JP3159566U - Indirect vaporization cooling system - Google Patents
Indirect vaporization cooling system Download PDFInfo
- Publication number
- JP3159566U JP3159566U JP2010001742U JP2010001742U JP3159566U JP 3159566 U JP3159566 U JP 3159566U JP 2010001742 U JP2010001742 U JP 2010001742U JP 2010001742 U JP2010001742 U JP 2010001742U JP 3159566 U JP3159566 U JP 3159566U
- Authority
- JP
- Japan
- Prior art keywords
- channel
- air
- cooling device
- wet
- indirect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 77
- 230000008016 vaporization Effects 0.000 title claims abstract description 49
- 238000009834 vaporization Methods 0.000 title claims abstract description 47
- 239000004033 plastic Substances 0.000 claims description 19
- 229920003023 plastic Polymers 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 7
- -1 polypropylene Polymers 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000003463 adsorbent Substances 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000000741 silica gel Substances 0.000 claims description 5
- 229910002027 silica gel Inorganic materials 0.000 claims description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 36
- 238000000034 method Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004049 embossing Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/0035—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/003—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/06—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
- F28F21/065—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
- F28F3/044—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0015—Heat and mass exchangers, e.g. with permeable walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D5/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/54—Free-cooling systems
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Other Air-Conditioning Systems (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
【課題】冷却効率を改善し、小型にして全体がコンパクトな間接式気化式冷却装置を提供する。【解決手段】気化現象を生じさせる為のウエット・チャネル4と、被冷却空気を通すドライ・チャネル2とからなり、これらウエット・チャネル4とドライ・チャネル2とを交互に配置するように積層して配列し、前記ウエット・チャネル4内の気化現象により流路基盤1を冷却する間接式気化式冷却装置において、前記ウエット・チャネル4及び前記ドライ・チャネル2内を通過する空気の流れを並行流にするとともにウエット・チャネル4内に供給する空気として室内の空気を再利用することを特徴として間接式気化式冷却装置を構成する。【選択図】図1The present invention provides an indirect vaporization type cooling device that improves cooling efficiency, is small, and is compact as a whole. SOLUTION: A wet channel 4 for causing a vaporization phenomenon and a dry channel 2 through which air to be cooled are passed, and the wet channel 4 and the dry channel 2 are laminated so as to be alternately arranged. In an indirect evaporative cooling device that cools the flow path base 1 by the vaporization phenomenon in the wet channel 4, the flow of air passing through the wet channel 4 and the dry channel 2 is parallel flow In addition, the indirect evaporative cooling device is configured by reusing indoor air as the air supplied into the wet channel 4. [Selection] Figure 1
Description
本考案は、所定の間隔で基盤を積層して形成する加湿冷却ゾーン(ウエット・チャネル)と被冷却空気ゾーン(ドライ・チャネル)とを交互に隣接配置して被冷却空気ゾーンに流入した空気を冷却する間接気化式冷却装置に関する。特に、間接式気化式冷却装置の冷却部の構成に関する。 In the present invention, a humidified cooling zone (wet channel) and a cooled air zone (dry channel) formed by stacking substrates at predetermined intervals are alternately arranged adjacent to each other, and air flowing into the cooled air zone is The present invention relates to an indirect vaporization type cooling device for cooling. In particular, it is related with the structure of the cooling part of an indirect vaporization type cooling device.
水の気化熱を利用して空気を冷却する方法は古くから使用されている。しかし、水を気化させる通路に配置された基板とこれに隣接する通路に送入される流体との熱交換の効率は悪く、実用的ではなかった。この熱交換効率を改善したものとして特開2004−51332009年10月21日号公報他いくつかの特許が発明され、実用化されている。例えば、特開2009−150632号公報によって知られている。空気を加湿すると気化現象が生じ潜熱が奪われる事により、その空気の湿球温度迄空気の温度は冷却される。しかし、同時に被冷却空気は加湿される。この原理は加湿冷却として下記特許文献などにより広く知られ、それを利用した気化式冷却器も広く作られ販売されている。放出する空気の加湿を望まない場合には、加湿冷却されるゾーン(ウエット・チャネル)と被冷却空気の通るゾーン(ドライ・チャネル)とを分離し、加湿冷却ゾーンで冷却された温度を熱交換により、被冷却空気のゾーンに伝えて、被冷却ゾーンの空気の顕熱のみを冷却するという方式。いわゆる、間接式気化式冷却器という製品も既に製作販売されている。 The method of cooling air using the heat of vaporization of water has been used for a long time. However, the efficiency of heat exchange between the substrate disposed in the passage for vaporizing water and the fluid fed into the passage adjacent to the substrate is poor and not practical. Japanese Patent Application Laid-Open No. 2004-5133, October 21, 2009 and several other patents have been invented and put into practical use as improved heat exchange efficiency. For example, it is known from JP2009-150632A. When air is humidified, a vaporization phenomenon occurs and latent heat is taken away, whereby the temperature of the air is cooled to the wet bulb temperature of the air. However, at the same time, the air to be cooled is humidified. This principle is widely known as humidification cooling from the following patent documents and the like, and evaporative coolers using the same are widely made and sold. When humidification of the released air is not desired, the humidified cooling zone (wet channel) and the zone through which the air to be cooled (dry channel) is separated, and the temperature cooled in the humidified cooling zone is heat exchanged In this way, only the sensible heat of the air in the zone to be cooled is cooled. A so-called indirect vaporizer cooler has already been manufactured and sold.
特許文献1の発明は、下部に配置した水槽から毛細管現象で吸い上げられた水を気化するウエットサイドを通過させる気体の流れとこのウエットサイドの隣接するドライサイド(被冷却流体を通過させる)を通過する流体を熱交換により冷却するが、この両者の間に配置する基板に多数の孔を空けてあり、これに水が流れて冷却効率を上げるもので、ウエットサイドとドライサイドを通過する気体と流体の流れは直交するものであり熱交換率が好ましいものではなかった。
特許文献2に記載される発明の冷却装置は、積層した被冷却空気の流れとウエットゾーンに流入する空気の流れとを直交するようにするとともに、基板に多数の孔を設けたり、基板の形状を九十九折にしたものである。このような構造では熱交換効率が悪く、実用的には装置が嵩張り、コンビニエンスストアなどの店に設置するにはコスト高となっていた。従って、一般家庭に設置するような小型に形成できなかった。The invention of Patent Document 1 passes a gas flow that passes through a wet side that vaporizes water sucked up by a capillary phenomenon from a water tank disposed in the lower part and a dry side that adjoins the wet side (which allows a fluid to be cooled to pass). The fluid to be cooled is cooled by heat exchange, and a large number of holes are made in the substrate arranged between the two, and water flows into this to increase the cooling efficiency. The gas passing through the wet side and the dry side The fluid flow was orthogonal and the heat exchange rate was not favorable.
The cooling device according to the invention described in
更に、特許文献3の流路基盤は、合成樹脂で形成してあるが、被冷却空気の流れと気化現象を起させる流体の流れを分流型にするものである。 Furthermore, although the flow path base of
本考案の間接式気化式冷却装置は、前記従来の間接式気化式冷却装置における冷却効率を改善し、小型にして全体がコンパクトな一般家庭にも設置できる冷却装置を提供するものである。
そのために冷却部のドライ・チャネル内を通過する被冷却空気の乱気流の発生を低下させ、かつ、熱交換率を上げ、発生する冷却熱を、最大限の熱交換効率で伝達する間接式気化式冷却装置を提供することである。The indirect evaporative cooling device of the present invention improves the cooling efficiency of the conventional indirect evaporative cooling device, and provides a cooling device that can be installed in a general home that is compact and entirely compact.
For this purpose, an indirect vaporization system that reduces the generation of turbulence in the air to be cooled that passes through the dry channel of the cooling section, increases the heat exchange rate, and transmits the generated cooling heat with the maximum heat exchange efficiency. It is to provide a cooling device.
本考案の間接式気化式冷却装置に使用する冷却部の被冷却空気とウエット・チャネル内を通過する空気の流れを並行流にし、ウエット・チャネルから排出する加湿空気を再利用し、上記の問題点を改善すべく改良工夫することを課題としたものである。
また、本考案の課題は、ドライ・チャネルとウエット・チャネルとで空気の流れを並行流にさせることにより、装置の製造を簡略化し、コンパクトに製造できる間接式気化式冷却装置を提供することである。The above-mentioned problem is solved by reusing the air to be cooled in the cooling section used in the indirect vaporization cooling device of the present invention and the air flow passing through the wet channel in parallel flow, and reusing the humidified air discharged from the wet channel. The problem is to devise improvements to improve the points.
Another object of the present invention is to provide an indirect evaporative cooling device that simplifies the manufacture of the apparatus by making the air flow parallel in the dry channel and the wet channel, and can be manufactured in a compact manner. is there.
本考案の課題は、以下の構成によって達成できる。
気化現象を生じさせる為のウエット・チャネルと、被冷却空気を通すドライ・チャネルとの間に流路基盤を配置し、これらウエット・チャネルとドライ・チャネルとを交互に配置するように積層して配列し、前記ウエット・チャネル内の気化現象により前記流路基盤を冷却し、熱交換によって前記ドライ・チャネルに流入した空気を冷却する間接式気化式冷却装置において、前記ウエット・チャネル及び前記ドライ・チャネル内を通過する空気の流れを並行流にするとともにウエット・チャネル内に供給する空気として室内の空気を再利用する間接式気化式冷却装置の構成である。The subject of this invention can be achieved by the following structures.
Laminate a flow path base between the wet channel for causing vaporization and the dry channel through which the air to be cooled passes, and laminate the wet channel and the dry channel alternately. In the indirect vaporization cooling device, wherein the flow channel base is cooled by a vaporization phenomenon in the wet channel and the air flowing into the dry channel is cooled by heat exchange, the wet channel and the dry channel This is a configuration of an indirect evaporative cooling device in which the flow of air passing through the channel is made into a parallel flow and the indoor air is reused as the air supplied into the wet channel.
本考案の課題は、前記ウエット・チャネルを形成する流路基盤の素材としてポリエステル、ポリプロピレンおよびアルミニウムから選ばれる1つである間接式気化式冷却装置の構成によって達成できる。 The object of the present invention can be achieved by the configuration of an indirect vaporization type cooling device that is one selected from polyester, polypropylene, and aluminum as a material for a channel base that forms the wet channel.
本考案の課題は、前記ウエット・チャネルと前記ドライ・チャネルを形成する前記流路基盤が多孔質プラスチックで型造され、この流路基盤の片面に流線型形状のスペーサーを空気の流れ方向に沿って所定間隔で複数突設して配列するとともにこの流路基盤面にエンボス模様で多数の凸部を形成して裏面にくぼみを配列形成してなる間接式気化式冷却装置の構成によって達成できる。 The subject of the present invention is that the flow path base forming the wet channel and the dry channel is formed of porous plastic, and a streamlined spacer is provided on one side of the flow path base along the air flow direction. This can be achieved by a configuration of an indirect vaporization cooling device in which a plurality of protrusions are arranged at predetermined intervals and arranged, and a plurality of convex portions are formed in an embossed pattern on the flow path base surface, and depressions are arranged on the back surface.
本考案の前記課題は、前記流路基盤のウエット・チャネル側の前記流路基盤の表面に形成する親水性の膜層として、
・流路基盤の表面全体に短繊維を静電植毛したもの、
・該繊維が親水性の繊維であるもの、
・流路基盤の表面にシリカゲル、ゼオライト、スポンジ状酸化チタンから選ばれた1つまたは混合物を吸着剤として溶着、塗布してあるものから選ばれる1つからなる保水層有する流路基盤を使用する間接式気化式冷却装置の構成によって達成できる。
本考案の前記課題は、前記流路基盤が中空体の形状を角状又はコルゲーション状とし、気体の流通性をよくしたプラスチック構造体を芯体とし、表面に親水性の膜層を形成してなる冷却部を有する間接式気化式冷却装置の構成によって達成できる。The problem of the present invention is that the hydrophilic membrane layer formed on the surface of the flow path base on the wet channel side of the flow path base,
・ Surface fibers electrostatically flocked to the entire surface of the channel base,
-The fiber is a hydrophilic fiber,
-Use a channel substrate having a water retention layer consisting of one selected from silica gel, zeolite, sponge-like titanium oxide or a mixture deposited and applied as an adsorbent on the surface of the channel substrate. This can be achieved by the configuration of the indirect vaporization cooling device.
The problem of the present invention is that the flow path substrate has a hollow body with a square shape or a corrugation shape, and a plastic structure with improved gas flow is used as a core body, and a hydrophilic film layer is formed on the surface. This can be achieved by the configuration of the indirect evaporative cooling device having the cooling section.
本考案の間接式気化式冷却装置は、空気と空気の熱交換を行わす方式である。この方式としては、被冷却空気ゾーン(ドライ・チャネル)の空気の流れと加湿冷却ゾーン(ウエット・チャネル)の空気の流れとが対向するような並行流方式を採用する。
この並行流方式の方が直交型より熱交換効率が良いと認められている。The indirect evaporative cooling device of the present invention is a system that performs heat exchange between air and air. As this method, a parallel flow method is adopted in which the air flow in the air zone to be cooled (dry channel) and the air flow in the humidification cooling zone (wet channel) face each other.
This parallel flow method is recognized to have better heat exchange efficiency than the orthogonal type.
本考案の間接式気化式冷却装置の流路基盤としては、加工しやすく、軽量なものがよい。例えば、ポリエチレン、ポリプロピレンなどの多孔質プラスチックによって型造されたものが、大量生産が容易で、安価である。また、中空体の形状を角状又はコルゲーション状とし、気体の流通性をよくしたプラスチック構造体などによって形成したものはこの芯体の中空内に空気を流通させて効率よく、熱交換することができる。更に、軽量の薄板のアルミニウム板なども使用することができる。 As the flow path base of the indirect vaporization type cooling device of the present invention, it is preferable that it is easy to process and lightweight. For example, those made of porous plastics such as polyethylene and polypropylene are easy to mass-produce and inexpensive. In addition, a hollow body having a square shape or a corrugation shape and formed by a plastic structure or the like having improved gas flow can efficiently exchange heat by circulating air in the hollow of the core body. it can. Furthermore, a lightweight thin aluminum plate can also be used.
この流路基盤としての多孔質プラスチックの片側、すなわち、ウエット・チャネル側の表面に形成する親水性の膜層として、織布、不織布などの紙やシートを貼り付けたものがよく、また表面に静電植毛によって短繊維の膜層を設けてもよい。この親水性の膜層の表面に酸化チタン、シリカゲルなどの吸着剤を塗布すると保水力が増加する。そのため気化効率がよい。 As a hydrophilic membrane layer formed on one side of the porous plastic as the flow path base, that is, on the surface of the wet channel side, a paper or sheet such as a woven fabric or a non-woven fabric is preferably attached. A short fiber film layer may be provided by electrostatic flocking. When an adsorbent such as titanium oxide or silica gel is applied to the surface of the hydrophilic film layer, the water retention capacity increases. Therefore, the vaporization efficiency is good.
本考案の間接式気化式冷却装置の流路基盤としては、ウエット・チャネルとドライ・チャネルの間で、湿度・水分の移動があってはならないので、両チャネルの隔壁としては水を透過しないポリプロピレン等のプラスチックを使用するのが好ましい。このプラスチックの隔壁は熱交換効率を最大にする為に、厚み0.3mm程度にするのが好ましい。 As the flow path base of the indirect vaporization cooling device of the present invention, there should be no moisture / moisture transfer between the wet channel and the dry channel, so the partition wall of both channels is polypropylene that does not transmit water. It is preferable to use a plastic such as The plastic partition preferably has a thickness of about 0.3 mm in order to maximize the heat exchange efficiency.
ウエット・チャネル及びドライ・チャネルを形成するには、1〜5mmの空間を作る為には多孔質プラスチックで一体成型が可能で、この多孔質プラスチックの表面に略菱形の幅5mm、高さ3mm程度の流線型のスペーサー2を突設形成して配置すると空気の乱流を防ぐことができる。 In order to form a wet channel and a dry channel, it is possible to integrally mold with porous plastic in order to create a space of 1 to 5 mm, and the surface of this porous plastic is approximately
多孔質プラスチックの基盤は表面が滑面であるから多孔質プラスチックの板表面に、水を湿潤させる為の膜層が設けてある。この膜層としての材料はセルロース等の紙又はポリプロピレンが適当である。この膜層の厚みとしては0.1mm〜0.5mm位が適当である。 Since the porous plastic substrate has a smooth surface, a membrane layer for wetting water is provided on the surface of the porous plastic plate. The material for the film layer is suitably paper such as cellulose or polypropylene. The thickness of this film layer is suitably about 0.1 mm to 0.5 mm.
本考案の間接式気化式冷却装置のウエット・チャネル内における気化現象を最大に生じせしめる為には、ウエット・チャネルに導入される水量はじわっと湿っている程度が適正であり、水が流れる様な状態では気化現象が逆に少なくなってしまう。その為には、前記膜層に吸着剤を含浸させておき、湿潤膜に水を保持させる。例えば、シリカゲル、スポンジ状酸化チタンなどの吸着剤を被覆する。 In order to maximize the vaporization phenomenon in the wet channel of the indirect vaporization cooling device of the present invention, it is appropriate that the amount of water introduced into the wet channel is moderately moist and the water flows. On the other hand, the vaporization phenomenon is reduced. For this purpose, the membrane layer is impregnated with an adsorbent and water is retained in the wet membrane. For example, an adsorbent such as silica gel or sponge-like titanium oxide is coated.
本考案の間接式気化式冷却装置の流路基盤を積層配列した冷却部に水を供給する方法としては、ウエット・チャネルの流路基盤の排気口を上側に位置せしめ、縦に積層配列し、この積層した流路基盤を水槽内に浸漬して流路基盤に毛細管現象で水を供給する。この吸水力では流路基盤の上端まで水が到達しない場合があるので、他方、ウエット・チャネル内に上方から水を散水供給する。 As a method of supplying water to the cooling unit in which the flow path bases of the indirect vaporization cooling device of the present invention are stacked and arranged, the exhaust port of the flow channel base of the wet channel is positioned on the upper side, the stacks are vertically stacked, The laminated channel base is immersed in a water tank and water is supplied to the channel base by capillary action. In this water absorption force, water may not reach the upper end of the flow path base. On the other hand, water is supplied into the wet channel from above.
本考案間接式気化式冷却装置の冷却部のウエット・チャネル及びドライ・チャネルに空気を流す方法については、それぞれ独立した送風機によって各チャネル内は常に一方向に空気を流す。 Regarding the method of flowing air to the wet channel and the dry channel of the cooling part of the indirect vaporization cooling device of the present invention, air is always flowed in one direction in each channel by independent blowers.
ウエット・チャネル側に導入する空気の量は、100%利用する。ドライ・チャネル内を通過する空気も100%利用して室内に供給することができる。ウエット・チャネルに流入した空気は、ウエット・チャネル内で気化現象を生じさせた後はウエット・チャネルの排気口より機外へ排気される。この場合、室内の空気を再利用してウエット・チャネル内に供給する事により冷却効率を高めることができる。このウエット・チャネルから排気される加湿された空気を室内に供給することにより加湿器として利用できる。 The amount of air introduced into the wet channel side is 100%. The air passing through the dry channel can also be supplied into the room using 100%. The air flowing into the wet channel is exhausted from the exhaust port of the wet channel to the outside after the vaporization phenomenon occurs in the wet channel. In this case, the cooling efficiency can be improved by reusing indoor air and supplying it into the wet channel. It can be used as a humidifier by supplying humidified air exhausted from the wet channel into the room.
本考案の間接式気化式冷却装置は、外気だけを利用する場合以外に、温湿度条件の良い室内からのリターン空気を利用する。この場合はリターン空気を外気と混合して使用するのでなく、条件の良いリターン空気のみをウエット・チャネルに流入させる事により、ドライ・チャネルを通過する空気の温度を更に低くさせる方法がある。また、ウエット・チャネルに流入する空気として室内のリターン空気を導入し、ウエット・チャネル内を通し、気化現象を生じせしめた後で、ウエット・チャネルの排気口から排気させることができる。 The indirect evaporative cooling device of the present invention uses return air from a room with good temperature and humidity conditions, in addition to the case of using only outside air. In this case, there is a method in which the temperature of the air passing through the dry channel is further lowered by allowing only the return air having a good condition to flow into the wet channel, instead of using the return air mixed with the outside air. Also, indoor return air can be introduced as air flowing into the wet channel, and after passing through the wet channel to cause a vaporization phenomenon, the air can be exhausted from the exhaust outlet of the wet channel.
本考案間接式気化式冷却装置におけるウエット・チャネルにおいて最大限の気化現象を生じさせる為には、水の供給の流速、分流率の適切な選定が必要である。これらの要素は、実験値によるテスト分析の結果、流路高1〜5mm、流速1〜5m/秒が適正値である。 In order to generate the maximum vaporization phenomenon in the wet channel in the indirect vaporization type cooling device of the present invention, it is necessary to appropriately select the flow rate and the diversion rate of the water supply. As a result of the test analysis based on the experimental values, these elements are appropriate values having a flow path height of 1 to 5 mm and a flow rate of 1 to 5 m / sec.
本考案間接式気化式冷却装置に使用する流路基盤は、流路基盤面に間隔を規制する流線型のスペーサーを多数突設形成して配列するとともにこの流路基盤の表面にエンボスによる多数の凸部(裏面にくぼみティンプル)を形成してあるものを使用できる。更に、前記凸部により流路基盤の表面積を拡大してあるから熱交換効率に優れるばかりでなく、多孔質合成樹脂(プラスチック)による軽量化により、装置全体を軽量に構成することができる。 The flow path base used in the indirect vaporization type cooling device of the present invention has a large number of streamlined spacers protruding and arranged on the surface of the flow path base, and a large number of embossed protrusions on the surface of the flow path base. What has a part (recessed timple on the back surface) can be used. Furthermore, since the surface area of the flow path base is enlarged by the convex portion, not only is the heat exchange efficiency excellent, but the entire device can be made light by weight reduction with a porous synthetic resin (plastic).
また、ウエット・チャネルとドライ・チャネル内における空気の流れが並行流になっているから、効率よく冷却空気を発生することができ、ドライ・チャネル、ウエット・チャネル内に送り込む空気を100%利用することができるから効率がよい。 Further, since the air flow in the wet channel and the dry channel is parallel, cooling air can be generated efficiently, and 100% of the air fed into the dry channel and the wet channel is used. Can be efficient.
また、ウエット・チャネル内を通過する空気は供給口から流入した空気を100%排気口より排気することができ、加湿空気の排気が効率よく行われるから冷却効率がよい。従来のドライ・チャネルからの排気を再利用する分流型に比較して100%を排気するので効率がよい。
特に、積層した流路基盤を縦型に配列して各チャンネルを縦に形成してあるから配列した流路基盤の下側を水槽に浸漬することにより、毛細管現象により水分を基盤の親水性層に吸い上げることができる。水の自然上昇により流路基盤に水を供給できる。Further, the air passing through the wet channel can exhaust 100% of the air flowing from the supply port through the exhaust port, and the humidified air is efficiently exhausted, so that the cooling efficiency is good. Since 100% is exhausted compared with the shunt type that reuses exhaust from the conventional dry channel, efficiency is improved.
In particular, since the laminated channel bases are arranged vertically and each channel is formed vertically, the bottom of the arranged channel bases is immersed in a water tank, so that the water is removed from the base by a capillary phenomenon. Can suck up on. Water can be supplied to the channel base by natural rise of water.
流路基盤として多孔質プラスチックの板材を成形加工して多数のティプル、流線型のスペーサー及び周縁の遮蔽壁を簡易に製造することができ、間接式気化式冷却装置の小型化可能で、大量生産が容易になり、且つ、安価に生産しうる。また、他のプラスチック板の表面加工を施して保水性を高めることもできる。例えば、親水性のプラスチックの微粒子を溶射、接着して保水性を高めることができる。 A large number of tips, streamlined spacers, and peripheral shielding walls can be easily manufactured by molding a porous plastic plate material as the channel base, and the indirect vaporization cooling device can be miniaturized, enabling mass production. It becomes easy and can be produced at low cost. In addition, the surface retention of other plastic plates can be applied to increase water retention. For example, water retention can be enhanced by spraying and adhering fine particles of hydrophilic plastic.
本考案の間接式気化式冷却装置について図面に示す実施形態に基づいて説明する。
図1に示す間接式気化式冷却装置の冷却部における概略図において、流路基盤1によって形成するドライ・チャネル2とこの流路基盤1の外面に親水性の保水膜3を形成し、この保水膜3,3によって囲まれたウエット・チャネル4内に外気を導入して排気口5から加湿した空気を排気する。この保水膜3には冷却部に設けた水槽7から給水する。必要に応じては上部から散水してもよい。The indirect vaporization type cooling device of the present invention will be described based on the embodiments shown in the drawings.
In the schematic view of the cooling section of the indirect vaporization cooling device shown in FIG. 1, a
本考案間接式気化式冷却装置の冷却部に配置する流路基盤の実施例として図2、図3及び図4に示す。
図2は、ドウエット・チャネル2側に配置する流路基盤1の説明図で、多孔質プラスチックシートの表面に、型押しによって略菱形流線型のスペーサー6を形成するとともにこの配列したスペーサー6間には多数のくぼみ(ディンプル)をエンボスにより形成してある。この流路基盤1の上下の縁には案内壁8,8(側方への空気の流れを防止)を突設し、流路基盤1の上側案内壁8の両端縁に流入口9、排気口5が穿ってある。この案内壁8,8や整流板11によってチャネル内の空気の流れが規制され、保水膜3の水を気化させながら排気口5から加湿空気が排気される。この保水膜3にはスポンジ酸化チタン、シリカゲル、などの吸水剤を塗布すると水の吸着性が向上する。2, 3 and 4 show an embodiment of the channel base disposed in the cooling part of the indirect vaporization type cooling device of the present invention.
FIG. 2 is an explanatory view of the flow path base 1 arranged on the side of the
図3はウエット・チャネル4側に配置する流路基盤1の説明図で、多孔質プラスチックシートに菱形流線型のスペーサー6やくぼみを備え、上下に案内壁8,8を備える構成はドライ・チャネルの流路基盤1と同じである。このドライ・チャネル2の外気流入口側端縁に遮蔽壁10が突設してある。 FIG. 3 is an explanatory view of the flow path substrate 1 arranged on the
図4に示す流路基盤1は、中空体の形状を角状又はコルゲーション状とし、気体の流通性をよくしたプラスチック構造体12を芯体とし、その両面に保水膜3を貼着したものである。この保水膜3面にスペーサー13を配置して交互に積重して冷却部を構成する。 The flow path base 1 shown in FIG. 4 has a hollow body with a square shape or a corrugation shape, a
本考案の間接式気化式冷却装置の動作の説明。
図5に示すように流路基盤1を積重した冷却部を水槽7に流路基盤1を縦型に配列し、下側を水槽7に浸漬してある。他方、上側には散水部材が配設してあり、適宜にウエット・チャネル4に水が供給されている。ウエット・チャネル内に冷却水が保持される。
送風機(図示せず)を用いて外気が流入口9からウエット・チャネル4内に導入し、ウエット・チャネル4内において気化現象を生じせしめて湿気を帯びた空気を排気口10から排気する。他方、送風機(図示せず)を使用して被冷却空気を流入口側よりドライ・チャネル2内に挿入する。このドライ・チャネル2内において冷却された流路基盤1との熱交換により冷却されて適温になって室内に供給される。Description of the operation of the indirect vaporization cooling device of the present invention.
As shown in FIG. 5, the cooling unit in which the channel bases 1 are stacked is arranged in the water tank 7 in the vertical direction, and the lower side is immersed in the water tank 7. On the other hand, a watering member is disposed on the upper side, and water is appropriately supplied to the
Outside air is introduced into the
このような並行流の直行型の冷却部は製作が容易であり、流路基盤の流入口や排気口の構造が容易に製作できる。 Such a parallel flow direct cooling unit is easy to manufacture, and the structure of the inlet and exhaust ports of the channel base can be easily manufactured.
本考案の間接式気化式冷却装置は、水の気化現象のみを利用して空気の冷却を行うものであり、一切の冷媒ガスを使用していない。冷媒ガスの使用は地球温暖化の一因とされており、CO2削減に絶大な効果をもたらす。又、ヒートポンプなどの圧縮機を使用しない為に電気、ガス等のエネルギーを一切使用しないので利用価値は極めて広い。The indirect evaporative cooling device of the present invention cools air using only the vaporization phenomenon of water, and does not use any refrigerant gas. The use of refrigerant gas is considered to be a cause of global warming and has a great effect on CO2 reduction. Further, since no compressor such as a heat pump is used, energy such as electricity and gas is not used at all, so that the utility value is very wide.
1 流路基盤
2 ドライ・チャネル
3 保水膜
4 ウエット・チャネル
5 排気口
6 スペーサー
7 水槽
8 案内壁
9 流入口
10 遮蔽壁
11 整流板
12 プラスチック構造体
13 スペーサーDESCRIPTION OF SYMBOLS 1
Claims (7)
・流路基盤の表面全体に短繊維を静電植毛したもの、
・該繊維が親水性の繊維であるもの、
・流路基盤の表面にシリカゲル、ゼオライト、スポンジ状酸化チタンから選ばれた1つまたは混合物を吸着剤として溶着、塗布してあるものから選ばれる1つからなる保水層を有する流路基盤を使用することを特徴とする請求項1乃至請求項3に記載のいずれか1つの間接式気化式冷却装置。As a water retention layer formed on the wet channel side surface of the flow path base,
・ Surface fibers electrostatically flocked to the entire surface of the channel base,
-The fiber is a hydrophilic fiber,
・ Uses a channel substrate having a water retention layer consisting of one selected from silica gel, zeolite, sponge-like titanium oxide or a mixture deposited and applied as an adsorbent on the surface of the channel substrate The indirect evaporative cooling device according to any one of claims 1 to 3, wherein the indirect vaporization cooling device is provided.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010001742U JP3159566U (en) | 2010-02-26 | 2010-02-26 | Indirect vaporization cooling system |
CN2010102938808A CN102168929A (en) | 2010-02-26 | 2010-09-25 | Indirect evaporative cooling apparatus |
US13/034,447 US20110209858A1 (en) | 2010-02-26 | 2011-02-24 | Indirect Evaporative Cooling Apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010001742U JP3159566U (en) | 2010-02-26 | 2010-02-26 | Indirect vaporization cooling system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3159566U true JP3159566U (en) | 2010-05-27 |
Family
ID=44509893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010001742U Expired - Lifetime JP3159566U (en) | 2010-02-26 | 2010-02-26 | Indirect vaporization cooling system |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110209858A1 (en) |
JP (1) | JP3159566U (en) |
CN (1) | CN102168929A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102767877A (en) * | 2012-06-26 | 2012-11-07 | 澳蓝(福建)实业有限公司 | Self-cooling type multi-stage evaporation and refrigeration system and refrigeration method thereof |
JP2013111027A (en) * | 2011-11-29 | 2013-06-10 | Fulta Electric Machinery Co Ltd | Food drier |
JP2017521629A (en) * | 2014-08-29 | 2017-08-03 | キュンドン ナビエン シーオー.,エルティーディー. | Air guide integrated evaporative cooler and manufacturing method thereof |
JP2018021748A (en) * | 2016-02-12 | 2018-02-08 | 富士電機株式会社 | Air conditioner |
JP2019128078A (en) * | 2018-01-23 | 2019-08-01 | 富士電機株式会社 | Air conditioner |
JP2021076317A (en) * | 2019-11-12 | 2021-05-20 | 国立大学法人神戸大学 | Air conditioner |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009094032A1 (en) | 2008-01-25 | 2009-07-30 | Midwest Research Institute | Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification |
US9101875B2 (en) | 2012-06-11 | 2015-08-11 | 7Ac Technologies, Inc. | Methods and systems for turbulent, corrosion resistant heat exchangers |
TWI496918B (en) * | 2013-02-05 | 2015-08-21 | Adpv Technology Ltd Intetrust | Gas release device for coating process |
US9140460B2 (en) | 2013-03-13 | 2015-09-22 | Alliance For Sustainable Energy, Llc | Control methods and systems for indirect evaporative coolers |
US9140471B2 (en) | 2013-03-13 | 2015-09-22 | Alliance For Sustainable Energy, Llc | Indirect evaporative coolers with enhanced heat transfer |
JP6198660B2 (en) * | 2014-04-14 | 2017-09-20 | 三菱電機株式会社 | humidifier |
WO2016002103A1 (en) * | 2014-06-30 | 2016-01-07 | 三菱電機株式会社 | Humidification element and humidification device provided therewith |
DK3191782T3 (en) * | 2014-09-08 | 2021-02-01 | Seeley F F Nominees | COMPACT INDIRECT EVAPORATIVE COOLING DEVICE |
CN104534603B (en) * | 2015-01-23 | 2017-07-11 | 天津大学 | The board-like dew point indirect evaporative cooler of adverse current and channel partition of built-in flow dividing structure |
CN104534604B (en) * | 2015-01-23 | 2017-05-31 | 天津大学 | The board-like dew point indirect evaporative cooler of adverse current and channel partition of external flow dividing structure |
WO2016134417A1 (en) * | 2015-02-23 | 2016-09-01 | Seeley International Pty Ltd | Method of producing a micro-core heat exchanger for a compact indirect evaporative cooler |
GB201617362D0 (en) | 2016-10-13 | 2016-11-30 | University Of Hull | Heat exchanger apparatus |
GB2557320B (en) | 2016-12-06 | 2021-10-27 | Denso Marston Ltd | Heat exchanger |
US10941948B2 (en) | 2017-11-01 | 2021-03-09 | 7Ac Technologies, Inc. | Tank system for liquid desiccant air conditioning system |
WO2019089957A1 (en) | 2017-11-01 | 2019-05-09 | 7Ac Technologies, Inc. | Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems |
US11022330B2 (en) | 2018-05-18 | 2021-06-01 | Emerson Climate Technologies, Inc. | Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture |
CN112815757A (en) * | 2020-12-28 | 2021-05-18 | 华为技术有限公司 | Heat exchanger, indirect evaporative cooling unit and control method thereof |
US11725835B2 (en) | 2021-01-02 | 2023-08-15 | Vempati Venkata Sundereswar Rao | Energy efficient and refrigerant-free air cooler |
CN113442362B (en) * | 2021-06-18 | 2022-12-09 | 澳蓝(福建)实业有限公司 | Processing method of high-molecular indirect evaporation core |
FR3147852A1 (en) * | 2023-04-13 | 2024-10-18 | Caeli Energie | Indirect evaporative cooling air conditioning system |
CN118242724B (en) * | 2024-05-30 | 2024-10-18 | 上海创胤能源科技有限公司 | Hollow fiber membrane humidifier with flow equalization structure |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0389623A4 (en) * | 1988-08-26 | 1991-07-24 | Kievsky Politekhnichesky Institut Imeni 50-Letia Velikoi Oktyabrskoi Sotsialisticheskoi Revoljutsii | Indirect-evaporation gas cooling apparatus |
US4933117A (en) * | 1989-06-23 | 1990-06-12 | Champion Cooler Corporation | Water distribution system for an evaporative cooler |
US5315843A (en) * | 1992-08-13 | 1994-05-31 | Acma Limited | Evaporative air conditioner unit |
US6378604B1 (en) * | 1999-06-28 | 2002-04-30 | Jon Charles Feind | To heat exchanger |
US6648067B1 (en) * | 1999-11-17 | 2003-11-18 | Joma-Polytec Kunststofftechnik Gmbh | Heat exchanger for condensation laundry dryer |
US20050218535A1 (en) * | 2002-08-05 | 2005-10-06 | Valeriy Maisotsenko | Indirect evaporative cooling mechanism |
US6845629B1 (en) * | 2003-07-23 | 2005-01-25 | Davis Energy Group, Inc. | Vertical counterflow evaporative cooler |
US8376036B2 (en) * | 2007-11-02 | 2013-02-19 | Az Evap, Llc | Air to air heat exchanger |
CN101158561A (en) * | 2007-11-26 | 2008-04-09 | 北京市京海换热设备制造有限责任公司 | Plate heat exchanger composite corrugated plate bind |
JP4565417B2 (en) * | 2007-12-18 | 2010-10-20 | 株式会社アースクリーン東北 | Indirect vaporization cooling system |
-
2010
- 2010-02-26 JP JP2010001742U patent/JP3159566U/en not_active Expired - Lifetime
- 2010-09-25 CN CN2010102938808A patent/CN102168929A/en active Pending
-
2011
- 2011-02-24 US US13/034,447 patent/US20110209858A1/en not_active Abandoned
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013111027A (en) * | 2011-11-29 | 2013-06-10 | Fulta Electric Machinery Co Ltd | Food drier |
CN102767877A (en) * | 2012-06-26 | 2012-11-07 | 澳蓝(福建)实业有限公司 | Self-cooling type multi-stage evaporation and refrigeration system and refrigeration method thereof |
CN102767877B (en) * | 2012-06-26 | 2015-08-19 | 澳蓝(福建)实业有限公司 | The system of self-cooled multistage evaporation refrigeration and refrigerating method thereof |
JP2017521629A (en) * | 2014-08-29 | 2017-08-03 | キュンドン ナビエン シーオー.,エルティーディー. | Air guide integrated evaporative cooler and manufacturing method thereof |
JP2018021748A (en) * | 2016-02-12 | 2018-02-08 | 富士電機株式会社 | Air conditioner |
JP2019128078A (en) * | 2018-01-23 | 2019-08-01 | 富士電機株式会社 | Air conditioner |
JP7167444B2 (en) | 2018-01-23 | 2022-11-09 | 富士電機株式会社 | Air conditioner |
JP2021076317A (en) * | 2019-11-12 | 2021-05-20 | 国立大学法人神戸大学 | Air conditioner |
JP7525852B2 (en) | 2019-11-12 | 2024-07-31 | 国立大学法人神戸大学 | Air conditioning equipment |
Also Published As
Publication number | Publication date |
---|---|
US20110209858A1 (en) | 2011-09-01 |
CN102168929A (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3159566U (en) | Indirect vaporization cooling system | |
US10317095B2 (en) | Counter-flow energy recovery ventilator (ERV) core | |
US7197887B2 (en) | Method and plate apparatus for dew point evaporative cooler | |
AU2001294882B2 (en) | Method and plate apparatus for dew point evaporative cooler | |
CN105765309B (en) | Method and system for turbulence type corrosion-resistance heat exchanger | |
US6705096B2 (en) | Method and plate apparatus for dew point evaporative cooler using a trough wetting system | |
JP4565417B2 (en) | Indirect vaporization cooling system | |
CN107003021A (en) | With formed falling liquid film can wet layer Mass and heat transfer device | |
AU2002346722B2 (en) | Method and plate apparatus for dew point evaporative cooler | |
JP2009150632A5 (en) | ||
US20220387927A1 (en) | Air conditioning systems based on membranes | |
JP6078602B1 (en) | Indirect vaporization air conditioner and indirect vaporization air conditioning method | |
JP3160898U (en) | Indirect vaporization cooling system | |
JP3160534U (en) | Indirect vaporization cooling system | |
JP3158794U (en) | Indirect vaporization cooling device and flow path base | |
JP6078609B1 (en) | Indirect vaporization air conditioner and indirect vaporization air conditioning method | |
JP3171462U (en) | Water supply mechanism of indirect vaporization cooling system | |
JPS6172949A (en) | Humidifier | |
CA2856625C (en) | Counter-flow energy recovery ventilator (erv) core | |
AU2006206035B2 (en) | Method and materials for improving evaporative heat exchangers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3159566 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |