[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3161846B2 - Separation of sialic acid-binding peptides in milk whey - Google Patents

Separation of sialic acid-binding peptides in milk whey

Info

Publication number
JP3161846B2
JP3161846B2 JP32470192A JP32470192A JP3161846B2 JP 3161846 B2 JP3161846 B2 JP 3161846B2 JP 32470192 A JP32470192 A JP 32470192A JP 32470192 A JP32470192 A JP 32470192A JP 3161846 B2 JP3161846 B2 JP 3161846B2
Authority
JP
Japan
Prior art keywords
sialic acid
whey
milk whey
gmp
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32470192A
Other languages
Japanese (ja)
Other versions
JPH07132049A (en
Inventor
有 桑田
英生 大友
智子 植田
温美 池田
武志 松下
隆 菊池
一郎 栗原
仁 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Meiji Dairies Corp
Original Assignee
Meiji Co Ltd
Meiji Dairies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd, Meiji Dairies Corp filed Critical Meiji Co Ltd
Priority to JP32470192A priority Critical patent/JP3161846B2/en
Publication of JPH07132049A publication Critical patent/JPH07132049A/en
Application granted granted Critical
Publication of JP3161846B2 publication Critical patent/JP3161846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Dairy Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は改良ホエーの製造法に関
するものである。更に詳細には、本発明は牛乳ホエーか
らシアル酸結合ペプタイドを分離剤を用いて吸着分離す
る方法に関するものである。更に詳細には、牛乳ホエー
中のシアル酸結合ペプタイドを、親水性の樹脂母体に弱
塩基性交換基を導入した陰イオン交換体に吸着させ、ア
ルカリや塩類で溶離させる方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing improved whey. More specifically, the present invention relates to a method for adsorptive separation of a sialic acid-binding peptide from milk whey using a separating agent. More specifically, the present invention relates to a method for adsorbing a sialic acid-binding peptide in milk whey to an anion exchanger in which a weakly basic exchange group is introduced into a hydrophilic resin matrix, and eluting it with an alkali or a salt.

【0002】本発明によれば、各種のすぐれた生理作用
を有するシアル酸結合ペプタイドを効率的に分離採取す
ることができるので、本発明は、機能性食品、特定保健
用食品、健康食品、栄養食品、その他各種飲食品の技術
分野のほか、医薬品や化粧品の技術分野でも重要な役割
を果すものである。
According to the present invention, sialic acid-binding peptides having various excellent physiological actions can be efficiently separated and collected. Therefore, the present invention provides functional foods, foods for specified health use, health foods, nutrition It plays an important role in the technical field of food and other various food and beverage products, as well as in the technical field of pharmaceuticals and cosmetics.

【0003】[0003]

【従来の技術】一般にチーズ製造において生成する牛乳
ホエーは、牛乳中の脂肪とカゼインを除く大部分の有効
水溶性成分を含有している。牛乳ホエーに大量に含まれ
る乳糖は、牛乳ホエーから容易に結晶化され、分離され
て食用や薬用に利用されてきた。
BACKGROUND OF THE INVENTION Milk whey, which is generally produced in cheese making, contains most of the active water-soluble ingredients except fat and casein in milk. Lactose contained in milk whey in large amounts has been easily crystallized from milk whey, separated and used for food and medicine.

【0004】しかしながら乳糖を分離した後の牛乳ホエ
ーは多くの場合そのままの状態で、すなわち低乳糖ホエ
ー、又はこれを各種の脱塩処理した脱塩低乳糖ホエーあ
るいは限外濾過処理(UF)したホエーたんぱく質濃縮
物の状態で、食品素材として利用されている程度であ
る。そしてホエー中のたんぱく質やペプタイドを個々の
成分に分別して利用することは、現在まで特別な例、た
とえばラクトフェリンを牛乳から選択的に分離すること
などを除いて、商業規模ではほとんど実用化されておら
ず、牛乳ホエーに含有されている各種たんぱく質やペプ
タイドの特徴を生かした高度の有効利用はなされていな
いのが現状である。
[0004] However, milk whey after the separation of lactose is in most cases intact, that is, low-lactose whey, or desalted low-lactose whey obtained by subjecting it to various desalination treatments, or ultrafiltration-treated (UF) whey. It is used only as a food ingredient in the form of protein concentrate. Until now, the use of proteins and peptides in whey by separating them into individual components has been practically used on a commercial scale, except for special cases such as selective separation of lactoferrin from milk. At the present time, there has not been a high degree of effective utilization of the characteristics of various proteins and peptides contained in milk whey.

【0005】牛乳ホエーには、赤血球の代謝、脳の重要
な機能を担うガングリオシドの構成、ある種の病原菌毒
素の受容等に関与するといわれる(小倉治夫,化学と生
物,29(4),248−251,1991)シアル酸
が含有されており、その多くはたんぱく質やペプタイド
に結合した形で存在している。一例を挙げればκ−カゼ
インやそのレンネット分解物であるグリコマクロペプタ
イド(GMP)、プロテオース・ペプトン(PP)等で
ある。遊離のシアル酸は、水処理等に用いられている合
成高分子系強塩基性陰イオン交換体に吸着し、容易に溶
離回収できるが(阿南巧一他、基礎生化学実験法5巻,
p157,丸善(株),1976)たんぱく質やペプタ
イドに結合したものは吸着しにくいことが確認されてい
る。
It is said that milk whey is involved in the metabolism of erythrocytes, the composition of gangliosides that play an important role in the brain, and the reception of certain toxins of pathogenic bacteria (Ogura Haruo, Chemistry and Biology, 29 (4), 248). -251, 1991) sialic acid, most of which is present in a form bound to proteins and peptides. Examples include κ-casein and its rennet degradation products such as glycomacropeptide (GMP) and proteose peptone (PP). Free sialic acid can be easily adsorbed and recovered on a synthetic polymer strong basic anion exchanger used in water treatment and the like (Kouichi Anan et al., Basic Biochemistry Experimental Method, Vol. 5,
p157, Maruzen Co., Ltd., 1976) It has been confirmed that those bound to proteins and peptides are difficult to adsorb.

【0006】従来、ホエーからシアル酸結合ペプタイド
を分離する試みが多くなされているが、それらの公知技
術及びその問題点を列挙する。
[0006] Conventionally, many attempts have been made to separate sialic acid-binding peptides from whey, and these known techniques and their problems are listed.

【0007】(1)UFを用いる方法 1)ジャン−マリ・ウスタシュ、公告特許公報 昭58
−23400 分画分子量10,000〜50,000のUFでホエー
を処理し、濃縮液側にシアル酸結合たんぱく質を、透過
液側に同低分子物質を分離するものであるが、濃縮液側
には脂肪やシアル酸を含有していないたんぱく質が、透
過液側には乳糖やミネラルが大量に含まれるため、シア
ル酸の純度に問題がある。シアル酸結合ペプタイドの純
度を上げるには、煩雑な後工程が必要である。
(1) Method using UF 1) Jean-Mari Ustash, published patent publication No. 1983
-23400 Whey is treated with UF having a molecular weight cutoff of 10,000 to 50,000 to separate sialic acid-binding protein on the concentrate side and low molecular weight substances on the permeate side. There is a problem in the purity of sialic acid because proteins containing no fat or sialic acid contain large amounts of lactose and minerals on the permeate side. In order to increase the purity of the sialic acid-binding peptide, a complicated post-process is required.

【0008】2)谷本守正ら、公開特許公報 平2−2
76542 GMPが低pHで分画分子量10,000〜50,00
0のUF膜を透過しやすくなる性質を利用したものであ
るが、ホエーたんぱく質の一部がGMPと挙動を共にす
るため、得られる製品のGMP純度、すなわちシアル酸
含量には限界がある。
[0008] 2) Morimasa Tanimoto et al., Published Patent Application No. 2-2
76542 GMP with low molecular weight cut off molecular weight 10,000-50,000
Although it utilizes the property of easily permeating a UF membrane of 0, the GMP purity of the obtained product, that is, the sialic acid content is limited because a part of the whey protein behaves together with GMP.

【0009】(2)クロマトグラフィーを用いる方法 以下にいくつかのシアル酸結合ペプタイド(GMP及び
PP)のクロマトグラフィーによる分離例を示す。これ
らは、主として実験室規模での実験、分析手法であり、
コストや安全性の観点から工業化には無理がある。ま
た、種々の緩衝液を使用しており、簡便な操作とは言え
ない。
(2) Method Using Chromatography Examples of the separation of some sialic acid-binding peptides (GMP and PP) by chromatography are described below. These are mainly laboratory-scale experiments and analytical methods,
Industrialization is impossible from the viewpoint of cost and safety. In addition, since various buffers are used, it is not a simple operation.

【0010】1)桑田ら、日本農芸化学会誌,43
(3),183−188,1969 弱塩基性陰イオン交換体(DEAE−Cellulos
e:Whatman社)カラムを用いてGMPを分離し
ているが、溶媒にピリジンを使用しているため食品とし
ては安全性に問題がある。また、実験室規模での分離を
前提としており、前処理にゲル濾過カラムやトリクロル
酢酸(TCA)処理を行っている。
1) Kuwata et al., Journal of the Japanese Society of Agricultural Chemistry, 43
(3), 183-188, 1969 Weakly basic anion exchanger (DEAE-Cellulos)
e: Whatman) GMP is separated using a column. However, since pyridine is used as a solvent, there is a problem in safety as a food. In addition, it is premised on separation on a laboratory scale, and a gel filtration column or a trichloroacetic acid (TCA) treatment is performed as a pretreatment.

【0011】2)C.V.Morrら,J.Food
Sci.,53(1),80−87,1988 ゲル濾過、弱塩基性陰イオン交換(DEAE−Seph
adex:Pharmacia LKB社)、アフィニ
ティクロマトグラフィーを組み合わせることにより、G
MPを分離しているが操作が煩雑である。陰イオン交換
時にトリス−塩酸−イミダゾール緩衝液を使用してお
り、食品としては安全性に問題がある。
2) C.I. V. Morr et al. Food
Sci. , 53 (1), 80-87, 1988 Gel filtration, weak basic anion exchange (DEAE-Seph
adex: Pharmacia LKB), by combining affinity chromatography,
Although the MP is separated, the operation is complicated. Since a Tris-hydrochloride-imidazole buffer is used during anion exchange, there is a problem in safety as food.

【0012】3)Kannoら,Jpn.J.Zoot
ech.Sci.,52(4),282−296,19
81 ゲル濾過と弱塩基性陰イオン交換(DEAE−Cell
ulose DE52:Whatman社)を併用し、
PPを分離している。ゲル濾過にトリス−塩酸緩衝液、
弱塩基性陰イオン交換にトリス−リン酸緩衝液を使用し
ており、食品としては安全性に問題がある。また、前処
理に硫酸アンモニウム分画を行っており、それを除去す
るのに手間がかかる。
3) Kanno et al., Jpn. J. Zoot
ech. Sci. , 52 (4), 282-296, 19
81 Gel filtration and weak basic anion exchange (DEAE-Cell
ulose DE52: Whatman)
PP is separated. Tris-HCl buffer for gel filtration,
Since a tris-phosphate buffer is used for weakly basic anion exchange, there is a problem in safety as a food. In addition, ammonium sulfate fractionation is performed in the pretreatment, and it takes time to remove it.

【0013】4)S.W.Leeら,Agric.Bi
ol.Chem.,51(6),1535−1540,
1987 カルボキシメチル(CM)基を導入した弱酸性陽イオン
交換体(CM−Sephadex C−25:Phar
macia LKB社)カラムを用い、GMPを分離し
ている。展開溶媒にイミダゾール−塩酸緩衝液を使用し
ているため、食品としては安全性に問題がある。
4) S. W. Lee et al., Agric. Bi
ol. Chem. , 51 (6), 1535-1540,
1987 Weakly acidic cation exchanger having a carboxymethyl (CM) group introduced therein (CM-Sephadex C-25: Phar
macia LKB) column to separate GMP. Since an imidazole-hydrochloric acid buffer is used as a developing solvent, there is a problem in safety as food.

【0014】5)C.Oliemanら,Neth.M
ilk Dairy J.,37,27−36,198
3 ゲル濾過高速液体クロマトグラフィーを用いてGMPを
分離している。GMPの検出を目的としている。前処理
として、試料にTCAを添加しているため、食品として
は安全性に問題が残る。
5) C.I. Olieman et al., Neth. M
ilk Dairy J. , 37, 27-36, 198
3 GMP is separated using gel filtration high performance liquid chromatography. It is intended to detect GMP. As TCA is added to the sample as a pretreatment, there remains a problem in safety as a food.

【0015】[0015]

【発明が解決しようとする課題】本発明は、このような
技術の現状に鑑みてなされたものであって、牛乳ホエー
中からシアル酸結合ペプタイドを効率的に、簡便に分離
するシステムを新たに開発するためになされたものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been made in view of such a state of the art, and has a new system for efficiently and easily separating sialic acid-binding peptides from milk whey. It was made for development.

【0016】[0016]

【課題を解決するための手段】本発明は、上記目的を達
成するため各方面から検討した結果完成されたものであ
って、その基本的技術思想は、牛乳ホエーをpH4−6
に調整した後、親水性の樹脂母体に弱塩基性の交換基を
導入した陰イオン交換体に接触させた後、該イオン交換
体にアルカリ金属塩、又はアルカリ土類金属塩の溶液を
通液すること、を特徴とする牛乳ホエー中のシアル酸結
合ペプタイドの分離方法である。
SUMMARY OF THE INVENTION The present invention has been completed as a result of studies from various angles to achieve the above object, and its basic technical idea is to use milk whey of pH 4-6.
After adjusting to a hydrophilic resin matrix, the solution was contacted with an anion exchanger in which a weakly basic exchange group was introduced, and then a solution of an alkali metal salt or an alkaline earth metal salt was passed through the ion exchanger. A method for separating sialic acid-binding peptides in milk whey.

【0017】また、本発明における牛乳ホエーとして
は、チーズホエー、レンネットホエー、それらを電気透
析等で脱塩したもの、UF等で濃縮したWPC、あるい
は加熱処理等を行って得られる除たんぱく質ホエーやW
PC、又はそれらの乾燥物を水で還元したものから選ば
れた1種以上が用いられる。
The milk whey of the present invention includes cheese whey, rennet whey, those desalted by electrodialysis or the like, WPC concentrated by UF or the like, and deproteinized whey obtained by heat treatment or the like. And W
PC or one or more selected from those obtained by reducing a dried product thereof with water is used.

【0018】また、本発明においては、親水性の樹脂母
体に弱塩基性交換基を導入した陰イオン交換体にシアル
酸結合ペプタイドを吸着せしめ、吸着したシアル酸結合
ペプタイドはアルカリ金属塩、又はアルカリ土類金属塩
の溶液で溶離せしめることにより、牛乳ホエー中のシア
ル酸結合ペプタイドを分離するものである。
In the present invention, the sialic acid-binding peptide is adsorbed on an anion exchanger in which a weakly basic exchange group is introduced into a hydrophilic resin matrix, and the adsorbed sialic acid-binding peptide is an alkali metal salt or an alkali metal salt. The sialic acid-binding peptide in milk whey is separated by elution with a solution of an earth metal salt.

【0019】本発明においては、各種牛乳ホエーをpH
4−6に調整した後、親水性の樹脂母体に弱塩基性交換
基を導入した陰イオン交換体に接触させてシアル酸結合
ペプタイドのみを陰イオン交換体に吸着させ、該イオン
交換体にアルカリ金属塩、又はアルカリ土類金属塩の溶
液を通液し、シアル酸結合ペプタイドを分離するもので
ある。
In the present invention, various types of milk whey are used in the pH range.
After adjusting to 4-6, the hydrophilic resin matrix is brought into contact with an anion exchanger in which a weakly basic exchange group is introduced to adsorb only the sialic acid-binding peptide to the anion exchanger. A solution of a metal salt or an alkaline earth metal salt is passed through to separate a sialic acid-binding peptide.

【0020】牛乳ホエーをあらかじめpH4−6に調整
しておくことは、親水性の樹脂母体に弱塩基性交換基を
導入した陰イオン交換体へのシアル酸結合ペプタイドの
吸着にとってきわめて重要であって、この条件からはず
れるとシアル酸結合ペプタイドの吸着率が低下し、本発
明の目的が達成されないことになる。本発明で使用する
親水性の樹脂母体に弱塩基性交換基を導入した陰イオン
交換体は、アガロース、デキストラン、セルロース、キ
トサン等の天然高分子多糖類、水酸基等の親水性官能基
を多数有する合成ポリビニル等を母体とする担体に、ジ
エチルアミノエチル(DEAE)基、アミノ基等の弱塩
基性の陰イオン交換基を導入したものであり、一般に市
販されているので、市販品を使用すればよい。4級アミ
ンや4級アミノエチル基といった強塩基性の交換基を導
入した強塩基性陰イオン交換体でも、シアル酸結合ペプ
タイドは吸着するが、吸着率が劣るため交換基は弱塩基
性のものが望ましい。
Pre-adjusting milk whey to pH 4-6 in advance is extremely important for the adsorption of sialic acid-binding peptides to an anion exchanger in which a weakly basic exchange group has been introduced into a hydrophilic resin matrix. If the conditions are not satisfied, the adsorption rate of the sialic acid-binding peptide will decrease, and the object of the present invention will not be achieved. The anion exchanger obtained by introducing a weakly basic exchange group into the hydrophilic resin matrix used in the present invention has a number of hydrophilic functional groups such as agarose, dextran, cellulose, natural high molecular polysaccharides such as chitosan, and hydroxyl groups. A carrier whose base is synthetic polyvinyl or the like, into which a weakly basic anion exchange group such as a diethylaminoethyl (DEAE) group or an amino group is introduced, and is generally commercially available, so a commercially available product may be used. . Even a strong basic anion exchanger having a strongly basic exchange group such as a quaternary amine or a quaternary aminoethyl group adsorbs a sialic acid-binding peptide, but the adsorption rate is poor, so the exchange group is weakly basic. Is desirable.

【0021】本発明において、親水性の樹脂母体に弱塩
基性交換基を導入した陰イオン交換体を使用するに際し
ては、通常のイオン交換樹脂と同様にカラム式、バッチ
式での処理が可能である。作業効率を考えた場合、操作
は断続的なものより連続的なものがよい。また、吸着率
を上げるには試料をあらかじめ脱塩し、シアル酸結合ペ
プタイドの陰イオン交換体への吸着に対して競合的に作
用する塩類を除くことが好ましい。
In the present invention, when an anion exchanger in which a weakly basic exchange group is introduced into a hydrophilic resin matrix is used, a column-type or batch-type treatment can be performed in the same manner as in a normal ion-exchange resin. is there. In consideration of work efficiency, continuous operation is preferable to intermittent operation. To increase the adsorption rate, it is preferable to desalt the sample in advance to remove salts that competitively act on the adsorption of the sialic acid-binding peptide to the anion exchanger.

【0022】バッチ式の場合は、親水性の樹脂母体に弱
塩基性交換基を導入した陰イオン交換体と牛乳ホエーを
混合し、pHを所定の値に調節するだけでシアル酸結合
ペプタイドが吸着される。ただし、ホエーたんぱく質、
例えばβ−ラクトグロブリンやα−ラクトアルブミンが
共存する場合は、その1部も同時に吸着するので、シア
ル酸純度を高めるにはカラム式での処理が望ましい。
In the case of the batch type, sialic acid-binding peptide is adsorbed only by mixing an anion exchanger having a weakly basic exchange group introduced into a hydrophilic resin matrix and milk whey and adjusting the pH to a predetermined value. Is done. However, whey protein,
For example, when β-lactoglobulin and α-lactalbumin coexist, a part thereof is also adsorbed at the same time, and therefore, a column-type treatment is desirable to increase sialic acid purity.

【0023】カラム式の場合、親水性の樹脂母体に弱塩
基性交換基を導入した陰イオン交換体を充填したカラム
に、pH4−6に調整した牛乳ホエーを通液するだけで
シアル酸結合ペプタイドのみが吸着され、共存するホエ
ーたんぱく質はほとんど吸着されない。吸着されたシア
ル酸結合ペプタイドはカラムに苛性ソーダ、苛性カリ等
のアルカリ液、又は塩化ナトリウム等の塩溶液を流すこ
とによって溶離させ、カラムを洗浄し、再び牛乳ホエー
の処理に使用できるものである。特に、アルカリ液をシ
アル酸結合ペプタイドの溶離に使用した場合は、イオン
交換体の再生の手間が省略できる。
In the case of the column type, milk whey adjusted to pH 4-6 is passed through a column filled with an anion exchanger in which a weakly basic exchange group has been introduced into a hydrophilic resin matrix, and the sialic acid-binding peptide is simply passed through. Only the adsorbed whey protein is hardly adsorbed. The adsorbed sialic acid-binding peptide is eluted by flowing an alkaline solution such as caustic soda or caustic potassium or a salt solution such as sodium chloride through the column, washing the column, and reusing the milk whey. In particular, when an alkaline solution is used for eluting a sialic acid-binding peptide, the labor for regeneration of the ion exchanger can be omitted.

【0024】次に本発明の試験例及び実施例を示す。な
お、シアル酸の定量は、チオバルビツール酸を用いる比
色法(阿南巧一他、基礎生化学実験法5巻,p157,
丸善(株),1976)で行った。
Next, Test Examples and Examples of the present invention will be described. In addition, the quantification of sialic acid was determined by a colorimetric method using thiobarbituric acid (Kunichi Anan et al., Basic Biochemistry Experimental Method, Vol. 5, p157,
(Maruzen Co., Ltd., 1976).

【0025】[0025]

【試験例1(分離剤のスクリーニング)】分離剤10m
lに対して12%(w/w)濃度で還元したEDWP
(ゴーダチーズホエーを電気透析脱塩し乾燥した物)を
50ml混合し、所定のpHで20分間攪拌保持した
後、濾紙で反応液と分離剤を分離し、濾液をシアル酸結
合ペプタイドの1つであるGMPの定量に供した。
Test Example 1 (Screening of Separating Agent) Separating Agent 10m
EDWP reduced at a concentration of 12% (w / w) to 1
(Gouda cheese whey was desalted by electrodialysis and dried) was mixed in an amount of 50 ml, stirred at a predetermined pH for 20 minutes, and then separated with a filter paper to separate the reaction solution and the separating agent. Was used for quantification of GMP.

【0026】(濾液中のGMP濃度/反応前のGMP濃
度)を指標に、各種分離剤のGMP吸着量を比較したと
ころ、表1〜表4の結果が得られた。表には示さなかっ
たが、カルボキシメチル基やスルホプロピル基等を交換
基とする陽イオン交換体には、いずれのpHにおいても
GMPはほとんど吸着されなかった。
The GMP adsorption amounts of various separating agents were compared using (GMP concentration in filtrate / GMP concentration before reaction) as an index, and the results in Tables 1 to 4 were obtained. Although not shown in the table, GMP was scarcely adsorbed to the cation exchanger having a carboxymethyl group or a sulfopropyl group as an exchange group at any pH.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】分離剤のスクリーニング(4) 注)各メーカーの分離剤毎に試験を実施した。試験試料
としたEDWPのロットが異なるため、原液のGMP濃
度は各実験で相違する。 注)交換基略号 DEAE:ジエチルアミノエチル; QA:4級アミン; QAE:4級アミノエチル; TA:3級アミン; PA :1,2級ポリアミン *1:100−(濾液中のGMP濃度/反応前試料中の
GMP濃度)×100 *2:弱塩基性陰イ オン交換基 *3:強弱塩基性陰イオン交換基
[Table 4] Screening of separation agent (4) Note) A test was performed for each separation agent of each manufacturer. Since the lot of EDWP used as the test sample is different, the GMP concentration of the stock solution is different in each experiment. Note) Abbreviation of exchange group DEAE: diethylaminoethyl; QA: quaternary amine; QAE: quaternary aminoethyl; TA: tertiary amine; PA: 1,2 polyamine * 1: 100- (GMP concentration in filtrate / before reaction) GMP concentration in sample) × 100 * 2: Weakly basic anion exchange group * 3: Strongly weak anion exchange group

【0031】上記結果から明らかなように、GMP吸着
量の大きい分離剤としてDEAE基を交換基とするDE
AE−Sephadex A25、DEAE−Seph
acel、DEAE−Cellulofine A20
0、同A500、DEAE−Toyopearl 65
0s、アミノ基を交換基とするChitopearlE
P−03、同EP−05等が挙げられた。これらはいず
れもデキストラン、セルロース、キトサンといった親水
性天然高分子多糖類や、水酸基を有する親水性ポリビニ
ルを母体とする弱塩基性陰イオン交換体であり、親水性
の母体に4級アンモニウム基を導入した強塩基性陰イオ
ン交換体よりGMP吸着量は全体的に大きい傾向が認め
られた。
As is evident from the above results, DE with a DEAE group as an exchange group was used as a separating agent having a large GMP adsorption amount.
AE-Sephadex A25, DEAE-Seph
acel, DEAE-Cellulofine A20
0, same A500, DEAE-Toyopearl 65
0s, Chitopearl E having an amino group as an exchange group
P-03, EP-05 and the like. These are all weakly basic anion exchangers based on hydrophilic natural polysaccharides such as dextran, cellulose and chitosan, and hydrophilic polyvinyl having a hydroxyl group, and quaternary ammonium groups are introduced into the hydrophilic base. It was found that the amount of GMP adsorbed on the whole was larger than that of the strongly basic anion exchanger.

【0032】上述した分離剤をカラムに充填後、水及び
EDWP還元液を通液し、カラム内圧力損失、流速の変
化を調ベたところ、バッチ式反応での分離剤と反応液の
分離性(濾過性)や、カラムの大型化に伴うカラム内圧
力損失の上昇、分離剤層の圧密化等の観点から、操作性
に優れる分離剤としてDEAE−Chitopearl
EP−03、同EP−05、DEAE−Sephad
ex A25が挙げられた。
After the column was filled with the above-mentioned separating agent, water and an EDWP reducing solution were passed through the column, and changes in pressure loss and flow rate in the column were examined. DEAE-Chitopearl as a separating agent having excellent operability from the viewpoints of (filterability), an increase in pressure loss in the column due to an increase in the size of the column, and compaction of the separating agent layer.
EP-03, EP-05, DEAE-Sephad
ex A25 was mentioned.

【0033】[0033]

【試験例2(試料のPH及び脱塩の影響)】試験例1に
示した方法で、GMP吸着量に及ぼすpH及び脱塩の影
響を調べた。試料はEDWP還元液と電気透析処理を行
っていないホエー粉(WP)還元液とした。EDWP、
及びWPの組成を表5に示した。DEAE−Cellu
lofine A200、DEAE−Sephadex
A25、及びChitopearl EP−03を使用
した場合のGMP分離例を図1に示した。非吸着液中の
GMP濃度は、試料のpHが4〜6近辺が大きく、ま
た、EDWP還元液の場合よりWP還元液のほうが大き
く、脱塩によりGMP吸着量が増大することが示され
た。
Test Example 2 (Effects of PH and Desalting of Samples) The effects of pH and desalting on the amount of GMP adsorbed were examined by the method shown in Test Example 1. The samples were an EDWP reducing solution and a whey powder (WP) reducing solution not subjected to electrodialysis treatment. EDWP,
Table 5 shows the composition of WP and WP. DEAE-Cellu
lofine A200, DEAE-Sephadex
FIG. 1 shows an example of GMP separation using A25 and Chitopearl EP-03. The GMP concentration in the non-adsorbed liquid is large when the pH of the sample is around 4 to 6,
The WP reducing solution was larger than the EDWP reducing solution , indicating that desalting increased the amount of GMP adsorbed.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【試験例3(試料の濃度の影響:カラム処理)】GMP
含量の異なる2種ホエー素材の還元液を、分離剤150
ml充填したカラムに通液し、処理の比較を行った。E
DWP、及びWPCの相対GMP含量を表6に示した。
DEAE−Sephadex A25を用いた場合のG
MP分離例を表7に示した。試料の濃度(A)、処理量
(B)、及び還元前の粉体試料中の相対GMP含有量
(C)を乗じ、EDWPとWPCの場合のそれぞれのG
MP吸着量を比較したところ、GMP吸着量はWPC還
元液の方が大きかった。このことは、試料中の灰分濃度
が低ければ、GMP濃度が高くても分離剤に対するGM
Pの絶対吸着量は低下しないことを意味している。カラ
ム処理時間の短縮の観点から、試料はEDWPよりWP
Cの方が好ましいことが確認された。
[Test Example 3 (Effect of sample concentration: column treatment)] GMP
The reducing liquids of the two whey materials having different contents are mixed with a separating agent 150
The solution was passed through a column filled with ml, and the treatments were compared. E
Table 6 shows the relative GMP content of DWP and WPC.
G when DEAE-Sephadex A25 is used
Table 7 shows examples of MP separation. By multiplying the sample concentration (A), the processing amount (B), and the relative GMP content (C) in the powder sample before reduction, each G in the case of EDWP and WPC is multiplied.
Comparing the amount of MP adsorption, the amount of GMP adsorption was larger in the WPC reducing solution. This means that if the ash concentration in the sample is low, the GM
This means that the absolute adsorption amount of P does not decrease. From the viewpoint of shortening the column processing time, the sample is more WP than EDWP.
It was confirmed that C was more preferable.

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】DEAE−Sephadex A25、及
びChitopearl EP−05を充填したカラム
を用い、WPC溶液からGMPを分離した例を図2、3
にそれぞれ示した。その結果、β−ラクトグロブリンや
α−ラクトアルブミンはほとんど吸着されないことが確
認された。
FIGS. 2 and 3 show examples in which GMP was separated from a WPC solution using a column packed with DEAE-Sephadex A25 and Chitopearl EP-05.
Respectively. As a result, it was confirmed that β-lactoglobulin and α-lactalbumin were hardly adsorbed.

【0039】[0039]

【試験例4(溶離条件)】分離剤50mlを充填したカ
ラムにWPC溶液を十分量通液し、GMPが吸着飽和に
達した時点で分離剤を水洗した後、分離剤を4mlずつ
分取し、種々濃度の塩化ナトリウム(NaCl)、又は
苛性ソ−ダ(NaOH)溶液の16mlを混合してGM
Pのバッチ溶離を試みた。0.5M 塩化ナトリウム
(pH6)のGMP溶離力を1.00としたときの各種
実験条件下での相対GMP溶離力を表8に示した。GM
Pは塩酸や希苛性ソ−ダでpHをそれぞれ3又は9程度
とすることにより一部溶離されることが予備実験で確認
されているが、溶離力は十分ではなかった。0.5M程
度の塩化ナトリウムや0.1N程度の苛性ソ−ダを用い
ることにより、GMPの溶離率は大幅に上昇することが
表8から知ることができる。GMPを効率的に回収する
には、高濃度の苛性ソ−ダを使用すればよいが、GMP
の安定性、分離剤の耐薬品性等を考慮すると、溶離は
0.1N程度の苛性ソ−ダを用いるのがよいと考えられ
る。
Test Example 4 (Eluent conditions) A sufficient amount of the WPC solution was passed through a column packed with 50 ml of the separating agent, and when the GMP reached the adsorption saturation, the separating agent was washed with water and then 4 ml of the separating agent was collected. GM by mixing 16 ml of various concentrations of sodium chloride (NaCl) or caustic soda (NaOH) solution.
Batch elution of P was attempted. Table 8 shows the relative GMP elution power under various experimental conditions when the GMP elution power of 0.5 M sodium chloride (pH 6) was 1.00. GM
Preliminary experiments confirmed that P was partially eluted by adjusting the pH to about 3 or 9 with hydrochloric acid or dilute caustic soda, but the elution power was not sufficient. It can be seen from Table 8 that the use of about 0.5 M sodium chloride or about 0.1 N caustic soda significantly increases the GMP elution rate. In order to recover GMP efficiently, a high concentration of caustic soda may be used.
Considering the stability of the solution and the chemical resistance of the separating agent, it is considered that elution should be performed using caustic soda of about 0.1N.

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【実施例】内径50mm、高さ200mmのアクリル樹
脂製カラムにChitopearl EP−05を15
0ml充填し、金網積層型フィルターを介して5段積層
した多段カラムを作製した(総分離剤量750ml)。
WPC5%(w/w)溶液のpHを4.4とし、60℃
で60分間加熱後、3,000Gで遠心分離してWPC
中の脂肪、凝集した変性たんぱく質を除き、上清のpH
を5.5に調節して上記カラムに通液した(2000〜
2500ml/h)。WPC液22.5lを通液後、脱
塩水でカラムを洗浄し、0.1N 苛性ソ−ダを延ベ
4.5l循環して吸着物を溶離させた。更にカラム内液
を脱塩水で押し出し、溶離液を回収した。溶離液は中和
後分画分子量10,000のUF膜で8倍に濃縮し、電
気透析で脱塩後凍結乾燥した。得られた粉体の収率、シ
アル酸含量はそれぞれ8.3、7.19%であり、回収
されたシアル酸結合ペプタイドはほとんどがGMPとP
Pであった。
EXAMPLE 15 Chitopearl EP-05 was added to an acrylic resin column having an inner diameter of 50 mm and a height of 200 mm.
A multi-stage column filled with 0 ml and stacked in five stages via a wire mesh lamination type filter was produced (total amount of separating agent: 750 ml).
The pH of the WPC 5% (w / w) solution is set to 4.4,
And then centrifuged at 3,000 G for WPC
PH of supernatant, excluding fat and aggregated denatured protein
Was adjusted to 5.5 and the solution was passed through the column (2000 to 2000).
2500 ml / h). After passing 22.5 L of the WPC solution, the column was washed with deionized water, and adsorbed substances were eluted by circulating a total of 4.5 L of 0.1 N caustic soda. Further, the liquid in the column was extruded with deionized water, and the eluate was recovered. After neutralization, the eluate was concentrated 8-fold on a UF membrane having a molecular weight cut off of 10,000, desalted by electrodialysis, and lyophilized. The yield and sialic acid content of the obtained powder were 8.3 and 7.19%, respectively, and most of the recovered sialic acid-binding peptides were GMP and P
P.

【0042】[0042]

【発明の効果】本発明によってはじめて、シアル酸結合
ペプタイドを工業的に分離することが可能となり、生理
的機能にすぐれたシアル酸結合ペプタイド、ひいてはシ
アル酸の効率的製造がはじめて可能となった。
According to the present invention, for the first time, sialic acid-binding peptides can be industrially separated, and efficient production of sialic acid-binding peptides having excellent physiological functions and sialic acid can be achieved for the first time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】GMPの吸着性に及ぼすpH及び脱塩の影響を
図示したグラフである。
FIG. 1 is a graph illustrating the effect of pH and desalting on the adsorption of GMP.

【図2】DEAE−Sephadex A25によるG
MPの分離例を示す。
FIG. 2: G according to DEAE-Sephadex A25
An example of MP separation will be described.

【図3】Chitopearl EP−05によるGM
Pの分離例を示す。
FIG. 3: GM according to Chitopearl EP-05
The example of separation of P is shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 智子 東京都東村山市栄町一丁目21番3号 明 治乳業株式会社中央研究所内 (72)発明者 池田 温美 東京都東村山市栄町一丁目21番3号 明 治乳業株式会社中央研究所内 (72)発明者 松下 武志 東京都千代田区丸の内三丁目2番3号 日本錬水株式会社内 (72)発明者 菊池 隆 東京都千代田区丸の内三丁目2番3号 日本錬水株式会社内 (72)発明者 栗原 一郎 東京都千代田区丸の内三丁目2番3号 日本錬水株式会社内 (72)発明者 宇佐美 仁 東京都千代田区丸の内三丁目2番3号 日本錬水株式会社内 (56)参考文献 特開 平4−243898(JP,A) 特開 平2−104246(JP,A) (58)調査した分野(Int.Cl.7,DB名) A23J 1/20 A23L 1/305 C07K 1/16 - 1/22 A23C 21/00 BIOSIS(DIALOG)──────────────────────────────────────────────────続 き Continuing on the front page (72) Tomoko Ueda, Inventor 1-21-3, Sakaemachi, Higashimurayama-shi, Tokyo Meiji Inside Daiichi Dairy Co., Ltd. No. 3 Meiji Dairies Co., Ltd. Central Research Laboratory (72) Inventor Takeshi Matsushita 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Rensui Co., Ltd. (72) Inventor Takashi Kikuchi 3-2-2 Marunouchi, Chiyoda-ku, Tokyo No. 3 Inside Nippon Rensui Co., Ltd. (72) Inventor Ichiro Kurihara 3-2-3 Marunouchi, Chiyoda-ku, Tokyo Nippon Rensui Co., Ltd. (72) Hitoshi Usami 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Rensui Co., Ltd. (56) References JP-A-4-243898 (JP, A) JP-A-2-104246 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) A23J 1/20 A23L 1/305 C07K 1/16-1/22 A23C 21/00 BIOSIS (DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シアル酸結合ペプタイドを含有する牛乳
ホエーをpH4〜6に調整して、該牛乳ホエーを親水性
の樹脂母体に弱塩基性交換基を導入した陰イオン交換体
に接触させた後、該陰イオン交換体にアルカリ金属塩、
又はアルカリ土類金属塩の溶液を通液すること、を特徴
とする牛乳ホエー中のシアル酸結合ペプタイドの分離
法。
1. After adjusting the pH of milk whey containing a sialic acid-binding peptide to pH 4 to 6, contacting the milk whey with an anion exchanger having a weakly basic exchange group introduced into a hydrophilic resin matrix. An alkali metal salt on the anion exchanger,
Alternatively, a method for separating a sialic acid-binding peptide in milk whey, comprising passing a solution of an alkaline earth metal salt through the solution.
【請求項2】 牛乳ホエーが、レンネットホエー、それ
らを電気透析等で脱塩したもの、限外濾過等で濃縮した
ホエーたんぱく質濃縮物(WPC)、あるいは加熱処理
等を行って得られる除たんぱく質ホエーやWPC、及び
それらの乾燥物を水で還元したものから選ばれた1種以
上である請求項1に記載の牛乳ホエー中のシアル酸結合
ペプタイドの分離法。
2. Milk whey is rennet whey, desalinated by electrodialysis or the like, whey protein concentrate (WPC) concentrated by ultrafiltration or the like, or deproteinized protein obtained by heat treatment or the like. The method for separating sialic acid-binding peptides in milk whey according to claim 1, which is at least one selected from whey, WPC, and those obtained by reducing a dried product thereof with water.
JP32470192A 1992-11-11 1992-11-11 Separation of sialic acid-binding peptides in milk whey Expired - Lifetime JP3161846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32470192A JP3161846B2 (en) 1992-11-11 1992-11-11 Separation of sialic acid-binding peptides in milk whey

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32470192A JP3161846B2 (en) 1992-11-11 1992-11-11 Separation of sialic acid-binding peptides in milk whey

Publications (2)

Publication Number Publication Date
JPH07132049A JPH07132049A (en) 1995-05-23
JP3161846B2 true JP3161846B2 (en) 2001-04-25

Family

ID=18168753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32470192A Expired - Lifetime JP3161846B2 (en) 1992-11-11 1992-11-11 Separation of sialic acid-binding peptides in milk whey

Country Status (1)

Country Link
JP (1) JP3161846B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963163A4 (en) * 1996-10-01 2004-09-08 Univ Massey Process for isolating glycomacropeptide from dairy products with a phenylalanine impurity of 0.5 %w/w
EP0880902A1 (en) * 1997-05-27 1998-12-02 Nestlé Produkte AG Process for treating a raw whey material
US6168823B1 (en) * 1997-10-09 2001-01-02 Wisconsin Alumni Research Foundation Production of substantially pure kappa casein macropeptide
GB0904562D0 (en) * 2009-03-17 2009-04-29 Separation Technologies Invest Isolation and purification of components of whey

Also Published As

Publication number Publication date
JPH07132049A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
JP2920427B2 (en) Method for producing kappa-casein glycomacropeptide
US4791193A (en) Process for producing bovine lactoferrin in high purity
AU661090B2 (en) Process for the production of biologically active substances from milk and related raw materials
DK173642B1 (en) Process for extracting pure fractions of lactoperoxidase and lactoferrin from milk serum
JP2976349B2 (en) Method for producing k-casein glycomacropeptide
US6528622B1 (en) Method of separating and recovering proteins from a protein solution
WO1988008006A1 (en) Process for separating and purifying lactoferrin from milk using sulfate compound
US5986063A (en) Isolating β-lactoglobulin and α-lactalbumin by eluting from a cation exchanger without sodium chloride
NL8601814A (en) METHOD FOR EXTRACTING PROTEINS FROM MILK, PRODUCTS, USES OF THE METHOD AND PHARMACEUTICAL PREPARATIONS.
US4834994A (en) Method for removing β-lactoglobulin from bovine milk whey
JP2974434B2 (en) Secretory component-containing composition
JP3161846B2 (en) Separation of sialic acid-binding peptides in milk whey
US6592905B1 (en) Production of an immunoglobulin enriched fraction from whey protein solutions
US6555659B1 (en) Process for isolating glycomacropeptide from dairy products with a phenylalanine impurity of 0.5% w/w
WO2002028194A1 (en) Process for recovering proteins from whey protein containing feedstocks
US7018665B2 (en) Process for separation of whey proteins using a novel anion exchanger
JP2004307344A (en) Method for producing lactoferrin
EP0595993A4 (en) Isolation of charged particles from fluids
JP2916047B2 (en) Production method of whey protein fraction
JP2963081B2 (en) Method for separating and purifying lactoferrin from milk and its by-products
JPS63255299A (en) Method for separating and purifying lactoferrin from milk
JP3115394B2 (en) Purification method and purified product of non-protein nitrogen component contained in milk
IE60982B1 (en) Method for removing beta-lactoglobulin from bovine milk whey
AU2376292A (en) Isolation of charged particles from fluids
JPH1129600A (en) Separation and purification of lactoferrin from milk

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12