JP3172782B2 - High pressure injection stir pile method and its equipment - Google Patents
High pressure injection stir pile method and its equipmentInfo
- Publication number
- JP3172782B2 JP3172782B2 JP12388696A JP12388696A JP3172782B2 JP 3172782 B2 JP3172782 B2 JP 3172782B2 JP 12388696 A JP12388696 A JP 12388696A JP 12388696 A JP12388696 A JP 12388696A JP 3172782 B2 JP3172782 B2 JP 3172782B2
- Authority
- JP
- Japan
- Prior art keywords
- injection
- flow path
- pressure
- pipe
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Piles And Underground Anchors (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、三重管を注入管と
し、該注入管の先端に噴射注入装置を取り付けて、前記
注入管の頂部にある注入管スイベルを介して高圧液と圧
縮空気を送り、噴射注入装置の噴射ノズルから噴射して
所定造成範囲の土砂を切削すると同時に、噴射注入装置
の注入ノズルからセメント系固化材液を噴射することに
よって、所定造成範囲をセメント系固化材液で円柱状に
固結造成する、一般にジェットグラウト工法と呼称され
る、高圧噴射攪拌杭工法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to a triple pipe as an injection pipe, an injection injection device attached to the tip of the injection pipe, and high-pressure liquid and compressed air through an injection pipe swivel at the top of the injection pipe. At the same time as cutting the earth and sand in a predetermined formation range by injecting from the injection nozzle of the injection and injection device, the cement-based solidification material liquid is sprayed from the injection nozzle of the injection and injection device to set the predetermined formation range with the cement-type solidification material liquid. The present invention relates to a high-pressure injection-stirring pile method generally called a jet grout method for solidifying and forming a column.
【0002】[0002]
【従来の技術】三重管を注入管とする公知技術として、
予め削孔マシンとケーシング管により所定造成開始位置
まで削孔し、前記ケーシング管内に注入管とその先端に
噴射注入装置を取り付けて挿入し、前記ケーシング管を
引き抜いた後、削孔マシンを造成マシンと交換し、注入
管頂部にある注入管スイベルを介して、注入管の内管流
路には清水と中管流路には圧縮空気を送り、前記噴射注
入装置の噴射ノズルから噴射して所定造成範囲の土砂を
切削し、切削した土砂をスライムとして排出すると同時
に、注入管の外管流路にセメント系固化材液を送り、噴
射注入装置の注入ノズルからセメント系固化材液を噴射
し、注入管を所定の回転数と噴射時間により回転引き上
げて、所定造成範囲をセメント系固化材液で置き換えて
円柱状に固結造成するコラムジェット工法がある。ま
た、前記コラムジェット工法と同様に、予め削孔マシン
とケーシング管により所定造成開始位置まで削孔し、前
記ケーシング管内に注入管とその先端に噴射注入装置を
取り付けて挿入し、前記ケーシング管を引き抜いた後、
削孔マシンを造成マシンと交換し、注入管頂部にある注
入管スイベルを介して、注入管の内管流路には清水と中
管流路には圧縮空気を送り、噴射注入装置の噴射ノズル
から噴射して所定造成範囲の土砂を切削し、切削した土
砂をスライムとして排出すると同時に、注入管の外管流
路に泥水液を送り、噴射注入装置の注入ノズルから泥水
液を噴射し、注入管を所定の回転数と噴射時間により回
転引き上げて、所定造成範囲を泥水液で置き換え、再度
注入管と噴射注入装置を所定造成開始位置に挿入し、注
入管頂部にある注入管スイベルを介して、注入管の内管
流路には清水と中管流路には圧縮空気を送り、噴射注入
装置の噴射ノズルから噴射して所定造成範囲の置き換え
た泥水液と土砂を再切削し、再切削した泥水液と土砂を
スライムとして排出すると同時に、注入管の外管流路に
セメント系固化材液を送り、噴射注入装置の注入ノズル
からセメント系固化材液を噴射し、注入管を所定の回転
数と噴射時間により回転引き上げて、所定造成範囲をセ
メント系固化材液と置き換え円柱状に固結造成する公開
技術などがある。2. Description of the Related Art As a known technique using a triple pipe as an injection pipe,
A drilling machine and a casing pipe are drilled in advance to a predetermined formation start position, an injection pipe is mounted in the casing pipe, and an injection and injection device is attached to the tip thereof, and the casing pipe is pulled out. And, through the injection pipe swivel at the top of the injection pipe, send clean water to the inner pipe flow path of the injection pipe and compressed air to the middle pipe flow path, and inject it from the injection nozzle of the injection injection device to the specified At the same time as cutting the soil in the development area and discharging the cut soil as slime, the cement-based solidifying material liquid is sent to the outer pipe channel of the injection pipe, and the cement-based solidifying material liquid is injected from the injection nozzle of the injection injection device, There is a column jet method in which an injection pipe is rotated and raised at a predetermined rotation speed and injection time, and a predetermined formation range is replaced with a cement-based solidifying material liquid to solidify and form a column. In addition, similarly to the column jet method, a drilling machine and a casing pipe are drilled in advance to a predetermined formation start position, and an injection pipe is attached to the casing pipe and an injection injector is attached to the tip thereof, and the casing pipe is inserted. After pulling out
The drilling machine was exchanged for a forming machine, and through the injection pipe swivel at the top of the injection pipe, fresh water and compressed air were sent to the inner pipe flow path of the injection pipe, and the injection nozzle of the injection injection device Injects muddy water into the outer pipe flow path of the injection pipe at the same time as discharging slime as a slime, and injects the muddy liquid from the injection nozzle of the injection injection device, and injects it Rotate the pipe by a predetermined number of revolutions and injection time, replace the predetermined formation area with muddy fluid, insert the injection pipe and injection injection device again at the predetermined formation start position, and through the injection pipe swivel at the top of the injection pipe. The fresh water is sent to the inner pipe flow path of the injection pipe, and the compressed air is sent to the middle pipe flow path. Drained muddy water and sediment as slime At the same time, the cement-based solidifying material liquid is sent to the outer pipe flow path of the injection pipe, the cement-based solidifying material liquid is injected from the injection nozzle of the injection and injection device, and the injection pipe is rotated and pulled up at a predetermined rotation speed and injection time, There is, for example, an open technology in which a predetermined formation range is replaced with a cement-based solidifying material liquid to form and solidify in a cylindrical shape.
【0003】[0003]
【発明が解決しようとする課題】三重管を注入管とする
従来工法では、注入管の先端に取り付ける噴射注入装置
には削孔機能が無く、通常は削孔マシンとケーシング管
により所定造成開始位置まで削孔し、前記ケーシング管
内に注入管とその先端に噴射注入装置を取り付けて挿入
する為マシンの交換作業が必要であり、或いは噴射注入
装置に削孔ビットを具備する場合にあっては、注入管の
内管流路から削孔水を送り所定造成開始位置まで削孔し
た後、注入管の内管に鋼球を投入して噴射注入装置の削
孔水吐出口を密閉する作業があり、前記密閉作業には注
入管スイベル或いは注入管の着脱が必要で、前記着脱作
業によって注入管の各流路が解放される結果、噴射注入
装置にある噴射ノズルまたは注入ノズル内に土砂が逆流
して閉塞する等の問題があった。また、従来工法によれ
ば、注入管の先端に取り付けた噴射注入装置の高圧ノズ
ルと空気ノズルの組み合わせからなる噴射ノズルは1対
であり、該噴射ノズルからは、高圧液として清水を吐出
圧力400kg/cm2で吐出量70l/分と圧縮空気
を吐出圧力7kg/cm2で吐出量1.5m2/分前後
とする噴流能力により噴射し、注入管を毎分4乃至6回
転の範囲で回転しながら1m当たり20分の噴射時間に
より引き上げ、同時に注入ノズルからセメント系固化材
液を吐出量180l/分前後で噴射する標準仕様によ
り、直径2m程度の円柱状の固結体を造成することが出
来る。しかし、最近の建設工事の規模拡大に伴い、高圧
噴射攪拌工法による地盤改良工事も大深度での施工が多
くなり、前記従来工法の標準仕様による場合には削孔距
離が増大して施工効率が悪化し、また注入管スイベル或
いは注入管の着脱作業が必然的に増加する結果、噴射注
入装置にある噴射ノズルまたは注入ノズルが閉塞するこ
とが多く、施工性が悪くなる等の問題があった。更に、
公知技術のコラムジェット工法にあっては、注入管頂部
にある注入管スイベルを介して、注入管の内管流路には
清水と中管流路には圧縮空気を送り、前記噴射注入装置
の噴射ノズルから噴射して、所定造成範囲の土砂を切削
すると同時に、注入管の外管流路にセメント系固化材液
を送り、噴射注入装置の注入ノズルから噴射して所定造
成範囲をセメント系固化材液で円柱状に固結造成する場
合において、噴射注入装置の噴射ノズルから噴射される
清水と圧縮空気による高圧噴流によって切削された土砂
は、注入管の周囲にある排泥経路からスライムとして順
次排出し、切削した所定造成範囲をセメント系固化材液
と置き換えるので、所定造成範囲の土量に等しいセメン
ト系固化材液量が必要となり、その結果円柱状に強固な
固結体を造成することが出来る反面、低強度の固結体を
造成する必要がある場合にあっても、貧配合のセメント
系固化材液を同量噴射することになり、且つ排出される
スライム量は、噴射注入装置により噴射する清水とセメ
ント系固化材液の総量となり、且つスライムの処分には
産業廃棄物としての取り扱いが必要であり、セメント系
固化材液とスライムの減量化は、経済性と環境保全の上
から緊急の課題となっている。一方、公開技術によれ
ば、注入管頂部にある注入管スイベルを介して、注入管
の内管流路には清水と中管流路には圧縮空気を送り、噴
射注入装置の噴射ノズルから噴射して所定造成範囲の土
砂を切削し、切削した土砂をスライムとして排出すると
同時に、注入管の外管流路に泥水液を送り、噴射注入装
置の注入ノズルから泥水液を噴射する場合において、ス
ライムとして排出される土砂分は泥水液の性質と地盤の
土質により異なり、特に大粒径の土砂の多くは所定造成
範囲の底部に沈降堆積する結果、前記泥水液で置き換え
た後、連続して再度注入管と噴射注入装置を所定造成開
始位置まで挿入することが出来ないことが多い。また、
前記泥水液で置き換えた所定造成範囲を再度注入管と噴
射注入装置を挿入し、注入管頂部にある注入管スイベル
を介して、注入管の内管流路には清水と中管流路には圧
縮空気を送り、噴射注入装置の噴射ノズルから噴射して
所定造成範囲の置き換えた泥水液と土砂を再切削し、再
切削した泥水液と土砂をスライムとして排出すると同時
に、注入管の外管流路にセメント系固化材液を送り、噴
射注入装置の注入ノズルから噴射してセメント系固化材
液で置き換え円柱状に固結造成する場合にあっては、所
定造成範囲外の土砂も追加切削されながら前記泥水液と
セメント系固化材液で置き換えるので、セメント系固化
材液が不足して不均一となり、所定強度が得られないな
どの問題がある。In the conventional method using a triple pipe as an injection pipe, the injection injection apparatus attached to the tip of the injection pipe does not have a drilling function. Usually, a predetermined drilling start position is provided by a drilling machine and a casing pipe. In order to insert and insert the injection pipe and the injection injection device at the tip of the injection pipe in the casing pipe, it is necessary to replace the machine, or when the injection injection apparatus is provided with a drill bit, After drilling water from the inner pipe flow path of the injection pipe and drilling to the predetermined formation start position, there is a work to insert a steel ball into the inner pipe of the injection pipe and seal the drilling water discharge port of the injection injection device. In addition, it is necessary to attach / detach the injection pipe swivel or the injection pipe for the sealing operation, and as a result of opening / closing each flow path of the injection pipe by the attachment / detachment operation, the sediment flows back into the injection nozzle or the injection nozzle in the injection / injection apparatus. Such as blocking There was a problem. Further, according to the conventional method, the injection nozzle composed of a combination of the high-pressure nozzle and the air nozzle of the injection injection device attached to the tip of the injection pipe is a pair, and from the injection nozzle, fresh water is discharged as a high-pressure liquid at a discharge pressure of 400 kg. / Cm 2 at a discharge rate of 70 l / min and compressed air at a discharge pressure of 7 kg / cm 2 with a discharge capacity of about 1.5 m 2 / min, and the injection pipe rotates at a rate of 4 to 6 revolutions per minute. With a standard specification of injecting the cement-based solidifying material liquid from the injection nozzle at a discharge rate of about 180 l / min while forming the solidified body having a diameter of about 2 m, it is possible to form a columnar consolidated body having a diameter of about 2 m. I can do it. However, with the recent enlargement of construction work, ground improvement work by high-pressure injection agitation method has also been performed at a large depth, and in the case of the standard specifications of the conventional method, the drilling distance increases and the construction efficiency increases. As a result, the injection nozzle or injection nozzle in the injection injection device is often closed, resulting in problems such as poor workability. Furthermore,
In the column jet method of the prior art, through the injection pipe swivel at the top of the injection pipe, fresh water and compressed air are sent to the inner pipe flow path of the injection pipe, Injects from the injection nozzle to cut the earth and sand within the specified development area, and at the same time, sends the cement-based solidifying material liquid to the outer pipe flow path of the injection pipe, and injects from the injection nozzle of the injection injection device to cement-set the specified development area. In the case of solidification and formation with a material liquid, the sediment cut by the high pressure jet by the fresh water and compressed air injected from the injection nozzle of the injection injection device is sequentially turned into slime from the sludge discharge route around the injection pipe Since the discharged and cut predetermined forming range is replaced with the cement-based solidifying material liquid, an amount of cement-based solidifying material liquid equal to the amount of soil in the predetermined forming range is required, and as a result, a solid compact is formed in a columnar shape. On the other hand, even when it is necessary to form a low-strength consolidated body, the same amount of poorly mixed cement-based solidifying material liquid will be injected, and the amount of slime discharged will be The total amount of fresh water and cement-based solidifying material liquid injected by the device is required, and disposal of slime requires handling as industrial waste.Reducing the amount of cement-based solidifying material liquid and slime requires economic and environmental conservation. It is an urgent task from above. On the other hand, according to the disclosed technology, through the injection pipe swivel at the top of the injection pipe, fresh water and compressed air are sent to the inner pipe flow path of the injection pipe, and injected from the injection nozzle of the injection injection apparatus. In the case of cutting mud and sand in a predetermined creation area and discharging the cut mud as slime, at the same time sending muddy liquid to the outer pipe flow path of the injection pipe and injecting muddy liquid from the injection nozzle of the injection injection device, slime The sediment discharged as varies depending on the properties of the muddy water and the soil properties of the ground, and in particular, most of the large-diameter sediment settles and deposits at the bottom of the predetermined development area, and is continuously replaced again after being replaced with the muddy liquid. In many cases, it is not possible to insert the injection pipe and the injection injection device to a predetermined formation start position. Also,
Insert the injection pipe and the injection injection device again into the predetermined formation area replaced with the muddy fluid, and through the injection pipe swivel at the top of the injection pipe, to the inner pipe flow path of the injection pipe to the fresh water and the middle pipe flow path Compressed air is sent and injected from the injection nozzle of the injection and injection device to re-cut the replaced muddy fluid and earth and sand within the specified formation area, and the re-cut muddy liquid and earth and sand are discharged as slime and at the same time, the outer pipe flow of the injection pipe is discharged. When the cement-based solidifying material liquid is sent to the road and injected from the injection nozzle of the injection and injection device and replaced with the cement-based solidifying material liquid and solidified and formed into a columnar shape, the earth and sand outside the specified formation range is additionally cut. However, since the muddy liquid is replaced with the cement-based solidifying material liquid, the cement-based solidifying material liquid becomes insufficient and non-uniform, so that a predetermined strength cannot be obtained.
【0004】[0004]
【課題を解決するための手段】上記課題を解決する本発
明によれば、三重構造の注入管と、該注入管の先端に噴
射注入装置があり、注入管の頂部に取り付けた注入管ス
イベルを介して、注入管の内管流路には高圧液と中管流
路には圧縮空気を送り、且つ外管流路には注入材液を送
る各ポンプ類と造成マシンとからなる注入設備からな
り、前記造成マシンにより、注入管スイベルを介して、
注入管の外管流路から削孔水を送り、噴射注入装置の削
孔水吐出口より吐出しながら、所定造成開始位置まで削
孔を行う。続いて、所定造成開始位置において、注入管
スイベルを介して、注入管の内管流路に高圧液として清
水を送り、噴射注入装置の高圧ノズルから噴射すること
により高圧流路が加圧され、噴射注入装置の高圧差動弁
が下降して注入差動弁を下押し、噴射注入装置の注入流
路は削孔水吐出口が密閉され注入ノズルへ連通して切り
替わる。同時に、注入管の中管流路から圧縮空気を送
り、噴射注入装置の軸直方向にある高圧ノズルと空気ノ
ズルの組み合わせからなる噴射ノズルから、高圧液とし
て清水と圧縮空気を噴射して所定造成範囲の土砂を切削
すると同時に、注入管の外管流路から注入材液として安
定材液を送り、噴射注入装置にある注入ノズルから噴射
して切削した土砂と安定材液を混合しながら、注入管を
毎分15回転以下の回転数と所定の噴射時間により回転
引き上げて、所定造成範囲を切削土砂と安定材液で混合
して切削混合域とする第一工程があり、前記第一工程の
終了に連続して、注入管スイベルを介して送られる高圧
液と圧縮空気を停止し、注入管の内管流路を減圧するこ
とによって噴射注入装置の高圧差動弁は高圧差動弁スプ
リングにより注入差動弁は注入差動弁スプリングにより
原位置に復帰し、噴射注入装置の注入流路は削孔水吐出
口へ連通し、注入管の外管流路から削孔水を送りながら
切削混合域の下端位置まで再度削孔する。引き続いて、
注入管スイベルを介して、注入管の内管流路に高圧液と
して清水を前記第一工程の吐出圧力の1/2乃至1の範
囲として送り、噴射注入装置の高圧ノズルから噴射する
ことにより高圧流路が加圧され、噴射注入装置の高圧差
動弁が下降して注入差動弁を下押し、噴射注入装置の注
入流路は削孔水吐出口が密閉され注入ノズルへ連通し、
同時に注入管の中管流路から圧縮空気を送り、噴射注入
装置の噴射ノズルから高圧液として清水と圧縮空気を噴
射して、前記第一工程により切削混合された切削混合域
を攪拌すると同時に、注入管の外管流路からは注入材液
としてセメント系固化材液を送り、噴射注入装置にある
注入ノズルから噴射して、切削混合域にある切削混合体
とセメント系固化材液を攪拌しながら、注入管を毎分3
0回転以下の回転数と所定の噴射時間により回転引き上
げて、切削混合域とセメント系固化材液により混合して
攪拌混合域とする第二工程により構成されることを特徴
とする高圧噴射攪拌杭工法。According to the present invention for solving the above-mentioned problems, there is provided an injection pipe having a triple structure and an injection injection device at the tip of the injection pipe, and an injection pipe swivel attached to the top of the injection pipe is provided. Through the injection equipment consisting of pumps and a forming machine that sends high pressure liquid to the inner pipe flow path and compressed air to the middle pipe flow path, and sends injection material liquid to the outer pipe flow path of the injection pipe By the forming machine, via the injection pipe swivel,
Drilling water is sent from the outer pipe flow path of the injection pipe, and is drilled to a predetermined formation start position while being discharged from the drilling water discharge port of the injection and injection device. Subsequently, at a predetermined formation start position, via the injection pipe swivel, the high-pressure flow path is pressurized by sending clear water as a high-pressure liquid to the inner pipe flow path of the injection pipe and injecting it from the high-pressure nozzle of the injection injection apparatus, The high pressure differential valve of the injection device is lowered to push down the injection differential valve, and the injection flow path of the injection device is switched by closing the drilling water discharge port and communicating with the injection nozzle. At the same time, compressed air is sent from the middle pipe flow path of the injection pipe, and clear water and compressed air are injected as high-pressure liquid from the injection nozzle consisting of a combination of a high-pressure nozzle and an air nozzle in the direction perpendicular to the axis of the injection injection device to form a predetermined structure. At the same time as cutting the earth and sand in the range, the stable material liquid is sent as the injection material liquid from the outer pipe flow path of the injection pipe, and injected from the injection nozzle in the injection injection device while mixing the cut soil and the stable material liquid There is a first step in which the pipe is rotated and pulled up at a rotation speed of 15 revolutions per minute or less and a predetermined injection time, and a predetermined formation range is mixed with the cutting soil and the stabilizing material liquid to form a cutting mixing zone. Continuing with the end, the high pressure liquid and compressed air sent through the injection pipe swivel are stopped, and the high pressure differential valve of the injection device is released by the high pressure differential valve spring by depressurizing the inner pipe flow path of the injection pipe. Note for injection differential valve It returns to the original position by the differential valve spring, and the injection flow path of the injection device communicates with the drilling water discharge port and sends drilling water from the outer pipe flow path of the injection pipe to the lower end position of the cutting mixing area again. Drill holes. Subsequently,
High-pressure liquid is sent as high-pressure liquid to the inner pipe flow path of the injection pipe through the injection pipe swivel as a high-pressure liquid in a range of 1/2 to 1 of the discharge pressure in the first step, and is injected from the high-pressure nozzle of the injection injection apparatus. The flow path is pressurized, the high pressure differential valve of the injection / injection device descends and pushes down the injection differential valve, and the injection flow channel of the injection / injection device has a drilled water discharge port sealed and communicates with the injection nozzle,
At the same time, compressed air is sent from the middle pipe flow path of the injection pipe, and fresh water and compressed air are injected as high-pressure liquid from the injection nozzle of the injection injection device, and at the same time the cutting and mixing area mixed and cut by the first step is stirred, A cement-based solidifying material liquid is sent from the outer pipe flow path of the injection pipe as an injection material liquid, and is jetted from an injection nozzle of an injection / injection device to stir the cutting mixture and the cement-based solidified material liquid in the cutting mixing area. While injecting the tube at 3
A high-pressure jet-stirring pile comprising a second step of rotating and pulling up at a rotation speed of 0 or less and a predetermined injection time, and mixing with a cutting mixing zone and a cement-based solidifying material liquid to form a stirring mixing zone. Construction method.
【0005】[0005]
【実施例】次に、本発明の実施例を図面に基づいて説明
する。図1は、本発明を実施する場合の施工順序を示す
説明図であって、(イ)は、造成マシン5に注入管2と
その先端に噴射注入装置3を取り付け、注入管2の頂部
に注入管スイベル1があり、注入管スイベル1を介し
て、注入管2の外管流路に削孔水を送り、噴射注入装置
3の注入流路10を経由して削孔水吐口23から吐出し
ながら、所定造成開始位置まで削孔を行う。(ロ)は、
削孔に引き続いて、注入管スイベル1を介して、注入管
2の内管流路に高圧液として清水を吐出圧力400kg
/cm2で吐出量120l/分と、中管流路に圧縮空気
を吐出圧力7kg/cm2で吐出量3.0m3/分とし
て噴射すると同時に、外管流路には注入材液として安定
材液を吐出量80l/分で送り、注入管2を毎分6回転
と噴射時間を10分/mで回転引き上げて、所定造成範
囲4の土砂を切削混合して切削混合域7を造成する第一
工程を行う。(ハ)は、前記第一工程に続いて、注入管
2の外管流路から再度削孔水を送り、噴射注入装置3の
注入流路10を経由して削孔水吐出口23から吐出しな
がら、注入管2と噴射注入装置3を切削混合域7の下端
まで再度削孔する。(ニ)は、再削孔に引き続いて、注
入管スイベル1を介して、注入管2の内管流路に高圧液
として清水を吐出圧力200kg/cm2で吐出量80
l/分と、中管流路に圧縮空気を吐出圧力7kg/cm
2で吐出量3.0m3/分として噴射すると同時に、外
管流路には注入材液としてセメント系固化材液を吐出量
160l/分で送り、注入管2を毎分12回転と噴射時
間を10分/mで回転引き上げて、切削混合域7の混合
体を攪拌混合して攪拌混合域8を造成する第二工程を行
う。図2は、本発明に使用する噴射注入装置3の断面図
で、注入管2の内管流路に連通する高圧流路9と、中管
流路に連通する空気流路11、及び外管流路に連通する
注入流路10があり、高圧流路9と連通する高圧ノズル
16間には高圧逆止弁14があり、空気流路11と連通
する空気ノズル15間には空気逆止弁12があり、高圧
ノズル16と空気ノズル15の組み合わせからなる噴射
ノズル13が軸直方向に2対あり、また注入管2の外管
流路に連通する注入流路10には削孔水吐出口23に連
通すると共に、注入差動弁19が下降した時連通する注
入ノズル20があり、注入流路10と連通する注入ノズ
ル20間に注入逆止弁21があり、削孔水吐出口23に
は削孔逆止弁24が取り付けてあり、土砂の逆流を確実
に防止することを特徴としている。Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a construction order in the case of carrying out the present invention. FIG. 1 (A) shows a construction machine 5 in which an injection pipe 2 and a jet injection apparatus 3 are attached to the tip thereof. There is an injection pipe swivel 1, drilling water is sent to the outer pipe flow path of the injection pipe 2 via the injection pipe swivel 1, and is discharged from the drilling water outlet 23 via the injection flow path 10 of the injection device 3. While drilling, the hole is drilled to the predetermined formation start position. (B)
Subsequent to drilling, 400 kg of fresh water was discharged as high-pressure liquid through the injection pipe swivel 1 into the inner pipe flow path of the injection pipe 2.
/ Cm 2 at a discharge rate of 120 l / min and compressed air into the middle pipe flow path at a discharge pressure of 7 kg / cm 2 at a discharge rate of 3.0 m 3 / min. The material liquid is fed at a discharge rate of 80 l / min, the injection pipe 2 is pulled up at 6 revolutions per minute and the injection time is rotated up at 10 min / m to cut and mix the earth and sand in the predetermined formation range 4 to form the cutting mixing area 7. Perform the first step. (C), after the first step, drilling water is sent again from the outer pipe flow path of the injection pipe 2 and discharged from the drilling water discharge port 23 via the injection flow path 10 of the injection device 3. While doing so, the injection pipe 2 and the injection injection apparatus 3 are drilled again to the lower end of the cutting mixing zone 7. (D) After the re-drilling, the fresh water is discharged at a discharge pressure of 200 kg / cm 2 as high-pressure liquid into the inner pipe flow path of the injection pipe 2 through the injection pipe swivel 1 at a discharge pressure of 200 kg / cm 2.
1 / min, and discharge pressure 7 kg / cm
2. At the same time, the injection was performed at a discharge rate of 3.0 m 3 / min, and at the same time, the cement-based solidifying material liquid was supplied to the outer pipe flow path as the injection liquid at a discharge rate of 160 l / min, and the injection pipe 2 was rotated 12 times per minute and the injection time Is rotated and pulled up at a rate of 10 minutes / m to perform a second step of stirring and mixing the mixture in the cutting and mixing zone 7 to form the stirring and mixing zone 8. FIG. 2 is a cross-sectional view of the injection / injection device 3 used in the present invention. The high-pressure passage 9 communicating with the inner tube passage of the injection tube 2, the air passage 11 communicating with the middle tube passage, and the outer tube There is an injection flow path 10 communicating with the flow path, a high pressure check valve 14 between the high pressure nozzles 16 communicating with the high pressure flow path 9, and an air check valve between the air nozzles 15 communicating with the air flow path 11. There are two pairs of injection nozzles 13 composed of a combination of a high-pressure nozzle 16 and an air nozzle 15 in a direction perpendicular to the axis, and a drilling water discharge port is provided in the injection flow path 10 communicating with the outer pipe flow path of the injection pipe 2. There is an injection nozzle 20 communicating with the injection nozzle 23 when the injection differential valve 19 is lowered, and an injection check valve 21 between the injection nozzles 20 communicating with the injection flow path 10. Is equipped with a drilling check valve 24, which reliably prevents backflow of earth and sand. It is.
【0006】[0006]
【発明の効果】以上、本発明の構成による効果は、造成
マシンにより削孔、切削混合する第一工程、攪拌混合す
る第二工程の全ての作業が連続して出来るので、マシン
の交換、或いは注入管と噴射注入装置の挿入作業の必要
がなく、また噴射注入装置は高圧流路の加圧状況によ
り、任意に連続して削孔或いは切削混合する第一工程ま
たは攪拌混合する第二工程に切り替えることが出来るの
で、大深度或いは狭小な場所においても、施工性が良く
効率的な作業が行える。また、噴射注入装置の高圧ノズ
ルと空気ノズルの組み合わせからなる噴射ノズルを2対
として噴流能力を倍加することによって、所定造成範囲
の土砂の切削に要する前記第一工程の噴射時間を従来工
法に較べ半減することが出来、或いは第一工程の噴射時
間を増加することによって、有効径3m以上の大口径杭
の造成も可能であり、施工効率を大幅に改善することが
出来る。一方、中管流路に送られる流体は圧縮空気であ
り、注入管スイベル或いは注入管の着脱時には、噴射注
入装置の空気流路内へ地下水とともに土砂が逆流し、圧
縮空気が送れないことが多く、特に複数の空気ノズルを
備える噴射注入装置にあっては均一な噴射が出来ず問題
であったが、本発明による噴射注入装置には空気流路と
空気ノズル間のそれぞれに空気逆止弁を備え、且つ空気
逆止弁の吐出方向は流入方向と180゜の角度があり、
また伸縮性環状弁によって吐出口を瞬時に閉鎖出来るの
で空気流路内に土砂が逆流することがなく、圧縮空気は
常に複数の空気ノズルから均等に噴射されるので、高圧
液と圧縮空気による噴流能力が低減することがなく、所
定造成範囲を確実に切削混合することが出来る。また、
本発明による噴射注入装置の高圧流路と高圧ノズル間、
及び注入流路と注入ノズル間或いは削孔水吐出口のそれ
ぞれに、高圧逆止弁と注入逆止弁、及び削孔逆止弁とが
あり、前記それぞれの逆止弁は流入方向に対して90゜
乃至180゜の角度となる流出方向とし、またそれぞれ
の流路が減圧された時は伸縮性環状弁が瞬時に吐出口に
密着するので、注入管スイベル或いは注入管の着脱作業
における、噴射注入装置の各ノズルの閉塞を確実に防止
することが出来る。更に、本発明によれば、攪拌混合す
る第二工程において注入管の内管流路に送る高圧液の吐
出圧力を第一工程の高圧液の吐出圧力の1/2乃至1の
範囲とし、且つ注入管の回転数は毎分30回転以下の範
囲として、攪拌混合に必要な範囲で噴射注入装置の噴射
ノズルの噴流能力を低下させることによって、所定造成
範囲外の土砂切削を回避し、第一工程によって切削混合
した所定造成範囲内を均一に攪拌混合することが出来る
ので、噴射する高圧液とセメント系固化材液の量を任意
に設定することによって、攪拌混合体の固結強度を任意
に設定することが出来ると同時に、材料コストの低減も
可能となる。また、所定造成範囲の土砂切削を行う場合
に、従来工法では単位長当たり20分/mの噴射引き上
げ時間となっており、その造成に伴って発生するスライ
ム量は5m3/m以上となるが、本発明によれば、第一
工程において安定材液吐出量を80l/分とし、単位長
当たり10分/mの噴射引き上げ時間として、その切削
混合に伴って発生するスライム量は2m3/m以上であ
り、また第二工程において高圧液の吐出量を80l/分
とセメント系固化材液吐出量を160l/分とし、単位
長当たり10分/mの噴射引き上げ時間とした場合、そ
の攪拌混合に伴って発生するスライム量は2.4m3/
m以上となり、従って発生するスライムの総量は4.4
m3/m以上となり、約10%程度の減量化が可能とな
る。更に、第一工程において発生するスライムの再処理
を行うことによって、標準的な砂質土において約40%
程度の減量化が実績として得られているので、処理の必
要となるスライムの総量は3.6m3/m以上となり、
産業廃棄物としては約20乃至30%程度の減量化が達
成される。以上、本発明によれば、造成有効径と造成強
度を任意に設定することによって、施工性と施工効率の
良い、経済的な高圧噴射攪拌杭工法が実施出来る。As described above, the effect of the structure of the present invention is that all operations of the first step of drilling, cutting and mixing, and the second step of stirring and mixing can be continuously performed by the forming machine, so that the machine can be replaced or replaced. There is no need to insert the injection pipe and injection injection device, and the injection injection device can be arbitrarily continuously drilled or cut and mixed in the first step or the second step of stirring and mixing, depending on the pressurized condition of the high pressure flow path. Since switching can be performed, workability is good and efficient work can be performed even at a large depth or a small place. In addition, the injection time of the first step required for cutting the earth and sand in a predetermined formation range can be compared with the conventional method by doubling the jetting ability with two pairs of injection nozzles composed of a combination of a high pressure nozzle and an air nozzle of the injection injection device. By reducing the time by half or by increasing the injection time of the first step, it is possible to form a large-diameter pile having an effective diameter of 3 m or more, and the construction efficiency can be greatly improved. On the other hand, the fluid sent to the middle pipe flow path is compressed air, and when the injection pipe swivel or the injection pipe is attached / detached, the soil and sand flow back into the air flow path of the injection / injection device together with the groundwater, and the compressed air often cannot be sent. In particular, in the case of an injection / injection device having a plurality of air nozzles, uniform injection could not be performed, which was a problem.However, the injection / injection device according to the present invention has an air check valve between the air flow path and the air nozzle. And the discharge direction of the air check valve has an angle of 180 ° with the inflow direction,
In addition, since the discharge port can be closed instantaneously by the elastic annular valve, there is no backflow of earth and sand in the air flow path, and compressed air is always jetted uniformly from multiple air nozzles, so jets of high pressure liquid and compressed air It is possible to reliably perform cutting and mixing in a predetermined formation range without reducing the capacity. Also,
Between the high-pressure channel and the high-pressure nozzle of the injection device according to the present invention,
And between the injection flow path and the injection nozzle or at each of the drilling water discharge ports, there is a high-pressure check valve and an injection check valve, and a drilling check valve, each said check valve with respect to the inflow direction The outlet direction is set to an angle of 90 ° to 180 °, and when each flow path is depressurized, the elastic annular valve instantaneously comes into close contact with the discharge port. Blockage of each nozzle of the injection device can be reliably prevented. Further, according to the present invention, in the second step of stirring and mixing, the discharge pressure of the high-pressure liquid sent to the inner pipe flow path of the injection pipe is set to a range of 乃至 to 1 of the discharge pressure of the high-pressure liquid in the first step, and The number of rotations of the injection pipe is set to a range of 30 rotations per minute or less, and by reducing the jetting ability of the injection nozzle of the injection injection device in a range necessary for stirring and mixing, it is possible to avoid earth and sand cutting outside a predetermined development range, Since it is possible to uniformly stir and mix within the predetermined formation range that has been cut and mixed by the process, the solidification strength of the stirred mixture can be arbitrarily set by arbitrarily setting the amount of the high-pressure liquid and the cement-based solidifying material liquid to be injected. At the same time, the material cost can be reduced. In the case of performing earth and sand cutting in a predetermined formation range, the conventional construction method has an injection pulling time of 20 minutes / m per unit length, and the amount of slime generated by the formation is 5 m 3 / m or more. According to the present invention, in the first step, the stabilizing material liquid discharge amount is set to 80 l / min, and the slime amount generated due to the cutting and mixing is 2 m 3 / m, with the injection pulling time of 10 minutes / m per unit length. In the second step, when the discharge amount of the high-pressure liquid is 80 l / min, the discharge amount of the cement-based solidifying material liquid is 160 l / min, and the injection pulling time is 10 minutes / m per unit length, the stirring and mixing are performed. The amount of slime generated due to is 2.4 m 3 /
m and thus the total amount of slime generated is 4.4
m 3 / m or more, and the weight can be reduced by about 10%. Furthermore, by reprocessing the slime generated in the first step, about 40%
Since the degree of weight reduction has been obtained as a result, the total amount of slime that needs to be treated is 3.6 m 3 / m or more,
Industrial waste can be reduced by about 20 to 30%. As described above, according to the present invention, an economical high-pressure jet-stirring pile method with good workability and work efficiency can be implemented by arbitrarily setting the formation effective diameter and the formation strength.
【図1】本発明の施工順序を示す説明図である。FIG. 1 is an explanatory view showing a construction order of the present invention.
【図2】本発明の噴射注入装置を示す断面図である。FIG. 2 is a cross-sectional view showing the injection / injection apparatus of the present invention.
【図3】本発明の噴射注入装置にある逆止弁を示す断面
図である。FIG. 3 is a sectional view showing a check valve in the injection device of the present invention.
1 注入管スイベル 2 注入管 3 噴射注入装置 4 所定造成範
囲 5 造成マシン 6 排泥経路 7 切削混合域 8 攪拌混合域 9 高圧流路 10 注入流路 11 空気流路 12 空気逆止
弁 13 噴射ノズル 14 高圧逆止
弁 15 空気ノズル 16 高圧ノズ
ル 17 高圧差動弁 18 高圧差動
弁スプリング 19 注入差動弁 20 注入ノズ
ル 21 注入逆止弁 22 注入差動
弁スプリング 23 削孔水吐出口 24 削孔逆止
弁 25 削孔ビット 26 伸縮性環
状弁DESCRIPTION OF SYMBOLS 1 Injection pipe swivel 2 Injection pipe 3 Injection injection device 4 Predetermined creation range 5 Creation machine 6 Drainage path 7 Cutting mixing area 8 Stirring mixing area 9 High pressure flow path 10 Injection flow path 11 Air flow path 12 Air check valve 13 Injection nozzle 14 High pressure check valve 15 Air nozzle 16 High pressure nozzle 17 High pressure differential valve 18 High pressure differential valve spring 19 Injection differential valve 20 Injection nozzle 21 Injection check valve 22 Injection differential valve spring 23 Drilling water outlet 24 Drilling Check valve 25 Drill bit 26 Elastic annular valve
フロントページの続き (56)参考文献 特開 昭54−90811(JP,A) 特開 平1−250517(JP,A) 特開 昭61−281191(JP,A) 特開 昭62−253687(JP,A) 特開 平3−197713(JP,A) 特開 平7−300849(JP,A) 実開 昭56−25737(JP,U) 実開 昭48−63512(JP,U) (58)調査した分野(Int.Cl.7,DB名) E02D 3/12 101 E02D 5/46 Continuation of the front page (56) References JP-A-54-90811 (JP, A) JP-A-1-250517 (JP, A) JP-A-61-281191 (JP, A) JP-A-62-253687 (JP) JP-A-3-197713 (JP, A) JP-A-7-300489 (JP, A) JP-A-56-25737 (JP, U) JP-A-48-63512 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) E02D 3/12 101 E02D 5/46
Claims (8)
射注入装置を取り付け、注入管の頂部にある注入管スイ
ベルを介して、前記注入管の内管流路に高圧液と中管流
路には圧縮空気を送り、且つ外管流路には注入材液を送
り、前記噴射注入装置にある高圧ノズルと空気ノズルの
組み合わせからなる噴射ノズルから、高圧液と圧縮空気
を同時に噴射して、所定造成範囲の土砂を切削すると同
時に、前記噴射注入装置の噴射ノズルの下方にある注入
ノズルから注入材液を噴射し、所定造成範囲の土砂と注
入材液を混合する高圧噴射攪拌杭工法であって、予め前
記注入管の外管流路から削孔水を送りながら、前記噴射
注入装置を所定造成開始位置まで削孔した後、前記注入
管スイベルを介して内管流路に高圧液と中管流路には圧
縮空気を送り、前記噴射注入装置の噴射ノズルから噴射
して所定造成範囲の土砂を切削すると同時に、前記注入
管の外管流路に注入材液を送り、噴射注入装置の噴射ノ
ズルの下方にある注入ノズルから噴射しながら、前記注
入管を所定の回転数と噴射時間により回転引き上げて、
所定造成範囲の土砂と噴射注入される注入材液で混合し
て、所定造成範囲を円柱状の切削混合体に造成して切削
混合域とする第一工程と、前記第一工程に連続して、再
度噴射注入装置を所定造成開始位置まで挿入或いは注入
管の外管流路に削孔水を送りながら削孔し、前記注入管
スイベルを介して内管流路に高圧液と中管流路には圧縮
空気を送り、前記噴射注入装置の噴射ノズルから噴射し
て切削混合域にある切削混合体を攪拌すると同時に、前
記注入管の外管流路に注入材液を送り、前記噴射注入装
置の噴射ノズルの下方にある注入ノズルから噴射しなが
ら、前記注入管を所定の回転数と噴射時間により回転引
き上げて、切削混合域の切削混合体と噴射注入される注
入材液で攪拌して、切削混合域を円柱状の攪拌混合体に
造成して攪拌混合域とする第二工程に分割し、所定造成
範囲を円柱状に固結造成することを特徴とする高圧噴射
攪拌杭工法。1. An injection pipe having a triple structure and an injection injection device attached to a tip of the injection pipe, and a high-pressure liquid and a high-pressure liquid are supplied to an inner pipe flow path of the injection pipe via an injection pipe swivel at the top of the injection pipe. Compressed air is sent to the pipe flow path, and injection material liquid is sent to the outer pipe flow path, and high-pressure liquid and compressed air are simultaneously injected from the injection nozzle composed of a combination of the high-pressure nozzle and the air nozzle in the injection and injection device. A high-pressure injection stirrer that cuts the earth and sand in the predetermined formation area and simultaneously injects the injection material liquid from an injection nozzle below the injection nozzle of the injection and injection device to mix the soil and the injection material liquid in the predetermined formation area. In the method, after drilling the injection / injection device to a predetermined formation start position while feeding drilling water from the outer pipe flow path of the injection pipe in advance, a high pressure is applied to the inner pipe flow path via the injection pipe swivel. Compressed air is sent to the liquid At the same time as injecting from the injection nozzle of the injection injection device to cut the earth and sand within a predetermined creation range, the injection material liquid is sent to the outer pipe flow path of the injection pipe, and injected from the injection nozzle below the injection nozzle of the injection injection device. Meanwhile, the injection pipe is rotated up by a predetermined rotation speed and injection time,
The first step of mixing with the injection material liquid to be injected and injected with the earth and sand of the predetermined formation range, and forming the predetermined formation range into a cylindrical cutting mixture to form a cutting mixing zone, and continuously with the first step. The injection injection device is inserted again to the predetermined formation start position or drilled while sending drilling water to the outer pipe flow path of the injection pipe, and the high-pressure liquid and the middle pipe flow path are supplied to the inner pipe flow path via the injection pipe swivel. The compressed air is sent from the injection nozzle of the injection and injection device to agitate the cutting mixture in the cutting and mixing area, and at the same time, the injection material liquid is sent to the outer pipe flow path of the injection tube, While injecting from the injection nozzle below the injection nozzle, the injection pipe is rotated and pulled up by a predetermined number of revolutions and injection time, and agitated with the injection mixture liquid that is injected by injection with the cutting mixture in the cutting mixing area, Stir and mix by forming the cutting and mixing area into a cylindrical stirring and mixing body To divide the second step, high-pressure jet agitation Pile characterized by consolidation construct a predetermined Construction range in a cylindrical shape.
介して注入管の外管流路に送られる注入材液は、二酸化
珪素及び酸化アルミニウムを含有する粘土鉱物を主材と
する、カルボキシメチルセルロース系の増粘剤との混合
によるものであって、その混合比重が1.05以上であ
り、且つファンネル粘度が20秒以上とする安定材液で
あることを特徴とする、特許請求の範囲第1項に関する
高圧噴射攪拌杭工法。2. In the first step, the injection material liquid sent to the outer pipe flow path of the injection pipe via the injection pipe swivel is a carboxymethyl cellulose containing a clay mineral containing silicon dioxide and aluminum oxide as a main material. A stabilizer liquid having a mixing specific gravity of 1.05 or more and a funnel viscosity of 20 seconds or more, which is obtained by mixing with a system thickener. High pressure injection stir pile method concerning item 1.
介して注入管の外管流路に送られる注入材液は、普通ポ
ルトランドセメント或いは高炉セメントを主材とするセ
メント系固化材液であって、該セメント系固化材液の水
セメント比が1.0以下であり、また内管流路に送られ
る高圧液とセメント系固化材液の総量における水セメン
ト比が1.5以下となるセメント系固化材液であことを
特徴とする、特許請求の範囲第1項に関する高圧噴射攪
拌杭工法。3. In the second step, the injection material liquid sent to the outer pipe flow path of the injection pipe through the injection pipe swivel is a cement-based solidification material liquid mainly composed of ordinary Portland cement or blast furnace cement. The cement wherein the water-cement ratio of the cement-based solidifying material liquid is 1.0 or less, and the water-cement ratio in the total amount of the high-pressure liquid and the cement-based solidifying material liquid sent to the inner pipe flow path is 1.5 or less. The high-pressure jet-stirred pile method according to claim 1, wherein the solidified material liquid is a system-solidified material liquid.
介して送られる高圧液の高圧ノズルから噴射される吐出
圧力は、前記第一工程において注入管スイベルを介して
送られる高圧液の高圧ノズルから噴射される吐出圧力の
1/2乃至1の範囲であり、且つ注入管の回転数は第一
工程においては毎分15回転以下であり、第二工程にお
いては毎分30回転以下であることを特徴とする、特許
請求の範囲第1項に関する高圧噴射攪拌杭工法。4. In the second step, the discharge pressure of the high-pressure liquid sent from the high-pressure nozzle sent through the injection pipe swivel is changed to the high-pressure nozzle of the high-pressure liquid sent through the injection pipe swivel in the first step. And the rotation speed of the injection pipe is not more than 15 rotations per minute in the first step and not more than 30 rotations per minute in the second step. The high-pressure jet-stirred pile method according to claim 1, characterized in that:
注入管の内管流路に連通する高圧流路と、中管流路に連
通する空気流路及び外管流路に連通する注入流路が前記
注入管と同軸方向にあり、前記高圧流路に連通して高圧
ノズルが軸直方向にあり、該高圧ノズルの外周には空気
流路に連通する空気ノズルが軸直方向にあり、また注入
流路に連通する注入ノズルが前記高圧ノズルと空気ノズ
ルの組み合わせからなる噴射ノズルより下方の軸直方向
にあって、且つ前記高圧流路と高圧ノズル間、空気流路
と空気ノズル間及び注入流路と注入ノズル間、さらに削
孔水吐出口のそれぞれに、伸縮性環状弁からなる逆止弁
を取り付けてあることを特徴とする、高圧噴射攪拌杭工
法用の噴射注入装置。5. A high pressure flow path communicating with an inner pipe flow path, an air flow path communicating with a middle pipe flow path, and an outer pipe flow path which are attached to a tip of an injection pipe having a triple structure. An injection flow path is coaxial with the injection pipe, a high-pressure nozzle is in communication with the high-pressure flow path, and a high-pressure nozzle is in a direction perpendicular to the axial direction. The injection nozzle communicating with the injection flow path is located in a direction perpendicular to the axis below the injection nozzle composed of the combination of the high-pressure nozzle and the air nozzle, and between the high-pressure flow path and the high-pressure nozzle, and between the air flow path and the air nozzle. A check injection valve for a high-pressure injection stir pile method, wherein a check valve composed of an elastic annular valve is attached to the space, between the injection flow path and the injection nozzle, and at each of the drilling water discharge ports.
圧流路の終端部は、高圧差動弁の受圧面により密閉さ
れ、該高圧差動弁の下方軸には下降する方向に抵抗する
高圧差動弁スプリングを具備し、また前記高圧差動弁の
下方軸に接して注入差動弁が同軸上に連続してあり、該
注入差動弁の上方軸には軸直方向に開孔部があり、また
注入差動弁の下方軸には下降する方向に抵抗する注入差
動弁スプリングを具備し、前記高圧差動弁の下降によ
り、注入差動弁の上方軸にある開孔部は注入流路と注入
ノズルを連通する位置となり、且つ下方軸の先端は削孔
水吐出口を密閉する位置となること特徴とする、特許請
求の範囲第5項に関する噴射注入装置。6. A high-pressure flow path communicating with an inner pipe flow path of an injection pipe having a triple structure has a terminal end sealed by a pressure-receiving surface of a high-pressure differential valve, and has a downward direction on a lower shaft of the high-pressure differential valve. A high-pressure differential valve spring that resists the high-pressure differential valve, and an injection differential valve is coaxially continuous with a lower shaft of the high-pressure differential valve; In addition, the lower shaft of the injection differential valve is provided with an injection differential valve spring that resists in a downward direction, and the lower shaft of the injection high pressure differential valve is located on the upper shaft of the injection differential valve. 6. The injection / injection apparatus according to claim 5, wherein the opening is located at a position communicating the injection flow path with the injection nozzle, and the tip of the lower shaft is located at a position sealing the drilling water discharge port.
圧流路には、少なくとも2以上の高圧ノズルが軸直方向
にあり、該高圧ノズルの外周には注入管の中管流路に連
通する空気ノズルが軸直方向にあって、前記高圧ノズル
と空気ノズルの組み合わせからなる噴射ノズルを2対以
上具備することを特徴とする、特許請求の範囲第5項に
関する噴射注入装置。7. A high-pressure flow path communicating with an inner pipe flow path of an injection pipe having a triple structure has at least two or more high-pressure nozzles in a direction perpendicular to the axis. 6. The injection / injection apparatus according to claim 5, wherein the air nozzle communicating with the path is in a direction perpendicular to the axis, and comprises two or more pairs of injection nozzles each of which is a combination of the high-pressure nozzle and the air nozzle.
端部はネジ或いは噛み合わせにより固定され、円筒の軸
直面の外周には両面が傾斜面となる凹溝があり、該凹溝
の底面には複数個の吐出孔からなる吐出口があり、該吐
出口を密閉して凹溝には伸縮性環状弁を取り付けてあ
り、前記流入口からの流入方向に対して前記吐出口が9
0゜乃至180゜の流出方向となる逆止弁を、高圧流路
と高圧ノズル間、空気流路と空気ノズル間、注入流路と
注入ノズル間及び削孔水吐出日に具備することを特徴と
する、特許請求の範囲第5項に関する噴射注入装置。8. A cylindrical shape having one as an inlet, the end of which is fixed by a screw or meshing, and the outer periphery of the axial face of the cylinder has a concave groove having both surfaces inclined. There is a discharge port formed of a plurality of discharge holes on the bottom surface of the concave groove, the discharge port is sealed, and an elastic annular valve is attached to the concave groove. Exit 9
A check valve having an outflow direction of 0 ° to 180 ° is provided between the high-pressure flow path and the high-pressure nozzle, between the air flow path and the air nozzle, between the injection flow path and the injection nozzle, and on the drilling water discharge date. An injection / injection device according to claim 5, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12388696A JP3172782B2 (en) | 1996-04-10 | 1996-04-10 | High pressure injection stir pile method and its equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12388696A JP3172782B2 (en) | 1996-04-10 | 1996-04-10 | High pressure injection stir pile method and its equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09279566A JPH09279566A (en) | 1997-10-28 |
JP3172782B2 true JP3172782B2 (en) | 2001-06-04 |
Family
ID=14871804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12388696A Expired - Fee Related JP3172782B2 (en) | 1996-04-10 | 1996-04-10 | High pressure injection stir pile method and its equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3172782B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100449064C (en) * | 2007-03-22 | 2009-01-07 | 建研地基基础工程有限责任公司 | Vibration pipe-sinking wind pile-pressing machine |
CN104929135A (en) * | 2015-06-24 | 2015-09-23 | 江苏省建筑科学研究院有限公司 | Deep foundation pit underground diaphragm wall enclosure structure and chemical churning pile water stop construction method thereof |
JP6638312B2 (en) * | 2015-10-20 | 2020-01-29 | 株式会社大林組 | Caisson laying method |
CN107842030B (en) * | 2017-12-07 | 2023-08-11 | 中铁二十局集团第六工程有限公司 | High-pressure jet grouting pile equipment for cofferdam diaphragm wall construction and construction method |
JP2019112776A (en) * | 2017-12-21 | 2019-07-11 | 株式会社エヌ、アイ、テイ | Ground hardener injection method |
CN110172969B (en) * | 2019-06-17 | 2021-02-09 | 中交第三公路工程局有限公司 | Construction method of quadruple pipe high-pressure jet grouting pile |
CN112281827A (en) * | 2020-11-03 | 2021-01-29 | 秦皇岛市大地卓越岩土工程有限公司 | High-pressure air-disturbed cement-soil mixing pile construction process |
CN113152436A (en) * | 2020-12-15 | 2021-07-23 | 中铁三局集团广东建设工程有限公司 | Low-clearance MJS pile construction method |
CN115434306B (en) * | 2022-09-28 | 2024-06-14 | 山西冶金岩土工程勘察有限公司 | High-rotation spray pile construction process |
CN117418533B (en) * | 2023-12-18 | 2024-03-19 | 上海渊丰地下工程技术有限公司 | Four-axis compaction stirring pile equipment |
-
1996
- 1996-04-10 JP JP12388696A patent/JP3172782B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09279566A (en) | 1997-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20010048854A1 (en) | Apparatus and method for jet grouting | |
JP3172782B2 (en) | High pressure injection stir pile method and its equipment | |
KR100886220B1 (en) | High-pressure injection soil improvement system and method of construction | |
WO2006051865A1 (en) | Jetting and agitating construction method and jetting and agitating device | |
JP2949484B2 (en) | Injection solidification method and its injection device | |
KR100998969B1 (en) | Method purification for pollution of soil in-situ | |
KR100462977B1 (en) | Mixing processing method of high pressure jet eject and apparatus therefor | |
JPH07158050A (en) | Soil improvement work method by high-pressure injection and agitation | |
CN1287064C (en) | Soil excavating tool, swivel, connecting device and ground improving method | |
JPH1161799A (en) | High pressure jet agitation pile method by two or more jet nozzles | |
JP4150822B2 (en) | Excavation method and excavation apparatus | |
JP3833943B2 (en) | Chemical injection method and chemical injection device | |
JP2005180168A (en) | Replaceable columnar hardened formation device and formation method | |
JP4141184B2 (en) | In-situ purification method for contaminated groundwater | |
JP2004027796A (en) | Self-drilling injection device for use in high-pressure injection/agitation pile construction method | |
JPH0885940A (en) | Mixing method with stirring | |
KR100399532B1 (en) | Chemical Injection Method through the Space Grouting Rod | |
JP3247516B2 (en) | Injection pipe for ground improvement | |
JP2949485B2 (en) | Injection solidification method and its injection device | |
JP3317902B2 (en) | High pressure injection ground improvement method | |
CN110172970A (en) | A kind of rotary churning pile flow inlet line and its gunnite method avoiding slurries reverse irrigation | |
KR102514273B1 (en) | On-site silica sol manufacturing device using chemical pump, medium-pressure jet grout jetting device for spraying silica sol and cement milk manufactured by this device, and ground improvement method using the same | |
CN210099783U (en) | Abrasive hydraulic punching system capable of continuously adding sand | |
JP3124368B2 (en) | Earth pressure shield excavation method | |
JPH05255925A (en) | Improving or reinforcing method for ground |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140330 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |