JP3159038B2 - Absorption heat pump - Google Patents
Absorption heat pumpInfo
- Publication number
- JP3159038B2 JP3159038B2 JP04159596A JP4159596A JP3159038B2 JP 3159038 B2 JP3159038 B2 JP 3159038B2 JP 04159596 A JP04159596 A JP 04159596A JP 4159596 A JP4159596 A JP 4159596A JP 3159038 B2 JP3159038 B2 JP 3159038B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- expansion valve
- target value
- temperature
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷媒にアンモニ
ア、吸収剤にアンモニアを用いたアンモニア吸収式ヒー
トポンプシステムのうち、特に、家庭用に用いる小型の
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia absorption heat pump system using ammonia as a refrigerant and ammonia as an absorbent, and more particularly to a small-sized apparatus used for home use.
【0002】[0002]
【従来の技術】従来この種の吸収式ヒートポンプは、家
庭用ものはなく業務用であり、図11に冷房時のシステ
ム図を示したように、発生器と精溜器とが一体に構成さ
れた発生・精溜器50と、1次側に冷媒流路と2次側に
冷却水流路を備えた凝縮器51と、凝縮器冷媒流路51
出口に設けられた冷媒タンク52と、過冷却器53と、
膨張弁54と、1次側に冷媒流路と2次側に冷水流路を
備えた蒸発器55と、溶液熱交換器56と、減圧弁57
と、1次側に冷媒流路と2次側に冷却水流路を備えた吸
収器58と、吸収器冷媒流路出口に設けられた濃溶液タ
ンク59と、溶液ポンプ60と、各要素部品を接続する
冷媒回路61と、前記凝縮器及び吸収器の2次側冷却水
流路を連結してなる冷却水回路62と、前記蒸発器の2
次側冷水回路を含む冷水回路63とから構成されてい
た。一般的に、一点鎖線で囲った部分が室外機に組み込
まれる。2. Description of the Related Art Conventionally, this type of absorption heat pump is not for domestic use but is for business use. As shown in FIG. 11 which shows a system diagram at the time of cooling, a generator and a rectifier are integrally formed. A condenser 51 having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side;
A refrigerant tank 52 provided at the outlet, a subcooler 53,
An expansion valve 54; an evaporator 55 having a refrigerant flow path on the primary side and a cold water flow path on the secondary side; a solution heat exchanger 56;
An absorber 58 having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side, a concentrated solution tank 59 provided at the outlet of the absorber refrigerant flow path, a solution pump 60, and A refrigerant circuit 61 to be connected; a cooling water circuit 62 connecting the secondary cooling water flow paths of the condenser and the absorber;
And a chilled water circuit 63 including a secondary chilled water circuit. Generally, a portion surrounded by a dashed line is incorporated in the outdoor unit.
【0003】冷房時には、冷水回路63の冷水を冷水循
環ポンプ64を用いて室内側放熱機65に、そして冷却
水回路62の温水を温水循環ポンプ66を用いて室外機
放熱器67に循環させる。また、暖房時には、冷水回路
63の冷水を室外側放熱機67に、冷却水回路62の温
水を室内機放熱器65に循環させる。冷房・暖房時の流
路の切り換えは、例えば切り換え弁を用いて行う。な
お、図11においては、切り換え弁は省略している。During cooling, the cold water in the cold water circuit 63 is circulated to the indoor radiator 65 using the cold water circulation pump 64, and the hot water in the cooling water circuit 62 is circulated to the outdoor unit radiator 67 using the hot water circulation pump 66. At the time of heating, the chilled water in the chilled water circuit 63 is circulated to the outdoor radiator 67, and the warm water in the chilled water circuit 62 is circulated to the indoor unit radiator 65. Switching of the flow path at the time of cooling / heating is performed using, for example, a switching valve. In FIG. 11, the switching valve is omitted.
【0004】ここで用いられる膨張弁は、一般的には、
単なるキャピラリーチューブで代用されており、その開
度は固定されていた。また、作動媒体としてフロンを用
いる電気圧縮式のヒートポンプの場合には、例えば、図
12に示したように、蒸発器68出口の冷媒温度を感温
筒69内の液体の体積変化により弁70に直結するベロ
ーズ71・押さえ棒72を動作させる温度式自動膨張弁
73や、圧力式自動膨張弁、等の温度・圧力の変化を機
械エネルギーに変換して動作する機械式のものが用いら
れていた。[0004] The expansion valve used here is generally
Instead of a simple capillary tube, the opening was fixed. In the case of an electric compression heat pump using Freon as the working medium, for example, as shown in FIG. 12, the refrigerant temperature at the outlet of the evaporator 68 is changed to the valve 70 by a change in the volume of the liquid in the temperature-sensitive cylinder 69. A mechanical type that operates by converting a change in temperature and pressure into mechanical energy, such as a temperature-type automatic expansion valve 73 that operates a directly connected bellows 71 and a holding rod 72, and a pressure-type automatic expansion valve, has been used. .
【0005】[0005]
【発明が解決しようとする課題】しかしながら、キャピ
ラリーチューブを膨張弁として用いた場合には、いわゆ
る膨張弁としての開度は一定となるために、一般家庭で
要求される冷・暖房負荷(室内・外の温度、容量、等)
に対応した細かな能力制御を行うことができない。膨張
弁の開度は、当然の事ながら、最大能力に対応した冷媒
(ここで言う冷媒とはアンモニアを意味する)循環量を
確保する開度に設定されるが、小さい冷・暖房負荷では
その開度を変える必要があるからである。However, when a capillary tube is used as an expansion valve, the degree of opening as a so-called expansion valve is constant. Outside temperature, capacity, etc)
It is not possible to perform detailed ability control corresponding to The opening degree of the expansion valve is, of course, set to an opening degree that ensures the circulation amount of the refrigerant (here, the refrigerant means ammonia) corresponding to the maximum capacity. This is because it is necessary to change the opening.
【0006】また、電気圧縮式に用いられている膨張弁
をそのままアンモニア吸収式ヒートポンプに用いる事は
できない。フロンに比べてアンモニアの蒸発潜熱は、約
10倍あり、同じ性能を出すのであれば約1/10の循
環量で済む。よって、弁を受ける弁座の形状を変える必
要があるとともに、細かな弁開度の制御が必要となる。
少しの弁開度の変化でも、アンモニアの場合には大きな
蒸発温度の変化をおこし、性能、及び動作に悪影響を与
えるからである。Further, an expansion valve used in an electric compression system cannot be used as it is in an ammonia absorption heat pump. The latent heat of vaporization of ammonia is about 10 times that of chlorofluorocarbons, and if the same performance is to be obtained, the circulation amount is about 1/10. Therefore, it is necessary to change the shape of the valve seat that receives the valve, and it is necessary to finely control the valve opening.
This is because even a small change in the valve opening degree causes a large change in the evaporation temperature in the case of ammonia, which adversely affects performance and operation.
【0007】[0007]
【課題を解決するための手段】本発明は上記課題を解決
するため、再生器と、精溜器と、凝縮器と、膨張弁と、
蒸発器の一次側と、吸収器と、溶液ポンプとを配管接続
してなる冷媒回路と、前記蒸発器の二次側に形成される
冷水循環回路と、前記凝縮器の二次側に形成される温水
循環回路と、前記蒸発器入り口の蒸発圧力を検出する圧
力検出手段と、前記圧力検出手段の検出圧力に応じて前
記電子制御膨張弁の開度を制御する制御手段を有する構
成としてある。According to the present invention, a regenerator, a rectifier, a condenser, an expansion valve,
A refrigerant circuit formed by connecting a primary side of an evaporator, an absorber, and a solution pump to a pipe, a chilled water circulation circuit formed on a secondary side of the evaporator, and a secondary circuit formed on a secondary side of the condenser. A hot water circulation circuit, pressure detecting means for detecting an evaporating pressure at the inlet of the evaporator, and control means for controlling an opening of the electronically controlled expansion valve in accordance with a pressure detected by the pressure detecting means.
【0008】本発明は上記した構成によって、圧力検出
手段が検出した圧力に応じて、膨張弁の開度が制御され
るので、蒸発圧力の変化に応じてきめ細かな開度制御が
実現できる。According to the present invention, since the opening of the expansion valve is controlled in accordance with the pressure detected by the pressure detecting means, fine opening control can be realized in accordance with a change in the evaporation pressure.
【0009】[0009]
【発明の実施の形態】本発明の吸収式ヒートポンプは、
再生器と、精溜器と、凝縮器と、膨張弁と、蒸発器の一
次側と、吸収器と、溶液ポンプとを配管接続してなる冷
媒回路と、前記蒸発器の二次側に形成される冷水循環回
路と、前記凝縮器の二次側に形成される温水循環回路
と、前記蒸発器入り口の蒸発圧力を検出する圧力検出手
段と、前記圧力検出手段の検出圧力に応じて前記電子制
御膨張弁の開度を制御する制御手段を有する構成として
あり、圧力検出手段が検出した圧力に応じて、膨張弁の
開度が制御されるので、蒸発圧力の変化に応じてきめ細
かな開度制御が実現できる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The absorption heat pump of the present invention
A regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, a refrigerant circuit formed by connecting a solution pump to a pipe, and a secondary side of the evaporator. A cold water circulation circuit, a hot water circulation circuit formed on the secondary side of the condenser, a pressure detection means for detecting an evaporating pressure at an inlet of the evaporator, and the electronic device according to a detection pressure of the pressure detection means. The control valve has a control means for controlling the opening degree of the expansion valve, and the opening degree of the expansion valve is controlled in accordance with the pressure detected by the pressure detecting means. Control can be realized.
【0010】そして、制御手段は、蒸発圧力の目標値を
設定する目標値設定手段と、圧力検出手段の検出圧力が
前記目標値設定手段の定める目標値と一致するように前
記電子制御膨張弁に電気信号を出力する出力設定手段を
有する構成とすることにより、冷媒の蒸発圧力の目標値
を設定し、その目標値と一致するように電子制御膨張弁
の開度を制御することができる。The control means includes a target value setting means for setting a target value of the evaporating pressure, and the electronic control expansion valve so that the pressure detected by the pressure detecting means coincides with the target value set by the target value setting means. With the configuration including the output setting means for outputting the electric signal, it is possible to set the target value of the evaporation pressure of the refrigerant and control the opening degree of the electronically controlled expansion valve so as to match the target value.
【0011】また本発明の吸収式ヒートポンプは、再生
器と、精溜器と、凝縮器と、膨張弁と、蒸発器の一次側
と、吸収器と、溶液ポンプとを配管接続してなる冷媒回
路と、前記蒸発器の二次側に形成される冷水循環回路
と、前記凝縮器の二次側に形成される温水循環回路と、
前記蒸発器入り口の蒸発圧力を検出する圧力検出手段
と、前記冷水循環回路の冷水温度を検出する冷水温度検
出手段と、前記圧力検出手段の検出圧力および前記冷水
温度検出手段の検出温度に応じて前記電子制御膨張弁の
開度を制御する制御手段を有する構成としてあり、圧力
検出手段が検出する圧力と冷水温度検出手段が検出する
温度をもとに、制御手段により電子制御膨張弁の開度を
制御できる。[0011] The absorption heat pump of the present invention is a refrigerant formed by connecting a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump with piping. A circuit, a cold water circulation circuit formed on the secondary side of the evaporator, and a hot water circulation circuit formed on the secondary side of the condenser,
Pressure detection means for detecting the evaporation pressure at the evaporator inlet, chilled water temperature detection means for detecting the chilled water temperature of the chilled water circulation circuit, and according to the detected pressure of the pressure detection means and the detected temperature of the chilled water temperature detection means The electronic control expansion valve includes a control unit that controls an opening degree of the electronic control expansion valve. Based on a pressure detected by the pressure detection unit and a temperature detected by the chilled water temperature detection unit, the control unit controls the opening degree of the electronic control expansion valve. Can be controlled.
【0012】そして、制御手段は冷水温度検出手段の検
出温度に応じて蒸発圧力の目標値を設定する目標値設定
手段と、圧力検出手段の検出圧力が前記目標値設定手段
の定める目標値と一致するように電子膨張弁に電気信号
を出力する出力設定手段を有する構成とすることによっ
て、冷水温度の変化に連動して蒸発圧力が変化するよう
に電子式膨張弁の開度を制御することができる。The control means sets a target value of the evaporating pressure in accordance with the temperature detected by the chilled water temperature detecting means, and the detected pressure of the pressure detecting means coincides with the target value set by the target value setting means. With the configuration having output setting means for outputting an electric signal to the electronic expansion valve, the opening degree of the electronic expansion valve can be controlled so that the evaporating pressure changes in conjunction with the change in chilled water temperature. it can.
【0013】また本発明の吸収式ヒートポンプは、再生
器と、精溜器と、凝縮器と、膨張弁と、蒸発器の一次側
と、吸収器と、溶液ポンプとを配管接続してなる冷媒回
路と、前記蒸発器の二次側に形成される冷水循環回路
と、前記凝縮器の二次側に形成される温水循環回路と、
前記蒸発器入り口の蒸発圧力を検出する圧力検出手段
と、外気温を検出する外気温検出手段と、暖房時には前
記温水循環回路、冷房時には前記冷水循環回路により室
内空調を行うように切り替える切り替え手段と、暖房時
には前記圧力検出手段の検出圧力および前記外気温検出
手段の検出温度に応じて前記電子制御膨張弁の開度を制
御する制御手段を有する構成としてあり、室外温度検出
手段が検出する温度と圧力検出手段が検出する圧力をも
とに、制御手段により電子制御膨張弁の開度を制御でき
る。[0013] The absorption heat pump of the present invention is a refrigerant comprising a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump connected by piping. A circuit, a cold water circulation circuit formed on the secondary side of the evaporator, and a hot water circulation circuit formed on the secondary side of the condenser,
Pressure detection means for detecting the evaporation pressure at the evaporator inlet, outside air temperature detection means for detecting the outside air temperature, switching means for performing indoor air conditioning by the hot water circulation circuit during heating, and the cold water circulation circuit during cooling. In heating, the control unit controls the opening degree of the electronically controlled expansion valve in accordance with the detected pressure of the pressure detection unit and the detected temperature of the outside air temperature detection unit, and the temperature detected by the outdoor temperature detection unit The opening degree of the electronically controlled expansion valve can be controlled by the control means based on the pressure detected by the pressure detection means.
【0014】さらに、制御手段は外気温検出手段の検出
温度に応じて蒸発圧力の目標値を設定する目標値設定手
段と、圧力検出手段の検出圧力が前記目標値設定手段と
一致するように電子膨張弁に電気信号を出力する出力設
定手段を有する構成とすることによって、室外温度の変
化に連動して蒸発圧力が変化するように電子式膨張弁の
開度を制御することができる。Further, the control means includes a target value setting means for setting a target value of the evaporating pressure in accordance with the temperature detected by the outside air temperature detecting means, and an electronic control unit so that the detected pressure of the pressure detecting means coincides with the target value setting means. With the configuration including the output setting means for outputting an electric signal to the expansion valve, the opening of the electronic expansion valve can be controlled so that the evaporation pressure changes in accordance with the change in the outdoor temperature.
【0015】また本発明の吸収式ヒートポンプは、膨張
弁の筺体内部に圧力検出手段を組みんだ構成としてある
から、取扱いが容易になるとともに、正確な蒸発圧力を
検出することができる。Further, the absorption heat pump of the present invention has a structure in which the pressure detecting means is assembled inside the housing of the expansion valve, so that the handling becomes easy and the accurate evaporation pressure can be detected.
【0016】以下、本発明の実施例を図を用いて説明す
る。 (実施例1)図1において、ガス電磁弁1より供給され
たガスと、バーナファン2より供給された空気によりバ
ーナ3で加熱された冷媒の循環する冷媒回路4は、再生
器5、精溜器6、凝縮器7の一次側、過冷却器8の一次
側、電子制御膨張弁9、蒸発器10の1次側、過冷却器
8の2次側、吸収器11の1次側、溶液ポンプ12、溶
液熱交換器13の1次側を順次配管接続して構成され
る。また、精溜器6の下部、溶液熱交換器13の2次
側、減圧弁14、吸収器11の1次側を配管接続した経
路には精溜器6で冷媒ガスから分離された冷媒稀溶液の
流路が形成されている。蒸発器10で冷媒と熱交換し冷
却された冷水が循環する冷水循環回路15は、蒸発器1
0の2次側、第1循環ポンプ16、室内ファン17を備
えた室内熱交換器18を順次配管接続することにより構
成される。さらに、凝縮器7で冷媒と熱交換し暖められ
た温水が循環する温水循環回路19は、凝縮器7の2次
側、吸収器11の2次側、第2循環ポンプ20、室外放
熱ファン21を備えた室外熱交換器22を順次配管接続
することにより構成されている。そして前記蒸発器10
の1次側の入り口の配管に冷媒の蒸発圧力を検出する圧
力検出手段23が備えられている。24は制御手段であ
り、圧力検出手段23の検出圧力に応じて電子制御膨張
弁9の開度を制御する。An embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) In FIG. 1, a refrigerant circuit 4 in which a gas supplied from a gas solenoid valve 1 and a refrigerant heated by a burner 3 by air supplied from a burner fan 2 circulates is provided with a regenerator 5 and a rectifier. The primary side of the condenser 6, the condenser 7, the primary side of the subcooler 8, the electronic control expansion valve 9, the primary side of the evaporator 10, the secondary side of the subcooler 8, the primary side of the absorber 11, the solution The pump 12 and the primary side of the solution heat exchanger 13 are sequentially connected by piping. The lower part of the rectifier 6, the secondary side of the solution heat exchanger 13, the pressure reducing valve 14, and the primary side of the absorber 11 are connected by piping to the refrigerant rarely separated from the refrigerant gas by the rectifier 6. A solution flow path is formed. The chilled water circulation circuit 15 in which the chilled water cooled by exchanging heat with the refrigerant in the evaporator 10 circulates,
0, a first circulating pump 16 and an indoor heat exchanger 18 having an indoor fan 17 are sequentially connected by piping. Further, a hot water circulation circuit 19 in which hot water heated by exchanging heat with the refrigerant in the condenser 7 circulates is provided with a secondary side of the condenser 7, a secondary side of the absorber 11, a second circulation pump 20, an outdoor radiating fan 21. Are sequentially connected by piping. And the evaporator 10
A pressure detecting means 23 for detecting the evaporating pressure of the refrigerant is provided in the pipe at the inlet on the primary side. A control unit 24 controls the opening of the electronically controlled expansion valve 9 in accordance with the pressure detected by the pressure detection unit 23.
【0017】次に、上記構成における動作を説明する。
まず、冷媒回路4の動作を説明する。バーナ3により加
熱された冷媒蒸気は、精溜器6で純度の高い冷媒ガス
と、濃度の低い冷媒稀溶液とに分離される。精溜器6よ
り発生した冷媒ガスは凝縮器7の1次側に送られ、ここ
で、2次側の回路を流れる水と熱交換し凝縮液化され
る。液化された液冷媒は過冷却器8で冷却された後、電
子制御膨張弁9を通ることにより、減圧され断熱膨張作
用を受ける。減圧された液冷媒は蒸発器10の1次側に
送られ、ここで、2次側を通る水と熱交換することによ
り、蒸発し、ガス化される。ガス化した冷媒は過冷却器
8で加熱された吸収器11へ送られる。Next, the operation of the above configuration will be described.
First, the operation of the refrigerant circuit 4 will be described. The refrigerant vapor heated by the burner 3 is separated by the rectifier 6 into a high-purity refrigerant gas and a low-concentration refrigerant dilute solution. The refrigerant gas generated from the rectifier 6 is sent to the primary side of the condenser 7, where it exchanges heat with water flowing through the secondary side circuit to be condensed and liquefied. After the liquefied liquid refrigerant is cooled by the supercooler 8, it passes through the electronically controlled expansion valve 9 to be decompressed and undergo an adiabatic expansion action. The decompressed liquid refrigerant is sent to the primary side of the evaporator 10, where it evaporates and gasifies by heat exchange with water passing through the secondary side. The gasified refrigerant is sent to the absorber 11 heated by the supercooler 8.
【0018】一方、精溜器6で発生した冷媒稀溶液の方
は、溶液熱交換器13で冷却された後、減圧弁14を通
ることにより減圧され、吸収器11の1次側へ送られ
る。吸収器11の1次側では、冷媒ガスが冷媒稀溶液に
吸収され、冷媒稀溶液より濃度の高い冷媒濃溶液に変化
する。冷媒濃溶液は溶液ポンプ12により一部は溶液熱
交換器13で加熱された後、再生器5に送られる。ま
た、溶液ポンプ12は濃溶液の一部を精溜器6へ圧送す
る構成を取っている。On the other hand, the refrigerant dilute solution generated in the rectifier 6 is cooled in the solution heat exchanger 13 and then depressurized by passing through the pressure reducing valve 14 and sent to the primary side of the absorber 11. . On the primary side of the absorber 11, the refrigerant gas is absorbed by the refrigerant dilute solution and changes to a refrigerant concentrated solution having a higher concentration than the refrigerant dilute solution. A part of the refrigerant concentrated solution is heated by the solution heat exchanger 13 by the solution pump 12 and then sent to the regenerator 5. Further, the solution pump 12 is configured to pump a part of the concentrated solution to the rectifier 6 under pressure.
【0019】次に、冷水循環回路15の動作を説明す
る。蒸発器10の1次側の冷媒と熱交換し冷却された冷
水は第1循環ポンプ16により室内熱交換器18に圧送
され、ここで、室内空気と熱交換し冷房運転を行う。次
に、温水循環回路19の動作を説明する。凝縮器7の1
次側の冷媒および吸収器11の1次側冷媒と熱交換し加
熱された温水は第2循環ポンプ20で室外熱交換器22
へ圧送され、ここで、外気に熱を放出する。Next, the operation of the chilled water circulation circuit 15 will be described. The cold water cooled by exchanging heat with the refrigerant on the primary side of the evaporator 10 is pumped to the indoor heat exchanger 18 by the first circulation pump 16, where it exchanges heat with indoor air to perform a cooling operation. Next, the operation of the hot water circulation circuit 19 will be described. 1 of condenser 7
The hot water heated by heat exchange with the secondary refrigerant and the primary refrigerant of the absorber 11 is heated by the second circulation pump 20 to the outdoor heat exchanger 22.
Where the heat is released to the outside air.
【0020】次に、図2を用いて電子制御膨張弁9の動
作を説明する。図2は電子制御膨張弁の断面図である。
9aは流路の絞り部9bの開度を制御するニードル、9
cはニードル9aを上下方向に動作させるパルスモータ
である。電子制御膨張弁9の内部を流れるアンモニアの
流量はパルスモータ9cで発生した回転力に対応して上
下するニードル9aによって制御されることになる。Next, the operation of the electronically controlled expansion valve 9 will be described with reference to FIG. FIG. 2 is a sectional view of the electronically controlled expansion valve.
9a is a needle for controlling the opening degree of the throttle portion 9b of the flow path;
c is a pulse motor for moving the needle 9a in the vertical direction. The flow rate of ammonia flowing inside the electronically controlled expansion valve 9 is controlled by a needle 9a that moves up and down in accordance with the rotational force generated by the pulse motor 9c.
【0021】次に電子制御膨張弁9の開度と冷媒の蒸発
圧力との関係について説明する。電子制御膨張弁9の開
度を大とすることにより蒸発器10に流入する冷媒流量
は増加するため、吸収器11の出口の濃溶液濃度が減少
し、その結果、蒸発器8と吸収器10を結ぶ低圧側ライ
ンの圧力が上昇する。そのため低圧側ラインの圧力上昇
に従って、冷媒の蒸発圧力が上昇するように作用する。
逆に、電子制御膨張弁9の開度を小とすれば、冷媒の蒸
発圧力は低下するように作用する。冷凍サイクルを安定
させるために蒸発圧力が適正範囲に定められるように弁
開度を制御する必要がある。そこで、蒸発圧力が高すぎ
る場合には弁開度を小として蒸発圧力を低下させるよう
に、また、逆に蒸発圧力が低すぎる場合には弁開度を大
として蒸発圧力を上昇させるように制御すれば良い。Next, the relationship between the opening degree of the electronic control expansion valve 9 and the evaporation pressure of the refrigerant will be described. Since the flow rate of the refrigerant flowing into the evaporator 10 increases by increasing the opening degree of the electronic control expansion valve 9, the concentration of the concentrated solution at the outlet of the absorber 11 decreases, and as a result, the evaporator 8 and the absorber 10 , The pressure in the low pressure line increases. Therefore, the refrigerant works so that the evaporating pressure of the refrigerant increases as the pressure in the low-pressure line increases.
Conversely, when the opening of the electronically controlled expansion valve 9 is reduced, the refrigerant evaporating pressure acts to decrease. In order to stabilize the refrigeration cycle, it is necessary to control the valve opening so that the evaporation pressure is set in an appropriate range. Therefore, if the evaporation pressure is too high, control is performed so that the valve opening is reduced to reduce the evaporation pressure, and if the evaporation pressure is too low, the valve opening is increased and the evaporation pressure is increased. Just do it.
【0022】そこで、制御手段24では、圧力検出手段
23の検出圧力に応じた弁開度の関係、すなわち、圧力
上昇に伴って弁開度を小とする関係を記憶しており、適
当なサンプリング時間毎に検出した圧力に対応した弁開
度を与えるように、パルスモータ9cに回転信号を供給
する。ここで与えられた回転信号に応じてニードル9a
が動作して弁開度が変化する。In view of this, the control means 24 stores the relationship of the valve opening in accordance with the pressure detected by the pressure detecting means 23, that is, the relationship in which the valve opening is reduced as the pressure rises. A rotation signal is supplied to the pulse motor 9c so as to give a valve opening corresponding to the pressure detected every time. According to the rotation signal given here, the needle 9a
Operates to change the valve opening.
【0023】上記の構成によれば、制御手段24が、圧
力検出手段23の検出圧力に応じて、電子制御膨張弁9
の開度を制御するので、冷媒の蒸発圧力範囲を適正範囲
に保ち、冷媒サイクルの安定化を図ることができる。According to the above configuration, the control means 24 controls the electronically controlled expansion valve 9 in accordance with the pressure detected by the pressure detection means 23.
Since the opening degree of the refrigerant is controlled, the evaporation pressure range of the refrigerant can be kept in an appropriate range, and the refrigerant cycle can be stabilized.
【0024】(実施例2)図3は本発明の実施例2の構
成図である。図3おいて実施例1と異なる制御手段24
に関して説明する。25は目標値設定手段であり、蒸発
器10入り口の蒸発圧力の目標値を設定する。26は出
力設定手段であり目標値設定手段で定めた蒸発圧力の目
標値と、圧力検出手段23の検出圧力が一致するように
電子制御膨張弁9の弁開度を設定する。すなわち、適当
なサンプリング時間毎に圧力検出手段23の検出圧力P
jを読み込み、目標値設定手段25で定めた目標値Ps
との温度偏差ΔP=Ps−Pjにしたがって、PI制
御、PID制御等によって出力を設定する。例えば、P
I制御を用いた場合には、実施例1で述べたと同様に、
蒸発圧力Pjが上昇すれば弁開度を小とするように作用
させれば良いので、弁開度Sと温度偏差ΔPとの関係式
は数式1のようになる。(Embodiment 2) FIG. 3 is a block diagram of Embodiment 2 of the present invention. In FIG. 3, the control means 24 different from the first embodiment.
Will be described. Reference numeral 25 denotes a target value setting means for setting a target value of the evaporation pressure at the entrance of the evaporator 10. Reference numeral 26 denotes an output setting means for setting the valve opening of the electronically controlled expansion valve 9 so that the target value of the evaporation pressure determined by the target value setting means coincides with the detected pressure of the pressure detecting means 23. That is, the pressure P detected by the pressure detecting means 23 is changed every appropriate sampling time.
j, and reads the target value Ps determined by the target value setting means 25.
The output is set by PI control, PID control, or the like in accordance with the temperature deviation ΔP = Ps−Pj. For example, P
When I control is used, as described in the first embodiment,
If the evaporating pressure Pj increases, the valve opening degree may be reduced so that the relational expression between the valve opening degree S and the temperature deviation ΔP is as shown in Equation 1.
【0025】 S=K1+K2×ΔP+K3×ΣΔP・・・・・・数式1 ここで、K1、K2、K3はそれぞれ正の定数である。S = K1 + K2 × ΔP + K3 × ΣΔP Expression 1 Here, K1, K2, and K3 are positive constants.
【0026】上記の構成によれば、蒸発圧力の目標値が
固定化される。例えば、冷房運転時には、蒸発器10の
2次側の出口の冷水温度を7℃前後に保つ方式が一般的
にとられているが、7℃の冷水と熱交換するためには、
蒸発器10の一次側の入口温度はこれより低い3〜4℃
前後に保たなければならない。したがって、目標値設定
手段25にこの温度に相当する圧力が設定され、圧力偏
差が生じれば、弁開度が変化して、常に一定圧力が得ら
れるように作用する。According to the above configuration, the target value of the evaporation pressure is fixed. For example, during the cooling operation, a method of keeping the temperature of the chilled water at the outlet on the secondary side of the evaporator 10 at around 7 ° C. is generally adopted. However, in order to exchange heat with the chilled water at 7 ° C.,
The inlet temperature on the primary side of the evaporator 10 is lower than 3 to 4 ° C.
Must be kept back and forth. Therefore, the pressure corresponding to this temperature is set in the target value setting means 25, and if a pressure deviation occurs, the valve opening changes, so that a constant pressure is always obtained.
【0027】(実施例3)図4は上記各実施例1、2に
用いる電子制御膨張弁7の例を示す。図4においては圧
力検出手段23を電子制御膨張弁9の内部に組み込んで
ある。図4で、圧力検出手段23は電子制御膨張弁9内
部の出口側流路に接触させており、膨張作用を受けた直
後の冷媒圧力の検出が可能である。(Embodiment 3) FIG. 4 shows an example of an electronically controlled expansion valve 7 used in each of Embodiments 1 and 2. In FIG. 4, the pressure detecting means 23 is incorporated inside the electronically controlled expansion valve 9. In FIG. 4, the pressure detecting means 23 is in contact with the outlet side flow path inside the electronically controlled expansion valve 9, and can detect the refrigerant pressure immediately after receiving the expansion action.
【0028】上記構成によれば、圧力損失、熱損失が極
めて少なくより正確な圧力検出が可能となる。なお、こ
の電子制御膨張弁9は以下に述べる各実施例に用いても
よいのである。According to the above configuration, pressure loss and heat loss are extremely small, and more accurate pressure detection becomes possible. The electronically controlled expansion valve 9 may be used in each of the embodiments described below.
【0029】(実施例4)図5において実施例1と異な
るのは、冷水循環回路15に冷水温度検出手段27を設
けた点と、制御手段24の構成である。冷水温度検出手
段27は蒸発器10の二次側出口の配管上に備えられい
る。制御手段24は、圧力検出手段23および冷水温度
検出手段25の検出値に応じて電子制御膨張弁9の開度
を設定する。すなわち、冷水循環回路27の冷水負荷の
大小を冷水温度により推定し、負荷情報を加味して電子
制御膨張弁9の開度を設定する。負荷に見合った冷凍能
力を発揮するためには、負荷が大きくなるに従って、冷
媒循環量を増す必要がある。したがって、負荷が大きく
なるに伴って、電子制御膨張弁9の開度を大とする必要
がある。冷水温度が高ければ、負荷は大と判定できるの
で、冷水温度が高く、蒸発圧力が低い時には電子制御膨
張弁9の開度は大、逆に、冷水温度が低く、蒸発圧力が
高い時には電子制御膨張弁9の開度は小とすれば良い。
よって、制御手段24は、圧力検出手段23の検出圧力
と冷水温度検出手段27の検出温度の組み合わせに対応
する電子制御膨張弁9の開度を記憶しており、適当なサ
ンプリング時間毎に読み込んだ、両方の値に対応した出
力を電子制御膨張弁9に出力する。図6では、蒸発温度
をパラメータとした、蒸発圧力に対する電子制御膨張弁
開度の関係を示す。図6で、Teは冷水温度であり、Te
1<Te2<Te3の関係がある。(Embodiment 4) FIG. 5 differs from Embodiment 1 in the point that a chilled water temperature detecting means 27 is provided in the chilled water circulation circuit 15 and the configuration of the control means 24. The chilled water temperature detecting means 27 is provided on a pipe at a secondary outlet of the evaporator 10. The control means 24 sets the opening of the electronically controlled expansion valve 9 according to the detection values of the pressure detection means 23 and the chilled water temperature detection means 25. That is, the magnitude of the chilled water load of the chilled water circulation circuit 27 is estimated based on the chilled water temperature, and the opening of the electronic control expansion valve 9 is set in consideration of the load information. In order to exhibit the refrigerating capacity corresponding to the load, it is necessary to increase the refrigerant circulation amount as the load increases. Therefore, it is necessary to increase the opening of the electronically controlled expansion valve 9 as the load increases. If the chilled water temperature is high, the load can be determined to be large. Therefore, when the chilled water temperature is high and the evaporation pressure is low, the opening of the electronic control expansion valve 9 is large. Conversely, when the chilled water temperature is low and the evaporation pressure is high, the electronic control is performed. The opening degree of the expansion valve 9 may be small.
Therefore, the control means 24 stores the opening degree of the electronically controlled expansion valve 9 corresponding to the combination of the detected pressure of the pressure detecting means 23 and the detected temperature of the chilled water temperature detecting means 27, and reads the opening degree at an appropriate sampling time. , Output to the electronic control expansion valve 9. FIG. 6 shows the relationship between the evaporation pressure and the electronic control expansion valve opening degree with the evaporation temperature as a parameter. In FIG. 6, Te is the cold water temperature,
There is a relationship of 1 <Te2 <Te3.
【0030】上記構成によれば、冷水温度の変化に対応
して、適正な弁開度が得られるため、冷水負荷の変動に
影響を受けずに冷媒サイクルの安定化を図ることができ
る。According to the above configuration, an appropriate valve opening can be obtained in response to a change in chilled water temperature, so that the refrigerant cycle can be stabilized without being affected by a change in chilled water load.
【0031】(実施例5)図7において、実施例4と異
なるのは、制御手段24の構成である。目標値設定手段
25は冷水温度検出手段27で検出された冷水温度Te
の値に連動して蒸発圧力の目標値を変化させる。すなわ
ち、冷水温度Teが大であれば、蒸発圧力の目標値Ps
も大とする。出力設定手段26は蒸発温度検出手段23
の検出温度が目標値Psに一致するように電子制御膨張
弁8の弁開度を設定する。すなわち、適当なサンプリン
グ時間毎に蒸発温度検出手段23の検出圧力Pjと冷水
温度検出手段25の検出温度を読み込み、目標値設定手
段25で定めた目標値Psとの圧力偏差ΔP=Ps−P
jにしたがって、PI制御、PID制御等によって出力
を設定する。例えば、PI制御を用いた場合には、実施
例2で述べた数式1と同様の形で制御式が表現される。(Embodiment 5) FIG. 7 differs from Embodiment 4 in the configuration of the control means 24. The target value setting unit 25 detects the chilled water temperature Te detected by the chilled water temperature detecting unit 27.
The target value of the evaporating pressure is changed in conjunction with the value of. That is, if the cold water temperature Te is high, the target value Ps of the evaporation pressure
Is also large. The output setting means 26 is provided for the evaporating temperature detecting means 23.
Of the electronic control expansion valve 8 is set such that the detected temperature of the electronic control expansion valve 8 coincides with the target value Ps. That is, the detection pressure Pj of the evaporating temperature detection means 23 and the detection temperature of the chilled water temperature detection means 25 are read at appropriate sampling times, and the pressure deviation ΔP = Ps−P from the target value Ps determined by the target value setting means 25 is read.
According to j, the output is set by PI control, PID control or the like. For example, when the PI control is used, the control expression is expressed in the same manner as Expression 1 described in the second embodiment.
【0032】上記の構成によれば、冷水負荷の変化に伴
って蒸発圧力の目標値が変化する。したがって、冷水負
荷の変化時には、冷水循環回路と冷媒回路の温度バラン
スを保ちつつ、徐々に変化に追従するように作用するの
で、冷媒サイクルの安定化を図ることができる。According to the above configuration, the target value of the evaporating pressure changes with the change of the chilled water load. Therefore, when the load of the chilled water changes, the temperature of the chilled water circulation circuit and the refrigerant circuit are maintained and the temperature of the chilled water circuit is gradually balanced, and the refrigerant cycle can be stabilized.
【0033】(実施例6)図8において実施例1と異な
るのは、第1切り替え弁29および第2切り替え弁30
を備えるとともに、これら切り換え弁の作用により、冷
房時には蒸発器10の2次側回路により室内空調し、暖
房時には、凝縮器8の2次側回路により室内空調を行う
ようにして、冷暖房可能とした点、室外熱交換器22に
外気温検出手段31を設けた点、および制御手段24の
構成である。(Embodiment 6) FIG. 8 is different from Embodiment 1 in that the first switching valve 29 and the second switching valve 30
In addition, by the action of these switching valves, indoor air conditioning is performed by the secondary circuit of the evaporator 10 during cooling, and indoor air conditioning is performed by the secondary circuit of the condenser 8 during heating, thereby enabling cooling and heating. The point, the point that the outdoor temperature exchanger 31 is provided in the outdoor heat exchanger 22, and the configuration of the control unit 24.
【0034】暖房運転時には、凝縮器7の2次側で得ら
れた温水は第1切り替え弁29、第1循環ポンプ16を
通り、室内熱交換器18で室内空気と熱交換することに
より室内を暖房し、第2切り替え弁30を通り凝縮器7
へ還る。一方、蒸発器10の2次側で得られた冷水は第
1切り替え弁29、第2循環ポンプ20を通り、室外熱
交換器22で室外空気と熱交換を行った後、蒸発器10
へ還る。暖房運転時に、外気温は−10℃〜10℃程度
まで対応する必要があるが、ヒートポンプ運転を実現す
るためには、蒸発温度は−20℃〜0℃程度の範囲にわ
たって制御する必要がある。すなわち、外気温に見合っ
た高効率の暖房運転を行うには、外気温が低くなるに従
って、電子制御膨張弁の開度を小として、蒸発圧力を下
げることにより蒸発温度を下げることが必要である。よ
って、外気温が高く、蒸発圧力が低い時には電子制御膨
張弁9の開度は大、逆に、外気温が低く、蒸発圧力が高
い時には電子制御膨張弁9の開度は小とすれば良い。よ
って、制御手段24は、圧力検出手段23の検出圧力と
外気温検出手段31の検出圧力の組み合わせに対応する
電子制御膨張弁9の開度を記憶しており、適当なサンプ
リング時間毎に読み込んだ、両方の値に対応した出力を
電子制御膨張弁9に出力する。図9では、外気温Toを
パラメータとした蒸発圧力に対する電子制御膨張弁開度
の関係を示す。図9で、Toは外気温であり、To1<To
2<To3の関係がある。During the heating operation, the hot water obtained on the secondary side of the condenser 7 passes through the first switching valve 29 and the first circulating pump 16, and exchanges heat with the indoor air in the indoor heat exchanger 18, so that the room is heated. After heating, the condenser 7 passes through the second switching valve 30.
Return to On the other hand, the cold water obtained on the secondary side of the evaporator 10 passes through the first switching valve 29 and the second circulating pump 20 and exchanges heat with outdoor air in the outdoor heat exchanger 22.
Return to At the time of the heating operation, the outside air temperature needs to correspond to about −10 ° C. to about 10 ° C., but in order to realize the heat pump operation, the evaporation temperature needs to be controlled in a range of about −20 ° C. to about 0 ° C. That is, in order to perform a high-efficiency heating operation corresponding to the outside temperature, it is necessary to lower the evaporation temperature by reducing the opening degree of the electronically controlled expansion valve and the evaporation pressure as the outside temperature decreases. . Therefore, when the outside air temperature is high and the evaporation pressure is low, the opening of the electronic control expansion valve 9 is large, and conversely, when the outside air temperature is low and the evaporation pressure is high, the opening of the electronic control expansion valve 9 may be small. . Therefore, the control unit 24 stores the opening degree of the electronically controlled expansion valve 9 corresponding to the combination of the detected pressure of the pressure detecting unit 23 and the detected pressure of the outside air temperature detecting unit 31, and reads the opening at appropriate sampling times. , Output to the electronic control expansion valve 9. FIG. 9 shows the relationship between the evaporation pressure and the opening degree of the electronic control expansion valve with the outside air temperature To as a parameter. In FIG. 9, To is the outside air temperature, and To1 <To
There is a relationship of 2 <To3.
【0035】上記構成によれば、暖房運転時には外気温
の変化に対応して、適正な弁開度が得られるため、高効
率のヒートポンプ運転が可能である。According to the above configuration, an appropriate valve opening can be obtained in response to a change in the outside air temperature during the heating operation, so that a highly efficient heat pump operation is possible.
【0036】(実施例7)図10において、実施例6と
異なるのは、制御手段24の構成である。目標値設定手
段25は外気温検出手段31で検出された外気温Toの
値に連動して蒸発圧力の目標値を変化させる。すなわ
ち、外気温Toが大であれば、蒸発圧力の目標値Psも
大とする。出力設定手段26は圧力検出手段23の検出
圧力が目標値Psに一致するように電子制御膨張弁9の
弁開度を設定する。すなわち、適当なサンプリング時間
毎に圧力検出手段23の検出圧力Pjと外気温検出手段
25の検出温度Toを読み込み、目標値設定手段25で
定めた目標値Psとの温度偏差ΔT=Ps−Poにした
がって、PI制御、PID制御等によって出力を設定す
る。例えば、PI制御を用いた場合には、実施例2で述
べた数式1と同様の形で制御式が表現される。(Embodiment 7) FIG. 10 differs from Embodiment 6 in the configuration of the control means 24. The target value setting means 25 changes the target value of the evaporation pressure in conjunction with the value of the outside air temperature To detected by the outside air temperature detecting means 31. That is, if the outside air temperature To is high, the target value Ps of the evaporation pressure is also high. The output setting means 26 sets the valve opening of the electronically controlled expansion valve 9 so that the pressure detected by the pressure detecting means 23 matches the target value Ps. That is, the detection pressure Pj of the pressure detection means 23 and the detection temperature To of the outside air temperature detection means 25 are read at appropriate sampling times, and the temperature deviation ΔT = Ps−Po from the target value Ps determined by the target value setting means 25 is obtained. Therefore, the output is set by PI control, PID control, or the like. For example, when the PI control is used, the control expression is expressed in the same manner as Expression 1 described in the second embodiment.
【0037】上記構成によれば、暖房運転時には外気温
の変化に対応して、適正な弁開度が得られるため、高効
率のヒートポンプ運転が可能である。According to the above configuration, an appropriate valve opening can be obtained in response to a change in the outside air temperature during the heating operation, so that a highly efficient heat pump operation is possible.
【0038】[0038]
【発明の効果】以上説明したように本発明の吸収式ヒー
トポンプは、圧力検出手段の検出する蒸発圧力に応じ
て、電子制御膨張弁の開度を制御しているので、きめの
細かい制御が実現できるという効果がある。As described above, the absorption heat pump of the present invention controls the degree of opening of the electronically controlled expansion valve in accordance with the evaporating pressure detected by the pressure detecting means, thereby realizing fine-grained control. There is an effect that can be.
【0039】また、冷水温度に応じて、蒸発圧力が変化
するので、負荷の変動時であっても安定した動作が実現
できる。Further, since the evaporation pressure changes according to the temperature of the cold water, a stable operation can be realized even when the load changes.
【0040】また、暖房運転時には、外気温の変化に応
じて、蒸発圧力が変化するので、広範囲な温度変化に対
応して高効率なヒートポンプ運転が可能となる。Further, during the heating operation, the evaporating pressure changes in accordance with the change in the outside air temperature, so that a highly efficient heat pump operation can be performed in response to a wide temperature change.
【0041】また、電子制御膨張弁の筺体内部に圧力検
出手段を設けているので、より正確な蒸発圧力の制御が
可能となる。Further, since the pressure detecting means is provided inside the housing of the electronically controlled expansion valve, more accurate control of the evaporating pressure becomes possible.
【図1】本発明の実施例1における吸収式ヒートポンプ
の構成図FIG. 1 is a configuration diagram of an absorption heat pump in Embodiment 1 of the present invention.
【図2】同実施例1における電子制御膨張弁の断面図FIG. 2 is a cross-sectional view of the electronically controlled expansion valve according to the first embodiment.
【図3】本発明の実施例2における吸収式ヒートポンプ
の構成図FIG. 3 is a configuration diagram of an absorption heat pump in Embodiment 2 of the present invention.
【図4】本発明の実施例3における電子制御膨張弁の断
面図FIG. 4 is a sectional view of an electronically controlled expansion valve according to a third embodiment of the present invention.
【図5】本発明の実施例4における吸収式ヒートポンプ
の構成図FIG. 5 is a configuration diagram of an absorption heat pump according to a fourth embodiment of the present invention.
【図6】同実施例4における圧力検出手段と電子制御膨
張弁の開度の関係図FIG. 6 is a diagram showing the relationship between the pressure detection means and the opening degree of the electronically controlled expansion valve in the fourth embodiment.
【図7】本発明の実施例5における吸収式ヒートポンプ
の構成図FIG. 7 is a configuration diagram of an absorption heat pump in Embodiment 5 of the present invention.
【図8】本発明の実施例6における吸収式ヒートポンプ
の構成図FIG. 8 is a configuration diagram of an absorption heat pump according to a sixth embodiment of the present invention.
【図9】同実施例6における圧力検出手段と電子制御膨
張弁の開度の関係図FIG. 9 is a diagram showing the relationship between the pressure detection means and the opening degree of the electronically controlled expansion valve in the sixth embodiment.
【図10】本発明の実施例7における吸収式ヒートポン
プの構成図FIG. 10 is a configuration diagram of an absorption heat pump according to a seventh embodiment of the present invention.
【図11】従来の吸収式ヒートポンプを示す構成図FIG. 11 is a configuration diagram showing a conventional absorption heat pump.
【図12】従来の膨張弁を示す断面図FIG. 12 is a sectional view showing a conventional expansion valve.
4 冷媒回路 5 再生器 6 精溜器 7 凝縮器 9 電子制御膨張弁 10 蒸発器 11 吸収器 12 溶液ポンプ 15 冷水循環回路 19 温水循環回路 23 圧力検出手段 24 制御手段 Reference Signs List 4 refrigerant circuit 5 regenerator 6 rectifier 7 condenser 9 electronically controlled expansion valve 10 evaporator 11 absorber 12 solution pump 15 cold water circulation circuit 19 hot water circulation circuit 23 pressure detection means 24 control means
フロントページの続き (72)発明者 澤田 敬 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−280357(JP,A) 特開 昭59−183261(JP,A) 特開 平8−313104(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 F25B 15/04 Continuation of the front page (72) Inventor Takashi Sawada 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-61-280357 (JP, A) JP-A-59-183261 (JP) , A) JP-A-8-313104 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 306 F25B 15/04
Claims (7)
と、蒸発器の一次側と、吸収器と、溶液ポンプとを配管
接続してなる冷媒回路と、前記蒸発器の二次側に形成さ
れる冷水循環回路と、前記凝縮器の二次側に形成される
温水循環回路と、前記蒸発器入り口の蒸発圧力を検出す
る圧力検出手段と、前記圧力検出手段の検出圧力に応じ
て前記電子制御膨張弁の開度を制御する制御手段を有す
る吸収式ヒートポンプ。A refrigerant circuit comprising a pipe connecting a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump; A cold water circulation circuit formed on the secondary side, a hot water circulation circuit formed on the secondary side of the condenser, pressure detection means for detecting an evaporation pressure at the evaporator inlet, and pressure detected by the pressure detection means An absorption heat pump having control means for controlling an opening degree of the electronically controlled expansion valve in accordance with the condition.
目標値設定手段と、圧力検出手段の検出圧力が前記目標
値設定手段の定める目標値と一致するように前記電子制
御膨張弁に電気信号を出力する出力設定手段を有する請
求項1記載の吸収式ヒートポンプ。A control means for setting a target value of the evaporation pressure; and a control means for controlling the electronic control expansion valve so that a detection pressure of the pressure detection means coincides with a target value set by the target value setting means. 2. The absorption heat pump according to claim 1, further comprising output setting means for outputting an electric signal.
と、蒸発器の一次側と、吸収器と、溶液ポンプとを配管
接続してなる冷媒回路と、前記蒸発器の二次側に形成さ
れる冷水循環回路と、前記凝縮器の二次側に形成される
温水循環回路と、前記蒸発器入り口の蒸発圧力を検出す
る圧力検出手段と、前記冷水循環回路の冷水温度を検出
する冷水温度検出手段と、前記圧力検出手段の検出圧力
および前記冷水温度検出手段の検出温度に応じて前記電
子制御膨張弁の開度を制御する制御手段を有する吸収式
ヒートポンプ。3. A refrigerant circuit formed by connecting a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump to a pipe, A cold water circulation circuit formed on the secondary side, a hot water circulation circuit formed on the secondary side of the condenser, pressure detection means for detecting an evaporation pressure at the evaporator inlet, and a cold water temperature of the cold water circulation circuit And a control means for controlling an opening degree of the electronically controlled expansion valve according to a detected pressure of the pressure detecting means and a detected temperature of the chilled water temperature detecting means.
応じて蒸発圧力の目標値を設定する目標値設定手段と、
圧力検出手段の検出圧力が前記目標値設定手段の定める
目標値と一致するように電子膨張弁に電気信号を出力す
る出力設定手段を有する請求項3記載の吸収式ヒートポ
ンプ。4. A control means comprising: a target value setting means for setting a target value of an evaporation pressure according to a temperature detected by a chilled water temperature detection means;
4. An absorption heat pump according to claim 3, further comprising output setting means for outputting an electric signal to the electronic expansion valve such that the pressure detected by the pressure detecting means matches the target value set by the target value setting means.
と、蒸発器の一次側と、吸収器と、溶液ポンプとを配管
接続してなる冷媒回路と、前記蒸発器の二次側に形成さ
れる冷水循環回路と、前記凝縮器の二次側に形成される
温水循環回路と、前記蒸発器入り口の蒸発圧力を検出す
る圧力検出手段と、外気温を検出する外気温検出手段
と、暖房時には前記温水循環回路、冷房時には前記冷水
循環回路により室内空調を行うように切り替える切り替
え手段と、暖房時には前記圧力検出手段の検出圧力およ
び前記外気温検出手段の検出温度に応じて前記電子制御
膨張弁の開度を制御する制御手段を有する吸収式ヒート
ポンプ。5. A refrigerant circuit comprising piping connected to a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump. A cold water circulation circuit formed on the secondary side, a hot water circulation circuit formed on the secondary side of the condenser, a pressure detecting means for detecting an evaporation pressure at the evaporator inlet, and an outside air temperature for detecting an outside air temperature Detecting means, switching means for performing the indoor air-conditioning by the cold water circulating circuit at the time of cooling, the hot water circulation circuit at the time of heating, and according to the detection pressure of the pressure detection means and the detection temperature of the outside air temperature detection means at the time of heating. An absorption heat pump having control means for controlling an opening degree of the electronic control expansion valve.
じて蒸発圧力の目標値を設定する目標値設定手段と、圧
力検出手段の検出圧力が前記目標値設定手段と一致する
ように電子膨張弁に電気信号を出力する出力設定手段を
有する請求項5記載の吸収式ヒートポンプ。6. The control means includes a target value setting means for setting a target value of the evaporating pressure in accordance with a temperature detected by the outside air temperature detection means, and an electronic control unit for controlling the detected pressure of the pressure detection means to be equal to the target value setting means. 6. The absorption heat pump according to claim 5, further comprising output setting means for outputting an electric signal to the expansion valve.
だことを特徴とする請求項1、3または5記載の吸収式
ヒートポンプ。7. An absorption heat pump according to claim 1, wherein the expansion valve has a pressure detecting means built in the housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04159596A JP3159038B2 (en) | 1996-02-28 | 1996-02-28 | Absorption heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04159596A JP3159038B2 (en) | 1996-02-28 | 1996-02-28 | Absorption heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09236353A JPH09236353A (en) | 1997-09-09 |
JP3159038B2 true JP3159038B2 (en) | 2001-04-23 |
Family
ID=12612764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04159596A Expired - Fee Related JP3159038B2 (en) | 1996-02-28 | 1996-02-28 | Absorption heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3159038B2 (en) |
-
1996
- 1996-02-28 JP JP04159596A patent/JP3159038B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09236353A (en) | 1997-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6460358B1 (en) | Flash gas and superheat eliminator for evaporators and method therefor | |
US4569207A (en) | Heat pump heating and cooling system | |
US4471630A (en) | Cooling system having combination of compression and absorption type units | |
JP3331102B2 (en) | Refrigeration cycle capacity control device | |
WO2003095906A1 (en) | Thermo siphon chiller refrigerator for use in cold district | |
KR102372489B1 (en) | Air conditioning device using vapor injection cycle and method for controlling thereof | |
KR20030045175A (en) | Phase-change Heat Transfer Coupling For Aqua-ammonia Absorption Systems | |
JP3159038B2 (en) | Absorption heat pump | |
US3421337A (en) | Reverse cycle refrigeration system | |
JPH06257868A (en) | Heat pump type ice heat accumulating device for air conditioning | |
JPH09318134A (en) | Air conditioner | |
JP3225738B2 (en) | Air conditioner | |
JP2001033110A (en) | Refrigerator | |
JPH09236354A (en) | Absorption type heat pump | |
JPH06272978A (en) | Air conditioner | |
JP2003302111A (en) | Air conditioner | |
WO2023074621A1 (en) | Air conditioning device | |
JPH04236062A (en) | Air conditioner | |
KR100639488B1 (en) | Air conditional and overload controlling method the same | |
JP3202157B2 (en) | Air conditioner | |
JPS6222391B2 (en) | ||
JP3429905B2 (en) | Absorption refrigerator | |
JPS6225645Y2 (en) | ||
JP3281438B2 (en) | Air conditioner | |
JP3174674B2 (en) | Air conditioner using absorption refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |