[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3156887B2 - Development method - Google Patents

Development method

Info

Publication number
JP3156887B2
JP3156887B2 JP07759093A JP7759093A JP3156887B2 JP 3156887 B2 JP3156887 B2 JP 3156887B2 JP 07759093 A JP07759093 A JP 07759093A JP 7759093 A JP7759093 A JP 7759093A JP 3156887 B2 JP3156887 B2 JP 3156887B2
Authority
JP
Japan
Prior art keywords
toner
development
porosity
copolymer
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07759093A
Other languages
Japanese (ja)
Other versions
JPH06266219A (en
Inventor
敏 長谷川
正実 冨田
秋雄 松井
寛治郎 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP07759093A priority Critical patent/JP3156887B2/en
Publication of JPH06266219A publication Critical patent/JPH06266219A/en
Application granted granted Critical
Publication of JP3156887B2 publication Critical patent/JP3156887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子写真方式、静電記録
方式、静電印刷方式などにおける現像方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a developing method in an electrophotographic system, an electrostatic recording system, an electrostatic printing system or the like.

【0002】[0002]

【従来の技術】近年、静電潜像の現像を行なう例として
内部に磁界発生手段を設けたスリーブを有する現像マグ
ネットローラと磁性の一成分トナーとを用いる方式が盛
んである。しかしながら、磁性トナーはその内部に混入
する磁性体が黒色であるためカラー化に不向きであると
いう欠点を持っている。また、磁性の一成分トナーを用
いる方式での静電潜像の現像動作はスリーブを回転し
て、あるいは内部のマグネットを回転して、ないしはこ
の両方を回転することにより行なわれる。マグネットを
回転させて現像をおこなうときには磁極のピッチが画像
に現われないよう磁性トナーの移動速度を潜像の2〜4
倍になるようにしてスリーブあるいはマグネットの回転
速度を選定する。だが、画像濃度の均一性を十分に確保
しようとすればマグネットの回転数は大変速いものとな
り、その駆動に強力なモーターを必要とする不具合をも
たらし、加えて、当然機械装置の大型化を招くことにな
る。
2. Description of the Related Art In recent years, as an example of developing an electrostatic latent image, a system using a developing magnet roller having a sleeve provided with a magnetic field generating means therein and a magnetic one-component toner has been popular. However, the magnetic toner has a disadvantage that it is not suitable for colorization because the magnetic substance mixed therein is black. The developing operation of the electrostatic latent image in the system using the magnetic one-component toner is performed by rotating the sleeve, rotating the internal magnet, or rotating both of them. When developing by rotating the magnet, the moving speed of the magnetic toner is set to 2 to 4 of the latent image so that the magnetic pole pitch does not appear in the image.
The rotation speed of the sleeve or magnet is selected so as to double the rotation speed. However, if we try to ensure sufficient image density uniformity, the number of rotations of the magnet will be very high, causing a problem that a powerful motor is required for driving the magnet, and in addition, naturally increasing the size of the mechanical device. Will be.

【0003】こうした実状から、特公昭41−9475
号公報にもみられるように、表面に一成分系現像剤(ト
ナー)薄層を有するドナー部材を潜像保持体に近接配置
して、それらを非接触の関係で静電潜像のみへトナーを
飛翔させることが考えられている。この例ではトナーの
保持は適当な粘着性を帯びたウエブあるいはあらかじめ
電荷を与えたフィルムシートにトナーを吸引吸着させる
ことにより達成している。しかし、この方法ではシー
ト、ウエブの長さに限りがあり、連続複写及び印刷には
不向きである。もっとも、トナー担持体をエンドレス状
にしてこれを繰り返し使用できるようにすれば上記の問
題は解決され、そのような非磁性一成分トナーを用いる
方式が特開昭60−229065号公報に開示されてい
る。この例では弾性の均一化部材を現像担持体ローラに
当接してトナーの薄層を形成し交流及び直流の現像バイ
アスを印加して潜像の現像をおこなっている。特開昭5
0−30537号公報にはパルスバイアス方式により画
像濃度を高めようとする方法が開示されている。さら
に、特開昭47−12635号公報や特開昭50−10
143号公報には表面に絶縁性と導電性の微小パターン
を有する現像剤担持体の構造が示されている。これらは
微小電界を利用してその微小パターンに応じたトナーの
山と谷を形成し潜像の電位レベルに対応したトナー付着
をさせるもので、多層化を狙っている。いずれの方式で
あっても現像担持体上にトナーがどのような状態に塗布
されるかにより、感光体への現像量が変化することから
現像剤担持体上のトナー特性は重要である。
[0003] From these circumstances, Japanese Patent Publication No. 41-9475.
As described in Japanese Patent Application Laid-Open Publication No. H10-209, a donor member having a thin layer of a one-component developer (toner) on its surface is disposed close to a latent image holding member, and the toner is applied to only an electrostatic latent image in a non-contact relationship. It is considered to fly. In this example, the toner is retained by suctioning and adsorbing the toner to a web having a proper tackiness or a film sheet which has been charged in advance. However, in this method, the lengths of sheets and webs are limited, and are not suitable for continuous copying and printing. However, if the toner carrier is made endless so that it can be used repeatedly, the above problem can be solved. A system using such a non-magnetic one-component toner is disclosed in Japanese Patent Application Laid-Open No. 60-229065. I have. In this example, a thin layer of toner is formed by contacting an elastic homogenizing member with a developing carrier roller, and an AC and DC developing bias is applied to develop a latent image. JP 5
Japanese Patent Laid-Open No. 0-30537 discloses a method for increasing image density by a pulse bias method. Further, JP-A-47-12635 and JP-A-50-10
No. 143 discloses a structure of a developer carrier having an insulating and conductive fine pattern on the surface. These methods use a minute electric field to form peaks and valleys of the toner according to the minute pattern and cause the toner to adhere in accordance with the potential level of the latent image. In any case, the amount of development on the photoconductor changes depending on the state in which the toner is applied to the development carrier, so that the characteristics of the toner on the developer carrier are important.

【0004】現像剤担持体上のトナー特性に関しては、
特公平2−6059号公報、特開昭61−133951
号公報に非磁性非接触現像方式に限定して充填密度を規
定することが開示されている。特公平2−6059号公
報に記載された方法はトナー担持体に充填密度0.19
〜0.46g/cm3で真比重1.2以下の非磁性一成
分トナーを交流で非接触現像するものであるが、真比重
が1.2以下というのは磁性体を含まないかあるいは磁
性体を少量含んでも非磁性トナー相当の物性なみである
ことを示す基準に止まっている。特開昭61−1309
62号公報、特開昭61−133951号公報ではトナ
ー飛散を防止するために、意図的に比重の大きい物質を
含有させて真比重1.2g/cm3以上にした非磁性ト
ナーを非接触現像するものであるが、上述のとおり、真
比重1.2g/cm3には深い理由は認められないし、
比重の大きい物質として酸化鉄を含有するとそれ自身の
色による影響が強くカラー化に適さないものになる。
With respect to the characteristics of the toner on the developer carrier,
JP-B-2-6059, JP-A-61-133951
Japanese Patent Application Laid-Open Publication No. Hei 11 (1995) discloses that the packing density is limited to a non-magnetic non-contact developing method. The method described in Japanese Patent Publication No. 2-6059 discloses that the toner carrier has a packing density of 0.19.
~0.46g / cm 3 at but is intended to non-contact developing by alternating a non-magnetic one-component toner of the true specific gravity of 1.2 or less, or a magnetic or because the true specific gravity of 1.2 or less is free of magnetic material Even if a small amount of the toner is contained, it is only a criterion indicating that the properties are comparable to those of a non-magnetic toner. JP-A-61-1309
No. 62 and JP-A-61-133951, in order to prevent toner scattering, non-contact development of a non-magnetic toner having a true specific gravity of 1.2 g / cm 3 or more by intentionally containing a substance having a large specific gravity. However, as described above, the true specific gravity of 1.2 g / cm 3 has no deep reason,
If iron oxide is contained as a substance having a large specific gravity, the effect of its own color is so strong that it is not suitable for colorization.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、一成
分系現像剤として特に非磁性一成分トナーを静電潜像の
現像に用いて現像剤担持体上へ十分にトナーが付着しか
つ効率よく現像し、その結果として画像濃度が高くかつ
高解像度の良好な画像が得られる現像方法を提供するも
のである。
SUMMARY OF THE INVENTION An object of the present invention is to use a non-magnetic one-component toner as a one-component developer particularly for developing an electrostatic latent image so that the toner sufficiently adheres to a developer carrier and It is an object of the present invention to provide a developing method which develops efficiently and, as a result, obtains an image having a high image density and a good image with high resolution.

【0006】[0006]

【課題を解決するための手段】本発明は、現像剤担持体
上に形状係数が50〜85%であるトナー粒子を薄層化
して供給し、潜像保持体と接触又は非接触で静電潜像を
可視像化する現像方法において、現像領域におけるトナ
ー層の空隙率が60〜75%となるように設定して静電
潜像を現像することを特徴としている。
According to the present invention, toner particles having a shape factor of 50 to 85% are supplied in a thin layer onto a developer carrying member, and electrostatically charged with or without contacting the latent image holding member. In a developing method for visualizing a latent image, the electrostatic latent image is developed by setting the porosity of the toner layer in the developing area to be 60 to 75%.

【0007】本発明者らは、現像剤担持体上に形状係数
が50〜85%であるトナーを薄層化して供給し、潜像
保持体と接触又は非接触で静電潜像を可視像化する現像
方法において、トナー層の空隙率が60〜75%となる
ように設定して静電潜像を顕像化すれば、所期の目的が
達成しうることを見いだした。本発明はそれに基づいて
なされたものである。
The present inventors thinly supply a toner having a shape factor of 50 to 85% onto a developer carrying member, and contact or non-contact with the latent image holding member to make the electrostatic latent image visible. It has been found that the intended purpose can be achieved by visualizing the electrostatic latent image by setting the porosity of the toner layer to be 60 to 75% in the developing method for forming an image. The present invention has been made based on this.

【0008】以下に、本発明の方法をさらに詳細に説明
する。本発明で用いられるトナー粒子は形状係数が50
〜85%好ましくは60〜80%のものである。ここ
で、トナーの“形状係数”とは次のように定義される。 形状係数=(粒子と同じ体積を有する球の比表面積/粒
子の比表面積)×100(%) 分母の“粒子の比表面積”は、例えば空気透過式比表面
積測定装置(三協電業社製 WTT−2)で測定され
る。この測定はサンプルを測定セルに充填し空気を透過
させ、そのときの圧力損失をもとに粉体の比表面積を求
める方法であるが、比表面積はセルに充填したトナー層
の空隙率に依存する。この明細書では空隙率50%に統
一して比表面積を求めている。また、分子の“粒子と同
じ体積を有する球の比表面積”はコールターカウンター
(TA−II)で測定される。トナーの形状係数はつまり
粒子の球形度を示しており、これはトナーの製法により
決まる。気流式粉砕等により衝突板にトナー混練物を衝
突させる方式を採ると形状係数は小さくなる。機械式微
粉砕を行なったり、粉砕後に熱風処理を施したり、高速
気流中衝撃法により処理すると、比較的大きい形状係数
のトナーが得られる。また、重合法により製造すればほ
ぼ真球のトナーが得られる。
Hereinafter, the method of the present invention will be described in more detail. The toner particles used in the present invention have a shape factor of 50.
-85%, preferably 60-80%. Here, the “shape factor” of the toner is defined as follows. Shape factor = (specific surface area of sphere having the same volume as particles / specific surface area of particles) × 100 (%) The “specific surface area of particles” in the denominator is, for example, an air-permeable specific surface area measuring device (WTT- manufactured by Sankyo Dengyo Co., Ltd.). It is measured in 2). In this measurement, a sample is filled into a measurement cell and air is allowed to permeate, and the specific surface area of the powder is determined based on the pressure loss at that time.The specific surface area depends on the porosity of the toner layer filled in the cell. I do. In this specification, the specific surface area is determined by unifying the porosity to 50%. The “specific surface area of a sphere having the same volume as a particle” of a molecule is measured by a Coulter counter (TA-II). The shape factor of the toner, that is, the sphericity of the particles, is determined by the toner manufacturing method. If a method in which the toner kneaded material collides with the collision plate by airflow pulverization or the like is employed, the shape factor becomes small. When mechanical pulverization is performed, hot air treatment is performed after pulverization, or processing is performed by a high-speed airflow impact method, a toner having a relatively large shape factor can be obtained. In addition, if the toner is produced by a polymerization method, a substantially spherical toner can be obtained.

【0009】一方、現像剤担持体上のトナー層の空隙率
の大小によりトナー粒子の現像電界から受ける力及び現
像剤担持体から受ける力、トナー同士の付着力が変化す
る。また、この空隙率はトナーの処方等により差はある
もののトナーを薄層化するための規制ブレードの当接圧
等のプロセス条件により調節される。ここでの“トナー
空隙率”とは、現像剤担持体上のトナーを規制ブレード
で押圧した直後の段階のトナー層の空隙率を意味してい
る。なお、現像剤担持体上のトナー層の空隙率は次のよ
うに求めた。レーザー外径測定器LS−3100(キー
エンス社製)を用いて現像剤担持体上のトナー層の層厚
を計り、さらに単位面積当りの現像剤担持体上トナーの
重量測定を行なって現像剤担持体上のトナーの嵩密度を
求め、それを真比重(空気式比重計による)で割り、1
からこの値を引き、100倍したものを空隙率とした。 空隙率=[1−(嵩比重/真比重)]×100(%)
On the other hand, the force received from the developing electric field of the toner particles, the force received from the developer carrier, and the adhesion force between the toners vary depending on the porosity of the toner layer on the developer carrier. Although the porosity varies depending on the prescription of the toner and the like, it is adjusted by the process conditions such as the contact pressure of a regulating blade for thinning the toner. Here, the “toner porosity” means the porosity of the toner layer immediately after the toner on the developer carrier is pressed by the regulating blade. The porosity of the toner layer on the developer carrying member was determined as follows. The thickness of the toner layer on the developer carrier is measured using a laser outer diameter measuring device LS-3100 (manufactured by KEYENCE CORPORATION), and the weight of the toner on the developer carrier per unit area is measured. Determine the bulk density of the toner on the body, divide it by the true specific gravity (by pneumatic hydrometer), and
This value was subtracted from, and the value obtained by multiplying by 100 was defined as the porosity. Porosity = [1- (bulk specific gravity / true specific gravity)] × 100 (%)

【0010】この空隙率と現像剤担持体上のトナーの付
着量との関係を図1に、空隙率と現像効率との関係を図
2に示す。空隙率が高くなるとトナー付着量は低下する
傾向がみられる。現像効率も空隙率が高くなると現像剤
担持体とトナーの付着力(担持体のトナー保持力)が大
きくなるため低下する傾向があるが、空隙率が60%未
満では、トナー間の付着力が増すことにより、現像効率
が激減する傾向を示す。このように現像剤担持体上のト
ナー層の空隙率は最適な領域を設定する必要があること
が判る。
FIG. 1 shows the relationship between the porosity and the amount of toner adhered to the developer carrier, and FIG. 2 shows the relationship between the porosity and the development efficiency. As the porosity increases, the amount of toner adhesion tends to decrease. When the porosity increases, the developing efficiency also tends to decrease because the adhesive force between the developer carrier and the toner (the toner holding force of the carrier) increases, but when the porosity is less than 60%, the adhesive force between the toners decreases. When it is increased, the developing efficiency tends to decrease drastically. As described above, it is understood that the porosity of the toner layer on the developer carrier needs to be set to an optimal region.

【0011】図3に形状係数と現像剤担持体上のトナー
付着量との関係を、図4に形状係数と現像効率の関係を
示す。トナー付着量は、形状係数が大きいほどつまり球
形に近いほど多いといえる。現像効率は空隙率同様最適
な領域が存在することがわかる。形状係数が大きすぎる
とトナーの多層化が不均一となりやすく、さらに転写性
が低下し、画像濃度が低下し易くなる。小さすぎると現
像剤担持体とトナーの付着力が低下し、担持体を回転す
ることによりトナーが飛散したり画像上の地肌部へトナ
ーが付着する現象が発生し易くなる。
FIG. 3 shows the relationship between the shape factor and the amount of toner adhering on the developer carrier, and FIG. 4 shows the relationship between the shape factor and development efficiency. It can be said that the larger the shape factor, that is, the closer the toner is to a spherical shape, the larger the toner adhesion amount. It can be seen that the development efficiency has an optimum region as well as the porosity. If the shape factor is too large, the toner is liable to be non-uniform, and the transferability is reduced, and the image density is apt to be reduced. If it is too small, the adhesive force between the developer carrier and the toner is reduced, and the phenomenon that the toner is scattered or the toner adheres to the background portion of the image by rotating the carrier is likely to occur.

【0012】図5にトナーの形状係数の違いによる空隙
率と現像量の関係を示す。空隙率が60〜75%である
とき形状係数が50〜85%であるとき現像量が1.0
mg/cm2を超える十分な現像量を確保できることが
わかる。さらに、特に機械式微粉砕や球形化処理をおこ
なうことによりつくることのできる60%〜80%の範
囲にあるときの特性がより優れていることがわかった。
この結果は特公平2−6059号公報に示されるような
交流バイアス下での非接触現像に限定されるものではな
いし、特開昭61−130962号公報、特開昭61−
133951号公報にも示されるような真比重により限
定されるものでもない。現像剤担持体上の空隙率とトナ
ーの形状係数とが前記した範囲にあるとき、良好な結果
が得られるのである。
FIG. 5 shows the relationship between the porosity and the amount of development depending on the difference in the shape factor of the toner. When the porosity is 60 to 75% and the shape factor is 50 to 85%, the development amount is 1.0.
It can be seen that a sufficient development amount exceeding mg / cm 2 can be secured. Furthermore, it has been found that the characteristics are more excellent especially when it is in the range of 60% to 80%, which can be produced by performing mechanical pulverization or sphering treatment.
The results are not limited to non-contact development under an AC bias as shown in Japanese Patent Publication No. 2-6059, but are not limited to JP-A-61-130962 and JP-A-61-130962.
It is not limited by the true specific gravity as shown in JP-A-133951. Good results are obtained when the porosity on the developer carrier and the shape factor of the toner are in the above-mentioned ranges.

【0013】本発明方法においては、図6に示されるよ
うに、現像剤担持体として誘電体部と導電体部(電極)
が微小面積で混在するように構成されたものを用いるこ
とにより多層薄層化が安定におこなわれ目的を十分に達
成できる。10〜500μmの大きさの微小面積がラン
ダムに、または、ある規則にしたがって分散していて、
面積比としては絶縁部の面積が20〜60%の範囲が好
ましい。
In the method of the present invention, as shown in FIG. 6, a dielectric portion and a conductor portion (electrode) are used as a developer carrier.
By using a material that is mixed in a very small area, the multi-layer thinning can be performed stably and the object can be sufficiently achieved. A small area of a size of 10 to 500 μm is randomly or dispersed according to a certain rule,
As the area ratio, the area of the insulating portion is preferably in the range of 20 to 60%.

【0014】現像剤担持体へのトナーの付着は、次のよ
うになる。まず現像を終了した現像剤担持体は回転して
トナー供給部材と接触する。ここで現像しなかった非画
像部の残トナーはトナー供給部材により機械的にかきと
られ誘電部は摩擦によって帯電する。このとき前の現像
による現像剤担持体とトナーの電荷は、摩擦により一定
化され初期化される。次に供給部材によって運ばれたト
ナーは、摩擦により帯電し、現像剤担持体の誘電部に静
電的に付着する。この時の極性は静電保持体電荷に対し
てトナーは逆極性に、現像剤担持体の誘電部は同極性と
なる。この時の現像剤担持体上の電界はマイクロフィー
ルド(閉電界)となり、電界傾度の大きい電界となりト
ナーを多層に付着させることが可能となる。また、付着
したトナーは閉電界となっているので、現像剤担持体側
に強く引かれて離れにくい状態となる。このトナー層は
図6のブレードによりトナー層厚が制御され現像領域に
達する。現像領域での現像剤担持体と潜像保持体間の電
界は電極効果が大きくなり現像剤担持体上のトナーは静
電保持体に付着し易い電界となり、現像が行なわれる。
The adhesion of the toner to the developer carrier is as follows. First, the developer carrier having completed the development rotates and comes into contact with the toner supply member. Here, the remaining toner in the non-image area that has not been developed is mechanically scraped off by the toner supply member, and the dielectric part is charged by friction. At this time, the charges of the developer carrier and the toner by the previous development are fixed and initialized by friction. Next, the toner carried by the supply member is charged by friction and electrostatically adheres to the dielectric portion of the developer carrier. At this time, the polarity of the toner is opposite to the charge of the electrostatic holding member, and the dielectric portion of the developer carrying member has the same polarity. At this time, the electric field on the developer carrier becomes a microfield (closed electric field), and the electric field has a large electric field gradient, so that the toner can be attached to multiple layers. Further, since the adhered toner has a closed electric field, it is strongly pulled toward the developer carrying member and is hardly separated. The thickness of the toner layer is controlled by the blade shown in FIG. 6 and reaches the developing area. The electric field between the developer carrier and the latent image holder in the developing area has an electrode effect, so that the toner on the developer carrier becomes an electric field that easily adheres to the electrostatic holder, and development is performed.

【0015】トナーの体積平均粒径は4〜10μmであ
るのが好ましい。このように従来に較べて小粒径化を図
ることにより解像度が良好なものとなり、画像品質を向
上することができる。特にこのトナーをカラートナーと
して用いる場合には粒子径による色再現性等の画像品質
の差は顕著である。なお、トナーの体積平均粒径はコー
ルターマルチサイザーにより測定される。
The volume average particle diameter of the toner is preferably 4 to 10 μm. As described above, by reducing the particle size as compared with the related art, the resolution is improved, and the image quality can be improved. In particular, when this toner is used as a color toner, the difference in image quality such as color reproducibility due to the particle size is remarkable. The volume average particle size of the toner is measured by a Coulter Multisizer.

【0016】現像剤担持体上のトナーの帯電量の絶対値
は2〜20μC/gであることが好ましい。すなわち、
この絶対値の範囲であることにより、現像剤担持体上に
おけるトナーの多層化が安定化するとともに現像時にト
ナー飛散、画像上での地肌部等へのかぶりや画像濃度の
低下度の発生が低減する。前記絶対値が2μC/gより
も低い場合には現像剤担持体上からトナーが飛散したり
画像にかぶりを生じ易くなる。現像剤担持体上トナーの
帯電量測定は次のようにして行なわれる。出口側にフィ
ルター層を具備したファラデーケージを介し現像剤担持
体上に付着したトナーを吸引し、ファラデーケージ内に
トラップされたトナーの重量及び電荷量により帯電量
(Q/M)を算出する。
The absolute value of the charge amount of the toner on the developer carrier is preferably 2 to 20 μC / g. That is,
By being in the range of the absolute value, the multilayering of the toner on the developer carrying member is stabilized, and at the same time, the scattering of the toner at the time of development, the fogging of the background portion on the image, and the decrease of the image density are reduced. I do. If the absolute value is lower than 2 μC / g, the toner easily scatters from the developer carrying member and fog tends to occur on the image. The measurement of the charge amount of the toner on the developer carrier is performed as follows. The toner adhering to the developer carrier is sucked through a Faraday cage having a filter layer on the outlet side, and the charge amount (Q / M) is calculated from the weight and charge amount of the toner trapped in the Faraday cage.

【0017】トナーに使用される結着樹脂としては、ポ
リスチレン、ポリp−クロロスチレン、ポリビニルトル
エンなどのスチレン及びその置換体の単重合体;スチレ
ン−p−クロロスチレン共重合体、スチレン−プロピレ
ン共重合体、スチレン−ビニルトルエン共重合体、スチ
レン−ビニルナフタリン共重合体、スチレン−アクリル
酸メチル共重合体、スチレン−アクリル酸エチル共重合
体、スチレン−アクリル酸ブチル共重合体、スチレン−
アクリル酸オクチル共重合体、スチレン−メタクリル酸
メチル共重合体、スチレン−メタクリル酸エチル共重合
体、スチレン−メタクリル酸ブチル共重合体、スチレン
−α−クロルメタクリル酸メチル共重合体、スチレン−
アクリロニトリル共重合体、スチレン−ビニルメチルエ
−テル共重合体、スチレン−ビニルエチルエ−テル共重
合体、スチレン−ビニルメチルケトン共重合体、スチレ
ン−ブタジエン共重合体、スチレン−イソプレン共重合
体、スチレン−アクリロニトリル−インデン共重合体、
スチレン−マレイン酸共重合体、スチレン−マレイン酸
エステル共重合体などのスチレン系共重合体;ポリメチ
ルメタクリレート、ポリブチルメタクリレート、ポリ塩
化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピ
レン、ポリエステル、ポリウレタン、ポリアミド、エポ
キシ樹脂、ポリビニルブチラール、ポリアクリル樹脂、
ロジン、変性ロジン、テルペン樹脂、フェノール樹脂、
脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、塩
素化パラフィン、パラフィンワックスなどが挙げられ、
単独あるいは混合して使用できる。特に圧力定着用に好
適な結着樹脂として例を挙げると下記のものが単独ある
いは混合して使用できる。ポリオレフィン(低分子量ポ
リエチレン、低分子量ポリプロピレン、酸化ポリエチレ
ンポリ4弗化エチレンなど)、エポキシ樹脂、ポリエス
テル樹脂、スチレン−ブタジエン共重合体(モノマー比
5〜30:95〜70)、オレフィン共重合体(エチレ
ン−アクリル酸共重合体、エチレン−アクリル酸エステ
ル共重合体、エチレン−メタクリル酸共重合体、エチレ
ン−メタクリル酸エステル共重合体、エチレン−塩化ビ
ニル共重合体、エチレン酢酸ビニル共重合体、アイオノ
マー樹脂)、ポリビニルピロリドン、メチルビニルエー
テル−無水マレイン酸共重合体、マレイン酸変性フェノ
ール樹脂、フェノール変性テルペン樹脂。
Examples of the binder resin used in the toner include homopolymers of styrene such as polystyrene, poly-p-chlorostyrene and polyvinyltoluene and substituted products thereof; styrene-p-chlorostyrene copolymer and styrene-propylene copolymer. Polymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer, styrene-
Octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-butyl methacrylate copolymer, styrene-α-chloromethyl methacrylate copolymer, styrene-
Acrylonitrile copolymer, styrene-vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile- Indene copolymer,
Styrene-based copolymers such as styrene-maleic acid copolymer and styrene-maleic acid ester copolymer; polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester, polyurethane, polyamide, Epoxy resin, polyvinyl butyral, polyacrylic resin,
Rosin, modified rosin, terpene resin, phenolic resin,
Aliphatic or alicyclic hydrocarbon resin, aromatic petroleum resin, chlorinated paraffin, paraffin wax and the like,
They can be used alone or in combination. Particularly, as examples of binder resins suitable for pressure fixing, the following can be used alone or in combination. Polyolefin (low molecular weight polyethylene, low molecular weight polypropylene, polyethylene oxide polytetrafluoroethylene, etc.), epoxy resin, polyester resin, styrene-butadiene copolymer (monomer ratio 5-30: 95-70), olefin copolymer (ethylene -Acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, ionomer resin ), Polyvinylpyrrolidone, methyl vinyl ether-maleic anhydride copolymer, maleic acid-modified phenolic resin, phenol-modified terpene resin.

【0018】トナー中に使用される荷電制御剤として
は、正帯電性に制御するものとして、第四級アンモニウ
ム塩、その他、塩基性電子供与性の有機物質など、トナ
ーを負帯電性に制御するものとして、モノアゾ染料の金
属錯体、テトラフェニルホウ素ナトリウム及びカリウム
等のテトラフェニルホウ素誘導体等があげられる。トナ
ー中に含有させる量は、結着樹脂100重量部に対して
1〜10重量部が適当である。
The charge control agent used in the toner may be a positive charge control agent, such as a quaternary ammonium salt or an organic substance having a basic electron donating property. Examples thereof include metal complexes of monoazo dyes and tetraphenylboron derivatives such as sodium and potassium tetraphenylboron. An appropriate amount to be contained in the toner is 1 to 10 parts by weight based on 100 parts by weight of the binder resin.

【0019】また、トナーに用いられる添加剤として
は、例えばコロイダルシリカ、酸化アルミニウムなどの
流動性付与剤が効果的であるが、ほかにケーキング防止
剤、あるいは例えばカーボンブラック、酸化スズ等の導
電性付与剤、あるいは低分子量ポリオレフィンなどの定
着助剤等を添加してもよい。また、現像部のブレード固
着を防止する潤滑剤として脂肪酸金属塩、例えばステア
リン酸バリウム、ステアリン酸カルシウム、ステアリン
酸亜鉛、ステアリン酸アルミニウム、ステアリン酸マグ
ネシウム、ステアリン酸リチウム、ステアリン酸鉛、ラ
ウリン酸バリウム、ラウリン酸カルシウム、ラウリン酸
亜鉛、ラウリン酸マグネシウム、ラウリン酸リチウム、
ラウリン酸鉛、パルミチン酸カルシウム、パルミチン酸
マグネシウム、二塩基性ステアリン酸鉛等を添加しても
よい。これら脂肪酸金属塩の添加量は0.01〜5重量
%含有するのが望ましい。
As an additive used in the toner, a fluidity-imparting agent such as colloidal silica and aluminum oxide is effective. In addition, a caking inhibitor or a conductive agent such as carbon black and tin oxide is effective. An imparting agent or a fixing aid such as a low molecular weight polyolefin may be added. In addition, fatty acid metal salts such as barium stearate, calcium stearate, zinc stearate, aluminum stearate, magnesium stearate, lithium stearate, lead stearate, barium laurate, and lauric acid are used as lubricants for preventing the blade from sticking to the developing section. Calcium phosphate, zinc laurate, magnesium laurate, lithium laurate,
Lead laurate, calcium palmitate, magnesium palmitate, dibasic lead stearate and the like may be added. The fatty acid metal salt is desirably contained in an amount of 0.01 to 5% by weight.

【0020】[0020]

【実施例】次に実施例をあげて本発明の方法をさらに具
体的に説明する。
Next, the method of the present invention will be described more specifically with reference to examples.

【0021】実施例1 結着樹脂(スチレン−アクリル共重合物) 100重量部 離型剤(低分子ポリプロピレン) 5.5重量部 荷電制御剤(サリチル酸亜鉛塩) 4重量部 着色剤(アゾ系染料) 6重量部 からなる混合物をブレンダーで充分混合したのち、12
0〜140℃に熱した2本のロールによって溶融混練し
た。混練物を自然放冷後、カッターミルで粗粉砕し、ジ
ェット気流を用いた微粉砕機で粉砕後、風力分級を用い
て体積平均粒径約8μmとし、母体トナーを得た。さら
にこれにシリカ微粉末を母体トナー100に対し0.5
の比率で添加しミキサーで混合して形状係数55%のト
ナーをつくった。これをリコー社製レーザープリンター
PC−6000に入れて評価した。現像剤担持体上のト
ナー層の空隙率を70%として現像に供したところ、現
像量は1.20mg/cm2と高く、マクベス濃度計に
よる反射濃度も1.21と十分高かった。タケノコチャ
ートを用いた解像度は9本/mmであった。
Example 1 Binder resin (styrene-acrylic copolymer) 100 parts by weight Release agent (low molecular weight polypropylene) 5.5 parts by weight Charge control agent (zinc salicylate) 4 parts by weight Colorant (azo dye) ) After thoroughly mixing the mixture consisting of 6 parts by weight with a blender, 12
Melt kneading was performed by two rolls heated to 0 to 140 ° C. The kneaded product was allowed to cool naturally, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and adjusted to a volume average particle size of about 8 μm by air classification to obtain a base toner. Further, silica fine powder was added to the base toner 100 by 0.5
And mixed by a mixer to prepare a toner having a shape factor of 55%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated. When the porosity of the toner layer on the developer carrying member was set to 70% and subjected to development, the development amount was as high as 1.20 mg / cm 2, and the reflection density by a Macbeth densitometer was sufficiently high as 1.21. The resolution using the bamboo shoot chart was 9 lines / mm.

【0022】実施例2 実施例1と同一処方の混練物を自然放冷後、カッターミ
ルで粗粉砕し、川崎重工製クリプトロン粉砕装置を用い
て微粉砕後、風力分級を用いて体積平均粒径約8μmと
し、母体トナーを得た。さらにこれにシリカ微粉末を母
体トナー100に対し0.5の比率で添加しミキサーで
混合して形状係数67%のトナーをつくった。これをリ
コー社製レーザープリンターPC−6000に入れて評
価した。その結果、現像剤担持体上のトナー層の空隙率
を68%として現像に供したところ、現像量は1.38
mg/cm2と高く、マクベス濃度計による反射濃度も
1.35と十分高かった。
Example 2 A kneaded product having the same formulation as in Example 1 was allowed to cool naturally, coarsely pulverized with a cutter mill, finely pulverized with a Kryptron pulverizer manufactured by Kawasaki Heavy Industries, and then subjected to volume classification using an air classifier. With a diameter of about 8 μm, a base toner was obtained. Further, silica fine powder was added to the base toner 100 at a ratio of 0.5 and mixed with a mixer to prepare a toner having a shape factor of 67%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated. As a result, when the porosity of the toner layer on the developer carrying member was set to 68% and subjected to development, the development amount was 1.38.
mg / cm 2, and the reflection density measured by a Macbeth densitometer was 1.35, which was sufficiently high.

【0023】実施例3 実施例1と同一処方の混練物を自然放冷後、カッターミ
ルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕後
熱風処理を行ない、風力分級を用いて体積平均粒径約8
μmとし、母体トナーを得た。さらにこれにシリカ微粉
末を母体トナー100に対し0.5の比率で添加しミキ
サーで混合して形状係数76%のトナーをつくった。こ
れをリコー社製レーザープリンターPC−6000に入
れて評価した。その結果、現像剤担持体上のトナー層の
空隙率を71%として現像に供したところ、現像量は
1.44mg/cm2と高く、マクベス濃度計による反
射濃度も1.38と十分高かった。
Example 3 A kneaded product having the same formulation as in Example 1 was allowed to cool naturally, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and then subjected to hot air treatment. Average particle size about 8
μm to obtain a base toner. Further, silica fine powder was added at a ratio of 0.5 to the base toner 100 and mixed with a mixer to prepare a toner having a shape factor of 76%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated. As a result, when the porosity of the toner layer on the developer carrying member was set to 71% and subjected to development, the development amount was as high as 1.44 mg / cm 2 and the reflection density by a Macbeth densitometer was sufficiently high as 1.38. .

【0024】比較例1 実施例1と同一処方の混練物を自然放冷後、カッターミ
ルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕
後、風力分級を用いて体積平均粒径約8μmとし、母体
トナーを得た。さらにこれにシリカ微粉末を母体トナー
100に対し0.5の比率で添加しミキサーで混合して
形状係数55%のトナーをつくった。これをリコー社製
レーザープリンターPC−6000に入れて評価した。
現像剤担持体上のトナー層の空隙率を58%にして現像
に供したところ、現像量は0.85mg/cm2と低
く、マクベス濃度計による反射濃度も0.97と低かっ
た。
Comparative Example 1 A kneaded product having the same formulation as in Example 1 was allowed to cool naturally, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and then subjected to air classification to obtain a volume average particle size of about kneaded. 8 μm to obtain a base toner. Further, silica fine powder was added to the base toner 100 at a ratio of 0.5 and mixed with a mixer to prepare a toner having a shape factor of 55%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated.
When the porosity of the toner layer on the developer carrying member was set to 58% and subjected to development, the development amount was as low as 0.85 mg / cm 2, and the reflection density by a Macbeth densitometer was as low as 0.97.

【0025】比較例2 実施例1と同一処方の混練物を自然放冷後、カッターミ
ルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕
後、風力分級を用いて体積平均粒径約8μmとし、母体
トナーを得た。さらにこれにシリカ微粉末を母体トナー
100に対し0.5の比率で添加しミキサーで混合して
形状係数55%のトナーをつくった。これをリコー社製
レーザープリンターPC−6000に入れて評価した。
現像剤担持体上のトナー層の空隙率を80%にして現像
に供したところ、現像量は0.78mg/cm2と低
く、マクベス濃度計による反射濃度も0.83と低かっ
た。
Comparative Example 2 A kneaded product having the same formulation as in Example 1 was allowed to cool naturally, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and then subjected to air classification to obtain a volume average particle size of about 30%. 8 μm to obtain a base toner. Further, silica fine powder was added to the base toner 100 at a ratio of 0.5 and mixed with a mixer to prepare a toner having a shape factor of 55%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated.
When the toner layer on the developer carrying member was subjected to development with the porosity of 80%, the developed amount was as low as 0.78 mg / cm 2 and the reflection density measured with a Macbeth densitometer was as low as 0.83.

【0026】比較例3 実施例1と同一処方の混練物を自然放冷後、カッターミ
ルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕
後、風力分級を用いて体積平均粒径約8μmとし、母体
トナーを得た。さらにこれにシリカ微粉末を母体トナー
100に対し0.5の比率で添加しミキサーで混合して
形状係数35%のトナーをつくった。これをリコー社製
レーザープリンターPC−6000に入れて評価した。
現像剤担持体上のトナー層の空隙率を70%にして現像
に供したところ、現像量は0.75mg/cm2と低
く、マクベス濃度計による反射濃度も0.88と低かっ
た。
Comparative Example 3 A kneaded product having the same formulation as in Example 1 was allowed to cool naturally, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and then subjected to air classification to obtain a volume average particle size of about 30%. 8 μm to obtain a base toner. Further, silica fine powder was added at a ratio of 0.5 with respect to the base toner 100 and mixed with a mixer to prepare a toner having a shape factor of 35%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated.
When the porosity of the toner layer on the developer carrying member was set to 70% and subjected to development, the development amount was as low as 0.75 mg / cm 2, and the reflection density as measured by a Macbeth densitometer was as low as 0.88.

【0027】比較例4 実施例1と同一処方の混練物を自然放冷後、カッターミ
ルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕
後、風力分級を用いて体積平均粒径約8μmとし、母体
トナーを得た。さらにこれにシリカ微粉末を母体トナー
100に対し0.5の比率で添加しミキサーで混合して
形状係数90%のトナーをつくった。これをリコー社製
レーザープリンターPC−6000に入れて評価した。
現像剤担持体上のトナー層の空隙率を70%にして現像
に供したところ、現像量は0.72mg/cm2と低
く、マクベス濃度計による反射濃度も0.83と低かっ
た。
Comparative Example 4 A kneaded product having the same formulation as in Example 1 was allowed to cool naturally, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and then subjected to air classification to obtain a volume average particle size of about 40%. 8 μm to obtain a base toner. Further, silica fine powder was added to the base toner 100 at a ratio of 0.5 and mixed with a mixer to prepare a toner having a shape factor of 90%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated.
When the porosity of the toner layer on the developer carrier was set to 70% and subjected to development, the amount of development was as low as 0.72 mg / cm 2, and the reflection density by a Macbeth densitometer was as low as 0.83.

【0028】実施例4 実施例1と同一のトナーで、同一の機械条件下でマイク
ロフィールド電界を形成した現像剤担持体を用いたリコ
ー社製レーザープリンターPC−6000に入れて評価
したところ、現像量は1.35mg/cm2と増加し、
マクベス濃度計による反射濃度も1.31と増加した。
Example 4 The same toner as in Example 1 was used in a laser printer PC-6000 manufactured by Ricoh Co., Ltd. using a developer carrying member in which a microfield electric field was formed under the same mechanical conditions. The amount increased to 1.35 mg / cm 2 ,
The reflection density measured by the Macbeth densitometer also increased to 1.31.

【0029】実施例5 実施例1と同一処方の混練物を自然放冷後、カッターミ
ルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕
後、風力分級を用いて体積平均粒径約12μmとし、母
体トナーを得た。さらにこれにシリカ微粉末を母体トナ
ー100に対し0.5の比率で添加しミキサーで混合し
て形状係数58%のトナーをつくった。これをリコー社
製レーザープリンターPC−6000に入れて評価し
た。現像剤担持体上のトナー層の空隙率を72%にして
現像に供したところ、現像量は1.15mg/cm2
マクベス濃度計による反射濃度も1.21であった。タ
ケノコチャートを用いた解像度は6本/mmであった。
Example 5 A kneaded product having the same formulation as in Example 1 was allowed to cool naturally, coarsely pulverized with a cutter mill, pulverized with a fine pulverizer using a jet stream, and then subjected to air classification to obtain a volume average particle size of about 5%. It was 12 μm to obtain a base toner. Further, silica fine powder was added to the base toner 100 at a ratio of 0.5 and mixed with a mixer to prepare a toner having a shape factor of 58%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated. When the porosity of the toner layer on the developer carrying member was set to 72% and subjected to development, the development amount was 1.15 mg / cm 2 and the reflection density measured by a Macbeth densitometer was 1.21. The resolution using the bamboo shoot chart was 6 lines / mm.

【0030】比較例5 結着樹脂(スチレン−アクリル共重合物) 100重量部 離型剤(低分子ポリプロピレン) 5.5重量部 荷電制御剤(サリチル酸亜鉛塩) 10重量部 着色剤(アゾ系染料) 6重量部 からなる混合物をブレンダーで充分混合したのち、12
0〜140℃に熱した2本のロールによって溶融混練し
た。混練物を自然放冷後、カッターミルで粗粉砕し、ジ
ェット気流を用いた微粉砕機で粉砕後、風力分級を用い
て体積平均粒径約8μmとし、母体トナーを得た。さら
にこれにシリカ微粉末を母体トナー100に対し0.5
の比率で添加しミキサーで混合して形状係数55%のト
ナーをつくった。これをリコー社製レーザープリンター
PC−6000に入れて評価した。現像剤担持体上のト
ナー帯電量は−26μC/gと高かったが、トナー層の
空隙率を67%として現像に供したところ、現像量は
0.94mg/cm2と低く、マクベス濃度計による反
射濃度も0.89と低かった。
Comparative Example 5 Binder resin (styrene-acrylic copolymer) 100 parts by weight Release agent (low molecular weight polypropylene) 5.5 parts by weight Charge control agent (zinc salicylate) 10 parts by weight Colorant (azo dye) ) After thoroughly mixing the mixture consisting of 6 parts by weight with a blender, 12
Melt kneading was performed by two rolls heated to 0 to 140 ° C. The kneaded product was allowed to cool naturally, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and adjusted to a volume average particle size of about 8 μm by air classification to obtain a base toner. Further, silica fine powder was added to the base toner 100 by 0.5
And mixed by a mixer to prepare a toner having a shape factor of 55%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated. The charge amount of the toner on the developer carrier was as high as −26 μC / g. However, when the toner layer was subjected to development with a porosity of 67%, the development amount was as low as 0.94 mg / cm 2. The reflection density was as low as 0.89.

【0031】比較例6 結着樹脂(スチレン−アクリル共重合物) 100重量部 離型剤(低分子ポリプロピレン) 5.5重量部 荷電制御剤(サリチル酸亜鉛塩) 0.2重量部 着色剤(アゾ系染料) 6重量部 からなる混合物をブレンダーで充分混合したのち、12
0〜140℃に熱した2本のロールによって溶融混練し
た。混練物を自然放冷後、カッターミルで粗粉砕し、ジ
ェット気流を用いた微粉砕機で粉砕後、風力分級を用い
て体積平均粒径約8μmとし、母体トナーを得た。さら
にこれにシリカ微粉末を母体トナー100に対し0.5
の比率で添加しミキサーで混合して形状係数55%のト
ナーをつくった。これをリコー社製レーザープリンター
PC−6000に入れて評価した。現像剤担持体上のト
ナー帯電量は−1.56μC/gと低く、トナー層の空
隙率を69%として現像に供したところ、現像量は0.
83mg/cm2と低く、マクベス濃度計による反射濃
度も0.79と低かった。さらに非画像部にかぶりが発
生した。
Comparative Example 6 Binder resin (styrene-acrylic copolymer) 100 parts by weight Release agent (low molecular weight polypropylene) 5.5 parts by weight Charge control agent (zinc salicylate) 0.2 part by weight Colorant (azo After mixing the mixture consisting of 6 parts by weight sufficiently with a blender, 12
Melt kneading was performed by two rolls heated to 0 to 140 ° C. The kneaded product was allowed to cool naturally, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and adjusted to a volume average particle size of about 8 μm by air classification to obtain a base toner. Further, silica fine powder was added to the base toner 100 by 0.5
And mixed by a mixer to prepare a toner having a shape factor of 55%. This was placed in a laser printer PC-6000 manufactured by Ricoh and evaluated. The charge amount of the toner on the developer carrier was as low as −1.56 μC / g, and the toner layer was subjected to development with a porosity of 69%.
It was as low as 83 mg / cm 2, and the reflection density measured with a Macbeth densitometer was as low as 0.79. Further, fogging occurred in the non-image area.

【0032】[0032]

【発明の効果】請求項1の発明によれば、一成分現像剤
として特に非磁性一成分トナーを静電潜像の現像に用い
て現像剤担持体上へ十分にトナーが付着しかつ効率よく
現像し、その結果として画像濃度が高くかつ高解像度の
良好な画像が得られる。請求項2の発明によれば、現像
剤担持体上へのトナー付着がより良好になるため、さら
に良質の画像が得られる。請求項3の発明によれば、解
像度が良好となり、画像品質の向上が図られる。
According to the first aspect of the present invention, a non-magnetic one-component toner is used as a one-component developer particularly for developing an electrostatic latent image, so that the toner sufficiently adheres to the developer carrying member and is efficiently used. Development, and as a result, a good image with high image density and high resolution is obtained. According to the second aspect of the present invention, the toner adhesion on the developer carrying member becomes better, so that a higher quality image can be obtained. According to the third aspect of the present invention, the resolution is improved, and the image quality is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】現像剤担持体上のトナー層空隙率とトナー付着
量との関係を示した図。
FIG. 1 is a diagram illustrating a relationship between a porosity of a toner layer on a developer carrying member and a toner adhesion amount.

【図2】現像剤担持体上のトナー層空隙率と現像効率と
の関係を示した図。
FIG. 2 is a diagram showing a relationship between a porosity of a toner layer on a developer carrying member and development efficiency.

【図3】トナー形状係数とトナー付着量との関係を示し
た図。
FIG. 3 is a diagram illustrating a relationship between a toner shape coefficient and a toner adhesion amount.

【図4】トナー形状係数と現像効率との関係を示した
図。
FIG. 4 is a diagram illustrating a relationship between a toner shape factor and a development efficiency.

【図5】現像剤担持体上のトナー層空隙率と現像量との
関係を示した図。
FIG. 5 is a diagram illustrating a relationship between a porosity of a toner layer on a developer carrying member and a development amount.

【図6】(a)は本発明の実施に有用な現像剤担持体上
にマイクロフィールドの電界を形成させる現像装置の一
例を示す現像剤担持体部を中心とした模式断面図。
(b)は(a)で示される装置において、現像剤担持体
上にマイクロフィールドによる閉電界が生成している状
態を説明するための模式断面図。
FIG. 6A is a schematic cross-sectional view of an example of a developing device that forms a microfield electric field on a developer carrying member useful for carrying out the present invention, focusing on a developer carrying portion.
FIG. 2B is a schematic cross-sectional view illustrating a state in which a closed electric field is generated by a microfield on the developer carrying member in the device illustrated in FIG.

【符号の説明】[Explanation of symbols]

10 静電潜像保持体 20 トナー担持体部材(トナー搬送部材) 30 トナー層厚規制部材 40 トナー供給部材 50 撹拌羽根 60 トナー 70 トナータンク 80 現像領域 REFERENCE SIGNS LIST 10 electrostatic latent image holder 20 toner carrier member (toner transport member) 30 toner layer thickness regulating member 40 toner supply member 50 stirring blade 60 toner 70 toner tank 80 development area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 寛治郎 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (56)参考文献 特開 平4−212174(JP,A) 特開 昭60−158470(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 15/08 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kanjiro Kawasaki 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (56) References JP-A-4-212174 (JP, A) JP 60-158470 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G03G 15/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 現像剤担持体上に形状係数が50〜85
%であるトナー粒子を薄層化して供給し、潜像保持体と
接触又は非接触で静電潜像を可視像化する現像方法にお
いて、現像領域におけるトナー層の空隙率が60〜75
%となるように設定して静電潜像を現像することを特徴
とする現像方法。
1. A developer carrying member having a shape factor of 50 to 85.
% Of toner particles in a thin layer and supplied, and a latent image holding member is contacted or non-contacted to visualize an electrostatic latent image.
% To develop the electrostatic latent image.
【請求項2】 前記現像剤担持体がほぼ平滑な表面を有
し、かつ、導電部と誘電部が微小面積で混在しマイクロ
フィールドの電界を形成して、トナーを多層塗布せしめ
る請求項1記載の現像方法。
2. The toner carrier according to claim 1, wherein the developer carrier has a substantially smooth surface, and the conductive portion and the dielectric portion are mixed in a small area to form a microfield electric field, thereby applying the toner in multiple layers. Development method.
【請求項3】 前記トナーの体積平均粒径が4〜10μ
mである請求項1又は2記載の現像方法。
3. The volume average particle diameter of the toner is 4 to 10 μm.
3. The developing method according to claim 1, wherein m is m.
JP07759093A 1993-03-11 1993-03-11 Development method Expired - Lifetime JP3156887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07759093A JP3156887B2 (en) 1993-03-11 1993-03-11 Development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07759093A JP3156887B2 (en) 1993-03-11 1993-03-11 Development method

Publications (2)

Publication Number Publication Date
JPH06266219A JPH06266219A (en) 1994-09-22
JP3156887B2 true JP3156887B2 (en) 2001-04-16

Family

ID=13638188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07759093A Expired - Lifetime JP3156887B2 (en) 1993-03-11 1993-03-11 Development method

Country Status (1)

Country Link
JP (1) JP3156887B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4838668A (en) * 1987-10-09 1989-06-13 Eastman Kodak Company Zoom lens
DE69932388T2 (en) 1998-08-31 2007-07-19 Canon K.K. Yellow toner, manufacturing method and image forming method

Also Published As

Publication number Publication date
JPH06266219A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JP2859646B2 (en) Image forming method
JPH0245188B2 (en)
JP3156887B2 (en) Development method
JPS6410070B2 (en)
JPH0269770A (en) Carrier for two-component developer
JP2714127B2 (en) Negatively chargeable magnetic toner and image forming method
JP3270198B2 (en) Electrophotographic toner
JP3054880B2 (en) Negatively chargeable developer and image forming method
JPH10177274A (en) Electrostatic charge image developing toner and development method
JPS6087347A (en) Developing method
JPH01250963A (en) Electrostatic charge image developing one-component type developer and image forming method
JPH0561248A (en) Magnetic toner for developing electrostatic charge image
JP2603525B2 (en) One-component toner for electrophotography
JP2941986B2 (en) Magnetic toner for image formation
JP2002082528A (en) Electrophotographic image forming method
JP2752444B2 (en) Development method
JP3525217B2 (en) One-component developing method and toner
JPS62182762A (en) Reversal developing method
JP2926442B2 (en) toner
JP2854331B2 (en) Electrostatic latent image developing developer, image forming apparatus unit, and image forming method
JP3275227B2 (en) Image forming method
JPS6311956A (en) Dry type developer for electrophotography
JPS641017B2 (en)
JPH0458028B2 (en)
JPH0473788B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 13

EXPY Cancellation because of completion of term