved or dispersed in an appropriate solvent is applied to one transparent electrode 2.
The liquid crystal material is formed by applying a liquid to the surface of the liquid crystal and evaporating the solvent to cause phase separation between the polymer and the liquid crystal material. Thereafter, the other transparent electrode 2 is overlaid on the surface of the formed composite film 1, whereby the liquid crystal element shown in FIG. 1 is completed.
【0020】後者の構造の複合膜は、懸濁法あるいは重
合相分離法により形成される。懸濁法においては、当該
複合膜は、ポリビニルアルコールなどの親水性高分子と
液晶材料を混合した乳状溶液を、一方の透明電極2の表
面に塗布し、溶液中の水を蒸発させて、高分子中に液晶
材料を粒状に分散させることで形成される。この後、形
成された複合膜1の表面に、もう一方の透明電極2を重
ね合わせれば、図1に示す液晶素子が完成する。The composite film having the latter structure is formed by a suspension method or a polymerization phase separation method. In the suspension method, the composite film is formed by applying a milky solution obtained by mixing a hydrophilic polymer such as polyvinyl alcohol and a liquid crystal material onto the surface of one of the transparent electrodes 2 and evaporating water in the solution to form a high-concentration solution. It is formed by dispersing a liquid crystal material into molecules in a molecule. Thereafter, the other transparent electrode 2 is overlaid on the surface of the formed composite film 1, whereby the liquid crystal element shown in FIG. 1 is completed.
【0021】重合相分離法においては、図1に示す液晶
素子は、高分子あるいは高分子前駆体(プレポリマ
ー)、液晶材料および重合開始剤を混合した溶液を、2
枚の透明電極2,2の間に注入し、紫外線もしくは熱に
より重合および架橋反応させ、高分子中に液晶材料を粒
状に分散させることで形成される。複合膜の膜厚は、光
散乱方式の液晶素子とするために、可視光の波長以上で
ある必要がある。ただし、あまりに厚さが大なるとき
は、素子の駆動電圧が高くなりすぎるという問題がある
ため、実際上は10〜30μm程度が適当である。In the polymerization phase separation method, the liquid crystal element shown in FIG. 1 is prepared by mixing a solution in which a polymer or a polymer precursor (prepolymer), a liquid crystal material and a polymerization initiator are mixed with each other.
The liquid crystal material is injected between the transparent electrodes 2 and 2 and polymerized and cross-linked by ultraviolet light or heat to form a liquid crystal material dispersed in a polymer. The thickness of the composite film must be equal to or longer than the wavelength of visible light in order to form a light-scattering liquid crystal element. However, when the thickness is too large, there is a problem that the driving voltage of the element becomes too high. Therefore, in practice, about 10 to 30 μm is appropriate.
【0022】なお、複合膜には、液晶素子をカラー表示
タイプにするため、従来公知の各種二色性色素を配合す
ることもできる。複合膜を構成する液晶材料としては、
それ自身がコレステリック相を示す、下記一般式(1) で
表されるコレステロール化合物、下記一般式(2) で表さ
れるコレスタノール化合物、下記一般式(3) で表される
β−シトステロール化合物等の、従来公知のコレステリ
ック液晶材料〔「液晶材料」講談社刊、艸林茂和編(1
992年)P.76〕を使用することもできるが、前述
したように、ネマチック相を示す従来公知の液晶材料
(「液晶デバイスハンドブック」日刊工業新聞社刊(1
989年)P.116〜〕にカイラル成分を添加したも
のが、好適に使用される。The composite film may contain various known dichroic dyes in order to make the liquid crystal element a color display type. As the liquid crystal material that composes the composite film,
Itself shows a cholesteric phase, a cholesterol compound represented by the following general formula (1), a cholestanol compound represented by the following general formula (2), a β-sitosterol compound represented by the following general formula (3), etc. A conventionally known cholesteric liquid crystal material [“Liquid Crystal Material” published by Kodansha, edited by Shigekazu Sobayashi (1
992) p. 76] can be used, but as described above, a conventionally known liquid crystal material exhibiting a nematic phase (“Liquid Crystal Device Handbook”, published by Nikkan Kogyo Shimbun (1)
989) p. 116-] to which a chiral component is added is suitably used.
【0023】[0023]
【化1】 Embedded image
【0024】(上記一般式(1) 〜(3) 中のRO−は、下
記式R1〜R4の何れかを表す。)(RO- in the above general formulas (1) to (3) represents any of the following formulas R1 to R4)
【0025】[0025]
【化2】 Embedded image
【0026】ネマチック相を示す液晶材料としては、下
記一般式(4) 〜(6) で表されるアゾメチル化合物、下記
一般式(7) 〜(10)で表されるエステル化合物、下記一般
式(11)〜(13)で表されるビフェニル化合物、ターフェニ
ル化合物、下記一般式(14)で表されるスチルベン化合
物、下記一般式(15)(16)で表されるアゾキシ化合物、下
記一般式(17)で表されるアゾ化合物等があげられる。そ
の他、下記一般式(18)(19)のようなピリミジン化合物、
一般式(20)のようなジオキサン化合物、一般式(21)のよ
うなトラン化合物、一般式(22)のようなピリジン化合物
なども使用可能である。As the liquid crystal material exhibiting a nematic phase, azomethyl compounds represented by the following general formulas (4) to (6), ester compounds represented by the following general formulas (7) to (10), 11)-biphenyl compounds represented by (13), terphenyl compounds, stilbene compounds represented by the following general formula (14), azoxy compounds represented by the following general formulas (15) and (16), the following general formula ( And azo compounds represented by 17). In addition, pyrimidine compounds such as the following general formulas (18) and (19),
A dioxane compound represented by the general formula (20), a tolan compound represented by the general formula (21), a pyridine compound represented by the general formula (22), and the like can also be used.
【0027】[0027]
【化3】 Embedded image
【0028】[0028]
【化4】 Embedded image
【0029】[0029]
【化5】 Embedded image
【0030】[0030]
【化6】 Embedded image
【0031】[0031]
【化7】 Embedded image
【0032】[0032]
【化8】 Embedded image
【0033】(上記各式中のR,R′,R1 〜R6 ,
X,Yは、−Cn H2n+1、−OCn H2n +1、ハロゲン原
子、−CN、−OCF3 、−CF3 等の置換基を表
す。)上記液晶材料に添加されるカイラル成分として
は、下記式(23)〜(27):(R, R ', R 1 to R 6 ,
X, Y are, -C n H 2n + 1, -OC n H 2n +1, halogen atom, -CN, -OCF 3, represents a substituent of -CF 3 and the like. The chiral components added to the liquid crystal material include the following formulas (23) to (27):
【0034】[0034]
【化9】 Embedded image
【0035】(上記各式中(In each of the above formulas,
【0036】[0036]
【外1】 [Outside 1]
【0037】は不斉炭素原子を表す。)で表される化合
物等の、従来公知のカイラル性分子の他、前記例示の各
種コレステリック液晶材料を使用することもできる。液
晶材料中におけるカイラル成分の濃度は、本発明では特
に限定されず、カイラル成分の種類、ネマチック相を示
す液晶材料の種類、複合膜の構造、液晶素子の使用環境
等の条件に応じて、短波長域の光の透過率が、長波長域
の光の透過率と同程度かまたはそれより大きくなるよう
に、複合膜を透過する光のスペクトルの、印加電圧に対
する依存性を制御できる範囲で、その濃度が決定され
る。Represents an asymmetric carbon atom. In addition to the conventionally known chiral molecules such as the compounds represented by the formula (1), various cholesteric liquid crystal materials exemplified above can also be used. The concentration of the chiral component in the liquid crystal material is not particularly limited in the present invention, and may vary depending on conditions such as the type of the chiral component, the type of the liquid crystal material exhibiting a nematic phase, the structure of the composite film, and the operating environment of the liquid crystal element. In such a range that the dependence of the spectrum of light transmitted through the composite film on the applied voltage can be controlled so that the transmittance of light in the wavelength region is equal to or greater than the transmittance of light in the long wavelength region, The concentration is determined.
【0038】なお、液晶材料は、特に限定されないが、
屈折率異方性Δηおよび誘電率異方性Δεが大きいもの
を使用するのが、良好な特性を得る上で好ましい。上記
液晶材料とともに担体膜を構成するマトリクス高分子と
しては、可視光に対する透明性の高いものが好ましく、
例えばPMMAに代表される(メタ)アクリル系高分子
や、エポキシ樹脂、ウレタン樹脂などが好適に使用され
る。Although the liquid crystal material is not particularly limited,
It is preferable to use one having a large refractive index anisotropy Δη and a large dielectric anisotropy Δε in order to obtain good characteristics. As the matrix polymer constituting the carrier film together with the liquid crystal material, those having high transparency to visible light are preferable,
For example, a (meth) acrylic polymer represented by PMMA, an epoxy resin, a urethane resin, or the like is suitably used.
【0039】なお、上記透明体マトリクスは、高分子に
限らず、ガラス等の透明な無機材質で構成してもよい。
上記液晶素子を駆動するための本発明の駆動方法におい
ては、実効電圧値を、しきい電圧値より低い値に所定期
間保持して、液晶分子の履歴依存を消失させる成分が含
まれた電圧波形が、液晶素子の透明電極間に印加され
る。より具体的には、例えば図3(a) に示すように、電
圧波形(図では矩形波)中に、t1 の時間だけ電圧0の
成分を含むか、または、同図(b) に示すように、t1 の
時間だけ、しきい電圧値より実効電圧値が低い波形成分
を含む印加電圧が、液晶素子の透明電極間に印加される
のである。The transparent matrix is not limited to a polymer, but may be made of a transparent inorganic material such as glass.
In the driving method of the present invention for driving the liquid crystal element, the effective voltage value is maintained at a value lower than the threshold voltage value for a predetermined period, and the voltage waveform including a component for eliminating the history dependence of the liquid crystal molecules is included. Is applied between the transparent electrodes of the liquid crystal element. More specifically, for example, as shown in FIG. 3 (a), in the voltage waveform (rectangular wave in the figure), or include components only time the voltage 0 t 1, or, shown in FIG. (B) as such, the only time t 1, the applied voltage including a low waveform components effective voltage value than the threshold voltage value is being applied between the transparent electrodes of the liquid crystal element.
【0040】上記しきい電圧値とは、液晶素子の透明電
極間に印加する電圧を0Vから徐徐に上昇させていった
ときに、複合膜の透過率が急激に変化する電圧である。
但し、このしきい電圧値以下の印加電圧でも、複合膜の
透過率はわずかながら変化するので、例えば、十分に高
い電圧から印加電圧を徐徐に下げていったときに、複合
膜の透過率が10%になる実効電圧値等をしきい電圧値
として定義すればよい。The threshold voltage value is a voltage at which the transmittance of the composite film rapidly changes when the voltage applied between the transparent electrodes of the liquid crystal element is gradually increased from 0V.
However, even when the applied voltage is lower than the threshold voltage value, the transmittance of the composite film slightly changes. For example, when the applied voltage is gradually decreased from a sufficiently high voltage, the transmittance of the composite film is reduced. An effective voltage value that becomes 10% may be defined as a threshold voltage value.
【0041】なお、上記図3(a)(b)中の時間t1 は、長
過ぎると、複合膜の透過率低下がちらつきとなって知覚
されるおそれがあり、短過ぎると、液晶分子の履歴依存
が十分に消失されず、ヒステリシス特性が残るおそれが
あるので、素子構成等を考慮して、適当な値に設定する
のが好ましい。上記時間t1 の範囲は、本発明では特に
限定されないが、0.5〜50ミリ秒程度が好ましい。If the time t 1 in FIGS. 3A and 3B is too long, the decrease in the transmittance of the composite film may be perceived as flickering. Since the hysteresis characteristics may not be sufficiently eliminated and the hysteresis characteristics may remain, it is preferable to set an appropriate value in consideration of the element configuration and the like. Range of the time t 1 is not particularly limited in the present invention is preferably about 0.5 to 50 milliseconds.
【0042】上記時間t1の期間は、電圧波形中に一定
時間間隔で繰り返し挿入してもよく、また、制御電圧を
変化させた際に、自動的に挿入されるように回路構成し
てもよい。次に上述した液晶素子を使用した本発明に照
明装置の一例を図4に示す。図示の照明装置は、光源ラ
ンプPと、この光源ランプPからの光を投射する投射光
学系Sとを備え、上記光源ランプPと投射光学系Sとの
間に、上記液晶素子Lを配置することで構成されてい
る。また、液晶素子Lには、駆動のための電源装置Dが
接続されている。The duration of the time t 1 may be inserted repeatedly at regular time intervals during the voltage waveform, also when changing the control voltage, even if the circuit adapted to be inserted automatically Good. Next, FIG. 4 shows an example of a lighting device according to the present invention using the above-described liquid crystal element. The illustrated lighting device includes a light source lamp P and a projection optical system S for projecting light from the light source lamp P, and the liquid crystal element L is arranged between the light source lamp P and the projection optical system S. It is composed of Further, a power supply device D for driving is connected to the liquid crystal element L.
【0043】投射光学系Sは、液晶素子Lを透過した光
の中から、液晶分子により散乱された成分を排除し、当
該液晶素子Lを直進通過した成分のみを取り出して、被
照射物に投射するためのもので、凸レンズS1、絞りS
2および凹レンズS3を、光源ランプPからの投射光の
光路上に、光軸を合わせて配置することで構成されてい
る。The projection optical system S removes components scattered by liquid crystal molecules from the light transmitted through the liquid crystal element L, extracts only the components that have passed straight through the liquid crystal element L, and projects the extracted components on an object to be irradiated. Lens S1, aperture S
2 and the concave lens S3 are arranged on the optical path of the projection light from the light source lamp P with their optical axes aligned.
【0044】なお、上記構成において、液晶素子Lが光
源ランプPの直前に配置されるので、装置の使用時に
は、この光源ランプPからの熱により、液晶素子Lの温
度が上昇することが予測される。したがって、図の構成
の照明装置に、液晶素子Lを使用する場合には、昇温状
態で正常に作動するように、素子の特性を調整するのが
望ましい。また、液晶素子の前面に紫外光または、赤外
光、あるいは両者を反射する誘電体多層膜を設けて、液
晶素子を保護することも可能である。In the above configuration, since the liquid crystal element L is disposed immediately before the light source lamp P, it is expected that the temperature of the liquid crystal element L will rise due to heat from the light source lamp P when the apparatus is used. You. Therefore, when the liquid crystal element L is used in the illumination device having the configuration shown in the drawing, it is desirable to adjust the characteristics of the element so that the liquid crystal element L operates normally in a heated state. Further, it is possible to protect the liquid crystal element by providing a dielectric multilayer film that reflects ultraviolet light, infrared light, or both on the front surface of the liquid crystal element.
【0045】コントラストを高くするには、液晶素子L
を複数枚積層して使用すればよい。To increase the contrast, the liquid crystal element L
May be laminated and used.
【0046】[0046]
【実施例】以下に本発明を、実施例、比較例に基づいて
説明する。実施例1〜3 ネマチック液晶材料(メルクジャパン社製の品番E6
3)とカイラル成分(BDH社製の品番CB15)と
を、下記表1に示す配合割合で混合して、カイラルネマ
チック液晶材料を調合し、このカイラルネマチック液晶
材料75重量部と、アクリル系高分子(帝国化学社製)
25重量部とを、ジクロロメタンを溶媒として、溶質濃
度が20%となるように溶解して、塗布液を作製した。The present invention will be described below based on examples and comparative examples. Examples 1 to 3 Nematic liquid crystal material (product number E6 manufactured by Merck Japan Ltd.)
3) and a chiral component (Part No. CB15 manufactured by BDH) were mixed at the compounding ratio shown in Table 1 below to prepare a chiral nematic liquid crystal material, and 75 parts by weight of the chiral nematic liquid crystal material and an acrylic polymer (Made by Teikoku Chemical Co., Ltd.)
25 parts by weight were dissolved in dichloromethane as a solvent so that the solute concentration became 20% to prepare a coating solution.
【0047】次に、この塗布液を、透明導電膜が形成さ
れたガラス基板上にバーコート法で塗布し、25℃、1
気圧の空気中で溶媒を蒸発させて、厚み18μmの複合
膜を形成した。そして、この複合膜上に前記と同じ透明
導膜が形成されたガラス基板を重ね合わせ、約1kgf/
cm2 の圧力で押圧して密着させて、液晶素子を製造し
た。Next, this coating solution is applied on a glass substrate on which a transparent conductive film is formed by a bar coating method.
The solvent was evaporated in air at atmospheric pressure to form a 18 μm thick composite film. Then, a glass substrate on which the same transparent conductive film as described above is formed is superimposed on the composite film, and about 1 kgf /
A liquid crystal element was manufactured by pressing with a pressure of cm 2 and closely contacting each other.
【0048】比較例1 カイラル成分を配合しなかったこと以外は、上記実施例
1〜3と同様にして、液晶素子を製造した。 Comparative Example 1 A liquid crystal element was manufactured in the same manner as in Examples 1 to 3 except that the chiral component was not blended.
【0049】[0049]
【表1】 [Table 1]
【0050】上記各実施例、比較例の液晶素子につい
て、以下の各試験を行い、性能を評価した。透過率特性試験I 実施例並びに比較例の液晶素子を分光光度計(島津製作
所製の型番UV−160)にセットした状態で、両透明
電極間に200Hzの矩形波電圧を印加して、400n
m、500nm、600nmおよび700nmの各波長の光の
透過率と印加電圧との関係を測定した。なお、印加電圧
は、0Vから2V刻みで段階的に昇圧させた。The following tests were performed on the liquid crystal elements of the above Examples and Comparative Examples to evaluate the performance. Transmittance Characteristic Test I With the liquid crystal devices of the examples and comparative examples set on a spectrophotometer (model number UV-160 manufactured by Shimadzu Corporation), a rectangular wave voltage of 200 Hz was applied between both transparent electrodes, and 400 n
The relationship between the transmittance of light of each wavelength of m, 500 nm, 600 nm and 700 nm and the applied voltage was measured. The applied voltage was increased stepwise from 0 V in steps of 2 V.
【0051】実施例1の結果を図5に、実施例2の結果
を図6に、実施例3の結果を図7に、そして、比較例1
の結果を図8に、それぞれ示す。なお、上記各図の縦軸
は、ガラス基板の透過率を100%に補正した値を示
し、横軸の電圧値は矩形波電圧の電圧波高値を示す。こ
れらの図の結果より、液晶材料中のカイラル成分の濃度
が高い程、短波長側の光の透過率が上昇して、各波長の
光の、印加電圧−透過率特性曲線が近づき、印加電圧に
応じて色調が変化しなくなることが判った。FIG. 5 shows the result of Example 1, FIG. 6 shows the result of Example 2, FIG. 7 shows the result of Example 3, and FIG.
8 are shown in FIG. Note that the vertical axis in each of the above figures shows a value obtained by correcting the transmittance of the glass substrate to 100%, and the voltage value on the horizontal axis shows the voltage peak value of the rectangular wave voltage. From the results of these figures, it can be seen that as the concentration of the chiral component in the liquid crystal material increases, the transmittance of light on the short wavelength side increases, and the applied voltage-transmittance characteristic curve of light of each wavelength approaches, and the applied voltage increases. It was found that the color tone did not change according to the color.
【0052】また、上記測定の結果より、波長400nm
の光の透過率t400 と波長600nmの光の透過率t600
との比t400 /t600 を求め、波長500nmの光の透過
率との関係をプロットした。結果を図9に示す。図にお
いて、縦軸の数字は、白色光であればt400 /t600 =
1となり、t400 /t600 が1より大きい(つまり波長
400nmの光の透過率が大きい)程、透過光は青色が強
くなり、t400 /t60 0 が1より小さい(つまり波長6
00nmの光の透過率が大きい)程、赤色が強くなること
を示す。From the result of the above measurement, it was found that the wavelength was 400 nm.
Transmittance t 600 of the transmittance t 400 and the wavelength 600nm light light
And the ratio t 400 / t 600 was determined, and the relationship with the transmittance of light having a wavelength of 500 nm was plotted. FIG. 9 shows the results. In the figure, the number on the vertical axis is t 400 / t 600 =
1, and as greater than t 400 / t 600 is 1 (i.e. large light transmittance at a wavelength of 400 nm), the transmitted light is blue is strong, t 400 / t 60 0 is smaller than 1 (i.e. wavelength 6
The greater the transmittance of light of 00 nm), the stronger the red color.
【0053】図の結果より、カイラル成分を含まない比
較例1は、透過光が常に赤色になり、カイラル成分を僅
かに含む実施例1も同様の結果を示すことが判った。こ
れに対し、実施例2は、透過光が常に白色を示し、実施
例3は、青色になることが判った。透過率特性試験II 前記実施例2の液晶素子を分光光度計(島津製作所製の
型番UV−160)にセットした状態で、両透明電極間
に印加する電圧を、0Vから2V刻みで段階的に昇圧さ
せた際と、2V刻みで段階的に降圧させた際の、500
nmの波長の光の透過率の変化を測定した。図10(a) に
示すように、途中にta (=20ミリ秒)の時間だけ電
圧0の成分を含む矩形波(周波数200Hz、tb =8
0ミリ秒)の電圧を印加した際の結果を図12に、図1
0(b) に示す単純な矩形波(周波数200Hz)の電圧
を印加した際の結果を図11に、それぞれ示す。なお、
図11の縦軸は、ガラス基板の透過率を100%に補正
した値を示し、図12の縦軸は、ガラス基板の透過率を
含む値を示し、横軸の電圧値は矩形波電圧の電圧波高値
αを示す。From the results shown in the figure, it was found that Comparative Example 1 containing no chiral component always had red transmitted light, and Example 1 containing a small amount of chiral component showed similar results. On the other hand, it was found that in Example 2, the transmitted light always showed white, and in Example 3, it became blue. Transmittance Characteristics Test II With the liquid crystal element of Example 2 set on a spectrophotometer (model number UV-160, manufactured by Shimadzu Corporation), the voltage applied between the transparent electrodes was changed stepwise from 0 V to 2 V. 500 when the voltage is increased and when the voltage is decreased in steps of 2V
The change in the transmittance of light having a wavelength of nm was measured. Figure 10 (a), the square wave (frequency 200Hz including middle t a (= 20 ms) of time corresponding component of the voltage 0, t b = 8
FIG. 12 shows the result when a voltage of 0 ms was applied.
FIG. 11 shows the results when a simple rectangular wave (frequency 200 Hz) voltage shown in FIG. In addition,
The vertical axis of FIG. 11 shows a value obtained by correcting the transmittance of the glass substrate to 100%, the vertical axis of FIG. 12 shows a value including the transmittance of the glass substrate, and the voltage value of the horizontal axis represents the rectangular wave voltage. The voltage peak value α is shown.
【0054】図の結果より、単純な矩形波を印加した場
合には、昇圧時と降圧時で印加電圧−透過率特性にヒス
テリシス特性が現れたが、本発明の駆動方法に対応し
た、図10(b) に示す波形の電圧を印加した場合には、
昇圧時と降圧時で、印加電圧と透過率とを1対1に対応
させることができた。From the results shown in the figure, when a simple rectangular wave was applied, a hysteresis characteristic appeared in the applied voltage-transmittance characteristic at the time of step-up and step-down. However, FIG. When a voltage with the waveform shown in (b) is applied,
The applied voltage and the transmittance could be made to correspond one-to-one during the step-up and the step-down.
【0055】[0055]
【発明の効果】以上説明したように本発明の照明装置
は、電圧無印加時、および可視光全域が飽和透過率に達
するまでの電圧範囲で、透過光のスペクトル分布を自由
に設定することができるとともに、透過光の色調が、印
加電圧に応じて不自然に変化したりせず、調光の程度に
よって色調が変化しない、すなわち演色性の高い照明装
置を提供することができる。したがって、短波長側が優
勢な調光光や、波長依存性のない(つまり白色の)調光
光を得ることが出来、しかも、調光の程度によって色調
が変化ないため、各種のイルミネーション、室内照明、
投写型テレビジョン受像機、映写機、スライド映写機等
における調光機能付きの照明装置としての利用可能性が
高い。As described above, the lighting device of the present invention can freely set the spectral distribution of transmitted light when no voltage is applied and in the voltage range until the entire visible light reaches the saturated transmittance. Besides, it is possible to provide an illumination device in which the color tone of the transmitted light does not unnaturally change according to the applied voltage, and the color tone does not change depending on the degree of dimming, that is, high color rendering properties. Therefore, it is possible to obtain dimming light in which the short wavelength side is dominant or dimming light having no wavelength dependency (that is, white), and since the color tone does not change depending on the degree of dimming, various types of illumination and indoor lighting can be obtained. ,
It has a high possibility of being used as a lighting device with a dimming function in a projection television receiver, a projector, a slide projector and the like.
【0056】[0056]
【図1】本発明の照明装置を構成する液晶素子の層構成
の一例を示す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a layer configuration of a liquid crystal element included in a lighting device of the present invention.
【図2】上記液晶素子の複合膜の部分を拡大した断面図
である。FIG. 2 is an enlarged sectional view of a composite film portion of the liquid crystal element.
【図3】同図(a)は液晶素子の駆動方法における印加
電圧の波形の一例を示す波形図、同図(b)は他の例を
示す波形図である。FIG. 3A is a waveform chart showing an example of a waveform of an applied voltage in a method of driving a liquid crystal element, and FIG. 3B is a waveform chart showing another example.
【図4】本発明の照明装置の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of the lighting device of the present invention.
【図5】実施例1の液晶素子における、印加電圧と各波
長の光の透過率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the applied voltage and the transmittance of light of each wavelength in the liquid crystal element of Example 1.
【図6】実施例2の液晶素子における、印加電圧と各波
長の光の透過率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the applied voltage and the transmittance of light of each wavelength in the liquid crystal element of Example 2.
【図7】実施例3の液晶素子における、印加電圧と各波
長の光の透過率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the applied voltage and the transmittance of light of each wavelength in the liquid crystal element of Example 3.
【図8】比較例1の液晶素子における、印加電圧と各波
長の光の透過率との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the applied voltage and the transmittance of light of each wavelength in the liquid crystal element of Comparative Example 1.
【図9】上記各実施例、比較例の液晶素子における、透
過率と透過光の色調との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the transmittance and the color tone of the transmitted light in the liquid crystal elements of the above Examples and Comparative Examples.
【図10】同図(a)は液晶素子の駆動方法に沿った印
加電圧の波形を示す波形図、同図(b)は通常の矩形波
を示す波形図である。10A is a waveform diagram showing a waveform of an applied voltage according to a method of driving a liquid crystal element, and FIG. 10B is a waveform diagram showing a normal rectangular wave.
【図11】上記図10(b) の矩形波を実施例2の液晶素
子に印加した際の、印加電圧と透過率との関係を示すグ
ラフである。FIG. 11 is a graph showing a relationship between an applied voltage and transmittance when the rectangular wave of FIG. 10B is applied to the liquid crystal element of Example 2.
【図12】上記図10(a) の波形の印加電圧を実施例2
の液晶素子に印加した際の、印加電圧と透過率との関係
を示すグラフである。FIG. 12 shows the applied voltage having the waveform shown in FIG.
7 is a graph showing a relationship between an applied voltage and transmittance when applied to the liquid crystal element of FIG.
L 液晶素子 1 複合膜 11 担体膜 12 液晶材料 2 透明電極 P 光源ランプ L Liquid crystal element 1 Composite film 11 Carrier film 12 Liquid crystal material 2 Transparent electrode P Light source lamp
フロントページの続き (72)発明者 勝田 守彦 大阪市此花区島屋一丁目1番3号 住友 電気工業株式会社大阪製作所内 (72)発明者 柏木 亨 大阪市此花区島屋一丁目1番3号 住友 電気工業株式会社大阪製作所内 (56)参考文献 特開 平4−119320(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1334 G02F 1/137 Continued on the front page (72) Inventor Morihiko Katsuta 1-3-1 Shimaya, Konohana-ku, Osaka City Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Toru Kashiwagi 1-3-1 Shimaya, Konohana-ku, Osaka Sumitomo Electric (56) References JP-A-4-119320 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/1334 G02F 1/137
Claims (1)
置され、透明体マトリクスからなる担体膜中にねじれ配
向の選択散乱効果を持つコレステリック相を示す液晶材
料が保持された複合膜を、一対の透明電極で挟着してな
る液晶素子とを備え、 可視光全域が飽和透過率に達するまでの印加電圧範囲に
おいて、および電圧無印加時の不透明な散乱状態におい
て、前記液晶素子の短波長域における光の透過率が長波
長域における光の透過率と同程度かまたはそれより大き
い照明装置において、 前記コレステリック相を示す液晶材料として、ネマチッ
ク相である液晶材料にカイラル成分を添加したカイラル
ネマチック液晶を使用するとともに、液晶材料中におけ
るカイラル成分の濃度を調整して、複合膜を透過する光
のスペクトルの、印加電圧に対する依存性を制御したこ
とを特徴とする照明装置。1. A composite film comprising a light source and a liquid crystal material having a cholesteric phase having a selective scattering effect of torsional orientation in a carrier film composed of a transparent matrix and arranged on an optical path of light projected from the light source. A liquid crystal element sandwiched between a pair of transparent electrodes, wherein the liquid crystal element is short-circuited in an applied voltage range until the entire visible light reaches a saturated transmittance, and in an opaque scattering state when no voltage is applied. In a lighting device having a transmittance of light in a wavelength region equal to or greater than a transmittance of light in a long wavelength region, the liquid crystal material having a cholesteric phase is a chiral liquid crystal material having a nematic phase and a chiral component added thereto. Using a nematic liquid crystal and adjusting the concentration of the chiral component in the liquid crystal material, the applied voltage of the spectrum of light transmitted through the composite film Lighting apparatus being characterized in that to control the dependence of.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14177992A JP3174145B2 (en) | 1992-06-02 | 1992-06-02 | Lighting equipment |
PCT/JP1992/001479 WO1993015433A1 (en) | 1992-01-30 | 1992-11-12 | Liquid crystal light regulating plate and illuminator including the same |
EP92923569A EP0578827B1 (en) | 1992-01-30 | 1992-11-12 | Illumination system comprising a liquid crystal light regulating plate |
KR1019930702961A KR0151864B1 (en) | 1992-01-30 | 1992-11-12 | Liquid crystal light regulating plate and illuminator including the same |
DE69231810T DE69231810T2 (en) | 1992-01-30 | 1992-11-12 | LIGHTING SYSTEM WITH LIQUID CRYSTAL LIGHT CONTROL PANEL |
US08/122,576 US5764316A (en) | 1992-01-30 | 1992-11-12 | Liquid crystal dimmer plate and lighting system including the same |
CA002106782A CA2106782C (en) | 1992-01-30 | 1992-11-12 | Liquid crystal dimmer plate and lighting system including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14177992A JP3174145B2 (en) | 1992-06-02 | 1992-06-02 | Lighting equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05333323A JPH05333323A (en) | 1993-12-17 |
JP3174145B2 true JP3174145B2 (en) | 2001-06-11 |
Family
ID=15299977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14177992A Expired - Fee Related JP3174145B2 (en) | 1992-01-30 | 1992-06-02 | Lighting equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3174145B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11353907A (en) * | 1998-06-05 | 1999-12-24 | Nippon Hoso Kyokai <Nhk> | Lighting equipment |
US7136035B2 (en) | 2001-12-11 | 2006-11-14 | Seiko Epson Corporation | Projection type display, a display and a drive method thereof |
EP3936929A4 (en) * | 2019-03-07 | 2022-04-27 | LG Chem, Ltd. | Optical modulation element |
-
1992
- 1992-06-02 JP JP14177992A patent/JP3174145B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05333323A (en) | 1993-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3551381B2 (en) | Liquid crystal light modulation devices and materials | |
US5764316A (en) | Liquid crystal dimmer plate and lighting system including the same | |
US5305126A (en) | Polymer-dispersed liquid crystal material with in-situ polymerized liquid crystal polymer grains dispersed in a layer of liquid crystal material sealed between substrates and field electrodes | |
US6762801B2 (en) | Varying light transmittance through a display panel | |
EP0559378B1 (en) | Polymer dispersion type liquid crystal display element and reflection type liquid crystal display device and method for making the same | |
US5695682A (en) | Liquid crystalline light modulating device and material | |
US7009665B2 (en) | Electro-optical glazing structures having scattering and transparent modes of operation and methods and apparatus for making the same | |
JP2991577B2 (en) | Driving method of liquid crystal element, liquid crystal device and lighting device | |
KR100320157B1 (en) | Chiral nematic liquid crystal composition and devices comprising the same | |
US6025895A (en) | Liquid crystal display with mutually oriented and dispersed birefringent polymer and liquid crystal and random oriented twist alignment | |
JP3795598B2 (en) | Liquid crystal display | |
JP2000321562A (en) | Liquid crystal optical device having reverse mode optical switching function and its production | |
JP3174145B2 (en) | Lighting equipment | |
JPH10221684A (en) | Liquid crystal device | |
JP3881110B2 (en) | Liquid crystal light shutter for light control and method for producing the same | |
JP3013496B2 (en) | Driving method of LCD shutter | |
JP2000347223A (en) | Liquid crystal dimming body | |
CN114442348B (en) | Dimming device with multifunctional electric control optical characteristics | |
JP2000347224A (en) | Liquid crystal light dimming body | |
JP3092242B2 (en) | Liquid crystal display | |
JPH08211369A (en) | Liquid crystal display element | |
JPH04116622A (en) | Liquid crystal electrooptical element | |
JPH04319911A (en) | Liquid crystal display element and its manufacturing method | |
JPH05203926A (en) | Liquid crystal display element | |
JPH0588149A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090330 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |