[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3152559B2 - Semiconductor mounting board - Google Patents

Semiconductor mounting board

Info

Publication number
JP3152559B2
JP3152559B2 JP06598294A JP6598294A JP3152559B2 JP 3152559 B2 JP3152559 B2 JP 3152559B2 JP 06598294 A JP06598294 A JP 06598294A JP 6598294 A JP6598294 A JP 6598294A JP 3152559 B2 JP3152559 B2 JP 3152559B2
Authority
JP
Japan
Prior art keywords
substrate
mounting
semiconductor mounting
layer
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06598294A
Other languages
Japanese (ja)
Other versions
JPH07283335A (en
Inventor
元雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP06598294A priority Critical patent/JP3152559B2/en
Publication of JPH07283335A publication Critical patent/JPH07283335A/en
Application granted granted Critical
Publication of JP3152559B2 publication Critical patent/JP3152559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体搭載基板に関
し、特に、接続信頼性および製造性に優れる集積度の高
いチップ・イン・ボードタイプの半導体搭載基板につい
ての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor mounting substrate and, more particularly, to a highly integrated chip-in-board type semiconductor mounting substrate having excellent connection reliability and manufacturability.

【0002】[0002]

【従来の技術】従来、ICやLSI などの電子部品のプリン
ト基板への実装は、基板に設けられた導通穴にリード線
を挿入し、フローソルダリングではんだ付けして接続固
定するスルーマウンティング実装方式が主流であった。
このような方法では、通常、DIP (Dual in-line packa
ge)タイプの電子部品を挿入して実装するのが一般的で
ある。ところが、近年、電子機器の多機能化に伴い、集
積回路そのものの高密度化が進展し、端子数が急速に増
加しているので、従来、使用されていたDIP タイプのも
のでは限界があった。そのため、穴にリード線を通すこ
となく、プリント基板の表面で直接部品の端子を配線パ
ターンに接続固定するサーフェスマウンティング技術
(SMT )が開発された。この実装技術では、電子部品
が、フラットパッケージやリードレスのチップキャリヤ
パッケージ,テープキャリヤパッケージとして搭載され
るが、さらにはパッケージレス化したチップ(以下、
「ベアチップ」という)を直接基板に実装する方式も採
られるようになった。
2. Description of the Related Art Conventionally, when mounting electronic components such as ICs and LSIs on a printed circuit board, a lead wire is inserted into a conductive hole provided on the board, and soldered by flow soldering to fix the connection. The method was mainstream.
In such a method, DIP (Dual in-line packa)
It is common to insert and mount ge) type electronic components. However, in recent years, with the increasing functionality of electronic devices, the density of integrated circuits has been increasing, and the number of terminals has been increasing rapidly. . Therefore, surface mounting technology (SMT) has been developed to connect and fix the terminals of components directly to the wiring pattern on the surface of the printed circuit board without passing the lead wires through the holes. In this mounting technology, electronic components are mounted as a flat package, a leadless chip carrier package, or a tape carrier package.
A method of directly mounting a “bare chip” on a substrate has also been adopted.

【0003】このような実装手段は、以前の既知技術と
比べると集積度を高めるのには役立った。しかし、電子
部品1個当たりの実装面積が一定であり、かつ基板の表
面に実装されることから、実装される電子部品の数量が
基板の実装エリアの大きさに限定され、それ以上の電子
部品を実装する場合には、基板を大きくしなければなら
ず、電子機器の軽薄小型化を阻むという問題があった。
[0003] Such mounting means have helped to increase the degree of integration as compared to previously known techniques. However, since the mounting area per electronic component is constant and mounted on the surface of the substrate, the number of mounted electronic components is limited to the size of the mounting area of the substrate, and the electronic components larger than this are limited. When mounting the electronic device, there is a problem in that the substrate must be made large, which hinders downsizing of the electronic device.

【0004】これに対し最近では、電子部品の3次元実
装が注目されるようになり、例えば、見掛け上基板内部
にベアチップを実装することにより、単位面積当たりの
実装個数を増加したチップ・イン・ボードが提案されて
いる(特開平4−298100号公報参照)。
On the other hand, recently, attention has been paid to three-dimensional mounting of electronic components. For example, a chip-in-chip having an increased number of mounting units per unit area by apparently mounting bare chips inside a substrate. A board has been proposed (see JP-A-4-298100).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、スルーホールを用いて上下基板間の配線パ
ターンを接続しているため、スルーホールを設けた分、
配線エリアが阻害され実装密度の向上が図れないという
解決しなければならない問題を残していた。しかも、ス
ルーホールによる接続は、穴明け〜めっきに至るまでの
長い工程が必要で、スルーホール内にめっきを施す際に
は、電子部品にダメージを与えることから、製造性なら
びに信頼性という点でも問題があった。
However, in the above prior art, since the wiring patterns between the upper and lower substrates are connected using the through holes, the provision of the through holes is
There remains a problem to be solved that the wiring area is obstructed and the mounting density cannot be improved. In addition, connection using a through hole requires a long process from drilling to plating, and when plating is performed in the through hole, it damages electronic components. There was a problem.

【0006】そこで、この発明の目的は、従来技術が抱
える上述した問題を有利に解決し得る技術を開発するこ
とにあり、特に、電子部品の高集積化を可能にするとと
もに、組立実装がより簡単で、それ故に製造性に優れ
た、接続信頼性に優れるチップ・イン・ボードタイプの
半導体搭載基板を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to develop a technique that can advantageously solve the above-described problems of the prior art. It is an object of the present invention to provide a chip-in-board type semiconductor mounting substrate which is simple, therefore excellent in manufacturability and excellent in connection reliability.

【0007】[0007]

【課題を解決するための手段】発明者は、上記目的の実
現に向け鋭意検討を行なった結果、以下の内容を要旨構
成とする発明に想到した。すなわち、この発明は、積層
した複数の基板上または該基板内部に電子部品を搭載し
てなる半導体搭載基板において、重ね合わせる上記基板
のうち少なくとも一方の内側面に凹部を設け、この凹部
を介して電子部品を搭載すると共に、はんだバンプによ
り、積層基板どうしを対面接合してなり、前記はんだバ
ンプは、Sn薄膜層と、少なくともSn結晶粒子の一部がPb
で被覆されてなるSn-Pb被覆結晶とで形成され、加熱溶
融後、冷却することによって合金層とすることによって
形成されることを特徴とする。
Means for Solving the Problems The inventors of the present invention have made intensive studies for realizing the above object, and as a result, have arrived at an invention having the following content as a gist configuration. That is, the present invention provides a semiconductor mounting substrate having electronic components mounted on a plurality of stacked substrates or inside the substrate, providing a concave portion on at least one inner surface of the substrates to be overlapped, and through the concave portion. The electronic components are mounted, and the laminated substrates are joined face-to-face by solder bumps. The solder bumps are composed of a Sn thin film layer and at least a part of Sn crystal grains formed of Pb.
And a Sn-Pb-coated crystal coated with, and after heating and melting, cooling to form an alloy layer.

【0008】[0008]

【作用】この発明の特徴の1つは、半導体搭載基板にお
ける複数の基板間の配線パターンを、はんだバンプにて
接続するようにした点にある。これにより、接続のため
に要する面積が小さくてすみ、接続端子数が増しても、
実装エリア,配線エリアを阻害することなく電子部品の
高集積化を実現できるようになる。この発明の特徴の第
2の点は、置換型の無電解共晶はんだめっきを用いるこ
となくSn, Pbの無電解単体めっきを用いることにより、
溶融すると所望のはんだ層となる金属層を、上記はんだ
バンプとして用いた点にある。とりわけ、前記Sn結晶の
無電解めっきとしてSn不均化反応を利用するようにした
点にある。これにより、置換型の無電解共晶はんだめっ
きの欠点である析出膜厚の不足を解消することができ、
困難とされていた狭ピッチの実装も信頼性よく容易に行
うことができるようになる。なお、不均化反応による無
電解めっきとは、還元剤を含まないアルカリ溶液から、
亜錫酸イオンの不均化反応、 2Sn(OH)3 - → Sn + Sn(OH)6 2- によって起こる、自己触媒型の無電解めっきのことであ
る。
One of the features of the present invention is that a wiring pattern between a plurality of substrates in a semiconductor mounting substrate is connected by solder bumps. As a result, the area required for connection can be small, and even if the number of connection terminals increases,
High integration of electronic components can be realized without obstructing the mounting area and wiring area. The second feature of the present invention is that, by using the electroless single plating of Sn and Pb without using the substitution type electroless eutectic solder plating,
The point is that a metal layer that becomes a desired solder layer when melted is used as the solder bump. In particular, the point is that a Sn disproportionation reaction is used as the electroless plating of the Sn crystal. Thereby, it is possible to eliminate the shortage of the deposition film thickness, which is a disadvantage of the substitution type electroless eutectic solder plating,
Narrow pitch mounting, which has been considered difficult, can be easily and reliably performed. In addition, the electroless plating by the disproportionation reaction, from an alkaline solution containing no reducing agent,
Disproportionation Asuzusan ion, 2Sn (OH) 3 - caused by → Sn + Sn (OH) 6 2-, is that the electroless plating of autocatalytic.

【0009】この発明において用いる基板とは、ガラス
エポキシ、ガラスポリイミド、ガラスビスマレイミドト
リアジンなどのいわゆる樹脂基板を用いることが望まし
い。このベースボードである基板への凹部は、基板の加
工によりザグリをいれる方法、感光性層間絶縁材料を用
いるビルドアップ法で搭載部以外の箇所を部分積層する
方法などによって形成する。
The substrate used in the present invention is preferably a so-called resin substrate made of glass epoxy, glass polyimide, glass bismaleimide triazine or the like. The recesses in the substrate as the base board are formed by a method of forming a counterbore by processing the substrate, a method of partially laminating portions other than the mounting portion by a build-up method using a photosensitive interlayer insulating material, or the like.

【0010】ここで、上記はんだバンプを構成する金属
層は、Sn薄膜層と,少なくともSn結晶粒子の一部がPbで
被覆されてなるSn−Pb被覆結晶とで形成され、溶融する
ことにより、最終的には、Sn/Pb比が99.9/0.1 〜20.0
/80.0となるような組成比とすることが望ましい。この
理由は、Sn含有率が99.9%を超えると、溶融の際に非常
に高い温度とすることが必要であり、そのため基板等に
ダメージを与えることになるからであり、一方、Pb含有
率が80.0%を超えると、溶融後のはんだが酸化しやすい
からである。
Here, the metal layer constituting the solder bump is formed of a Sn thin film layer and a Sn—Pb coated crystal in which at least a part of Sn crystal grains is coated with Pb, and is melted. Finally, the Sn / Pb ratio becomes 99.9 / 0.1 to 20.0.
It is desirable that the composition ratio be /80.0. The reason for this is that if the Sn content exceeds 99.9%, it is necessary to set the temperature to a very high temperature during melting, which may damage the substrate and the like. If the content exceeds 80.0%, the solder after melting is easily oxidized.

【0011】この発明において、基板上に凹部を設け、
その位置に電子部品を搭載する理由は、はんだバンプの
みでは、搭載するベアチップのギャップがとれないから
である。
In the present invention, a concave portion is provided on the substrate,
The reason why the electronic component is mounted at that position is that a gap between the mounted bare chips cannot be obtained with only the solder bumps.

【0012】なお、この発明の半導体搭載基板の最外層
には、ピンやはんだバンプなどの外部接続端子を設けて
もよく、また、放熱板や放熱層を形成してもよい。
Incidentally, an external connection terminal such as a pin or a solder bump may be provided on the outermost layer of the semiconductor mounting substrate of the present invention, or a heat radiating plate or a heat radiating layer may be formed.

【0013】この発明の半導体搭載基板は、以下に述べ
る方法によって製造することができる。 (1) まず、製造に当たって、ベースボードであるプリン
ト基板を常法(サブトラクティブ法など)により製造
し、その基板上に電子部品を搭載するための凹部をザグ
リ法などによって設ける。 (2) 次に、上記基板上に設けた凹部内にチップ等の電子
部品を収納して搭載する。ここで、電子部品を搭載する
方法としては、はんだ付けによる表面実装方式(SMT
),フィルムを支持体にした自動の接着実装方式(TA
B: Tape automatedbonding ),ワイヤボンディング実
装方式(COB: Chip On Board),はんだバンプを用いた
フリップチップ実装方式を用いることができる。 (3) 上述のようにして基板表面またはその内部に設けた
凹部を介して搭載した電子部品は、樹脂などを用いて封
止してもよい。そして、プリント基板の接合すべき内面
どうしにはんだバンプを形成し、それらの面を内側にし
て、はんだバンプを溶融することにより、他の基板の配
線パターン部と接合して一体化し、見掛け上、基板内部
にも電子部品が搭載された状態のチップ・イン・ボード
タイプの半導体搭載基板を得る。ここで、このはんだバ
ンプは、主として、プリント基板の接続用導体上に、
Sn薄膜層を形成する工程、前記Sn薄膜層上に、Sn上へ
の選択的析出に基づくSnの不均化反応により、Sn結晶を
形成する工程、前記Sn結晶の少なくとも一部を、イオ
ン化傾向に基づくSn−Pb置換反応によってPbで置換被覆
し、Sn−Pb被覆結晶を形成する工程、上記工程で形成
したSn薄膜層と,少なくともSn結晶粒子の一部がPbで被
覆されてなるSn−Pb被覆結晶とを加熱することにより溶
融し、次いでこれを冷却して合金層とする工程、を経て
形成される。
The semiconductor mounting substrate of the present invention can be manufactured by the method described below. (1) First, in manufacturing, a printed board, which is a base board, is manufactured by an ordinary method (such as a subtractive method), and a concave portion for mounting an electronic component is provided on the board by a counterbore method or the like. (2) Next, an electronic component such as a chip is housed and mounted in a recess provided on the substrate. Here, as a method for mounting electronic components, there is a surface mounting method (SMT) by soldering.
), Automatic adhesive mounting method using film as a support (TA
B: Tape automated bonding), wire bonding mounting method (COB: Chip On Board), and flip chip mounting method using solder bumps can be used. (3) The electronic component mounted via the concave portion provided on the surface of the substrate or inside thereof as described above may be sealed with a resin or the like. Then, solder bumps are formed between the inner surfaces of the printed circuit board to be joined, and those surfaces are turned inside, and the solder bumps are melted, thereby joining and integrating with the wiring pattern portion of the other substrate, and apparently, A chip-in-board type semiconductor mounting substrate in which electronic components are also mounted inside the substrate is obtained. Here, the solder bumps are mainly formed on the connection conductors of the printed circuit board.
Forming a Sn thin film layer, forming a Sn crystal on the Sn thin film layer by a disproportionation reaction of Sn based on selective deposition on Sn, at least a part of the Sn crystal, Forming a Sn—Pb coated crystal by substituting and coating with Pb by a Sn—Pb substitution reaction based on the Sn thin film layer formed in the above step, and a Sn— layer in which at least a part of Sn crystal particles is coated with Pb. The Pb-coated crystal is melted by heating, and then cooled to form an alloy layer.

【0014】[0014]

【実施例】【Example】

(実施例1) (1) まず、常法により、多層プリント配線基板を作製
した(図1(a) 参照)。なお、電子部品4を搭載するた
めの凹部(ザグリ部)を設ける基板では、その搭載箇所
にはパターン形成は行わなかった。 (2) 前記 (1)で作製した基板のうち、電子部品4を搭
載するための基板に、搭載用の凹部を機械加工(ザグリ
加工)によって設け、内層を露出させた。このザグリの
深さは、電子部品4搭載後の電子部品4の高さが該基板
の非加工面の高さよりも低くなるように調整した(図1
(b) 参照)。 (3) 上記 (1),(2)で得られたプリント配線基板に、以
下に示す不均化反応を利用して、はんだを供給し、はん
だバンプ3を形成した(図1(c) 参照)。 a.プリント配線基板を、下記組成の置換錫めっき浴に
30秒間浸漬して触媒化処理(表面活性化処理)を施し
た。 〔置換錫めっき浴〕 42%ホウフッ化錫 ; 30g/l チオ尿素 ; 80g/l 浴温 ; 80℃ b.次に、下記組成の錫不均化反応めっき浴を用いて錫
不均化反応めっきを行い、析出重量による膜厚換算で60
μmの錫層を得た。 〔錫不均化反応めっき浴〕 水酸化カリウム ; 370g/l 塩化第一錫 ; 160g/l ソルビット ; 12g/l TTHA・6Na塩 ; 28g/l(純分換算で表示) 浴温 ; 80℃ c.次に、錫層を形成した配線板を、下記組成の鉛置換
液に80℃, 3分間浸漬して鉛置換層を形成し、その後、
195 ℃のグリコール系熱媒体浴の中に12秒間浸漬し、積
層金属を合金化(はんだ化)して表面実装用配線基板を
作製した。 〔鉛置換液〕 45%ホウフッ化鉛 ; 45cc/l 42%ホウフッ化水素酸; 100cc/l 得られた表面実装用配線基板に設けられたはんだ被覆層
は、蛍光X線微小膜厚計での測定による膜厚が50μm,
Sn/Pb(重量比)≒62/38、融点測定結果が188 ℃で、
優れたはんだ特性を示した。 (4) 上記 (3)で得られた表面実装用配線基板のザグリ
部分に、電子部品4をリフロー機にて実装した(図1
(d) 参照)。 (5) 上記 (1)〜(4) の処理を施した基板上に、上記
(1)で作製した別の基板を、ザグリ部形成面側の非ザグ
リ部に施したはんだバンプ3をリフロー溶融することに
より接合し、チップ・イン・ボードタイプの半導体搭載
基板を作製した(図1(e) 参照)。
(Example 1) (1) First, a multilayer printed wiring board was manufactured by a conventional method (see FIG. 1A). In the case of a substrate provided with a concave portion (counterbore portion) for mounting the electronic component 4, no pattern was formed at the mounting position. (2) Of the substrates prepared in the above (1), a mounting concave portion was provided on the substrate for mounting the electronic component 4 by machining (counterboring) to expose the inner layer. The counterbore depth was adjusted so that the height of the electronic component 4 after mounting the electronic component 4 was lower than the height of the non-processed surface of the substrate (FIG. 1).
(b)). (3) Solder was supplied to the printed wiring board obtained in the above (1) and (2) using the following disproportionation reaction to form a solder bump 3 (see FIG. 1 (c)). ). a. Printed wiring board is replaced with a replacement tin plating bath of the following composition
The catalyst was immersed for 30 seconds to perform a catalyst treatment (surface activation treatment). [Substitution tin plating bath] 42% tin borofluoride; 30 g / l thiourea; 80 g / l bath temperature; 80 ° C. b. Next, tin disproportionation reaction plating was performed using a tin disproportionation reaction plating bath having the following composition, and the film was converted to a film thickness by deposition weight of 60%.
A μm tin layer was obtained. [Tin disproportionation reaction plating bath] Potassium hydroxide; 370 g / l stannous chloride; 160 g / l sorbite; 12 g / l TTHA.6Na salt; 28 g / l (expressed as pure components) Bath temperature; . Next, the wiring board on which the tin layer has been formed is immersed in a lead replacement solution having the following composition at 80 ° C. for 3 minutes to form a lead replacement layer.
It was immersed in a glycol-based heat medium bath at 195 ° C. for 12 seconds, and the laminated metal was alloyed (soldered) to produce a wiring board for surface mounting. [Lead replacement liquid] 45% lead borofluoride; 45 cc / l 42% borofluoric acid; 100 cc / l The solder coating layer provided on the obtained wiring board for surface mounting was measured with a fluorescent X-ray micro-thickness meter. The measured film thickness is 50 μm,
Sn / Pb (weight ratio) ≒ 62/38, melting point measured at 188 ° C,
Excellent solder properties were exhibited. (4) The electronic component 4 was mounted on the counterbored portion of the surface mounting wiring board obtained in the above (3) using a reflow machine (FIG. 1).
(d)). (5) On the substrate that has been subjected to the processes (1) to (4),
Another substrate prepared in (1) was joined by reflow melting the solder bumps 3 applied to the non-counterbore portions on the counterbore portion forming surface side to prepare a chip-in-board type semiconductor mounting substrate (FIG. 1 (e)).

【0015】(実施例2) (1) ザグリ加工をせずに、以下に説明するように、感光
性樹脂材料を用いるビルドアップ法で電子部品搭載部以
外の箇所を部分積層する方法によって、多層プリント配
線基板上に電子部品4を搭載するための凹部(電子部品
搭載部)を形成すること以外は実施例1と同様にしてチ
ップ・イン・ボードタイプの半導体搭載基板を作製した
(図2参照)。なお、図2において、バイアホール8あ
るいはスルーホール7は、樹脂等によって充填平坦化さ
れた後に感光性絶縁層5を形成することが望ましい。な
ぜなら、最終的なバンプ形成面を平坦化し、バンプ同士
の接続信頼性を向上するためである。 a.メラミン樹脂1275重量部と37%ホルマリン1366重量
部と水 730重量部を混合し、10%炭酸ナトリウムにてpH
=9.0 に調整し、90℃で60分間保持した後、メタノール
を 109重量部加えて、樹脂液を得た。 b.この樹脂液を噴霧乾燥法にて乾燥し、粉末状の樹脂
を得た。 c.前記bで得られた樹脂粉末と離型剤、硬化触媒をボ
ールミルにて粉砕混合し、混合粉とした。 d.前記混合粉を 150℃に加熱した金型中に入れて、25
0kg/cm2 の圧力で60分間保持し成型品とした。この成型
に際しては、金型を開きガス抜きを行った。 e.前記dで得られた成型品をボールミルにて粉砕、微
粉化し、粒径0.5 μmと5.5 μmの粉末を得た。 f.フェノールノボラック型エポキシ樹脂(油化シェル
製)60重量部、ビスフェノールA型エポキシ樹脂(油化
シェル製)40重量部およびイミダゾール系硬化剤(四国
化成製)5重量部をブチルセロソルブアセテートに溶解
し、この組成物の固形分 100重量部に対して、前記eで
作成した微粉末を、粒径 0.5μmのものを15重量部、粒
径 5.5μmのものを30重量部の割合で混合し、その後3
本ロールで混練して、さらにブチルセロソルブアセテー
トを添加し、固形分濃度75%の接着剤溶液を作成した。
この溶液の粘度は、JIS-K7117に準じ、東京計器製デジ
タル粘度計を用い、20℃で60秒間測定したところ、回転
数6rpm で5.2 Pa・s 、60rpm で2.6 Pa・s であり、そ
のSVI 値(チキソトロピック性)は2.0 であった。 g.ガラスエポキシ基板を研磨により粗化して、JIS-B0
601 Rmax =2〜3μmの粗化を形成した後、その基板
上に前記fで作成した接着剤溶液をロールコーターを用
いて塗布した。この時の塗布方法はコーティングロール
として、中高粘度用レジスト用コーティングロール(大
日本スクリーン製)を用い、コーティングローラとドク
ターバーとの隙間を0.4mm 、コーティングローラとバッ
クアップローラとの隙間を1.4mm および搬送速度を400m
m/s であった。その後、水平状態で20分間放置した後、
70℃で乾燥させて厚さ約50μmの接着剤層5を形成し
た。 h.接着剤層5を形成した前記基板を500g/lのクロム酸
(CrO3)水溶液からなる酸化剤に70℃で15分間浸漬して
接着剤層5の表面を粗化してから、中和溶液(シプレイ
社製)に浸漬して水洗した。接着剤層5が粗化された基
板にパラジウム触媒(シプレイ社製)を付与して、接着
剤層5の表面を活性化させた。 i.次に、前記hの処理を施した基板を、窒素ガス雰囲
気(10ppm )中で120℃で30分間、触媒固定化のための
熱処理を行った。 j.次に、前記iの処理を施した基板上に、上記fで作
成した接着剤溶液に感光性を付与した樹脂溶液を上記g
と同様にロールコーターを用いて塗布した。得られた塗
布層の溶剤を除去するために80℃で30分間の熱処理を行
い、次いでパターン形成用のマスクを介して露光したの
ちエターナIR(旭化成製)で現像し、その後、紫外線照
射(UVキュアー)したのち熱処理して、めっきレジスト
6(厚さ40μm)を形成した。 k.めっきレジスト6を形成し終えた前記jで得られた
基板を、表1に示す組成および条件の無電解銅めっき液
に11時間浸漬して、導体部1を形成するために、めっき
膜の厚さ25μmの無電解銅めっきを施した。 l.このようにして得られた配線パターンにおいて、さ
らに、レジスト6表面をバフ研磨し、一方、化学銅めっ
き表面を黒化処理し、その後、上記g〜kの処理(接着
剤層5の形成〜めっきレジスト6の形成〜無電解銅めっ
き)を繰り返すことにより、複数の配線パターンを積層
した。 m.そして最終的に、ソルダーレジスト2として、上記
fの接着層組成からフィラー分を除いた樹脂組成物を用
い、hと同様にしてフォトレジストを形成し、多層プリ
ント配線基板上に電子部品非搭載部を形成した。
Embodiment 2 (1) As described below, a multi-layer method is employed in which a portion other than an electronic component mounting portion is partially laminated by a build-up method using a photosensitive resin material without performing counterboring. A chip-in-board type semiconductor mounting board was produced in the same manner as in Example 1 except that a concave portion (electronic component mounting portion) for mounting the electronic component 4 was formed on the printed wiring board (see FIG. 2). ). In FIG. 2, it is desirable that the photosensitive insulating layer 5 be formed after the via hole 8 or the through hole 7 is filled and flattened with a resin or the like. This is because the final bump formation surface is flattened and the connection reliability between the bumps is improved. a. Mix 1275 parts by weight of melamine resin, 1366 parts by weight of 37% formalin and 730 parts by weight of water, and adjust the pH with 10% sodium carbonate.
= 9.0 and maintained at 90 ° C. for 60 minutes, and then 109 parts by weight of methanol was added to obtain a resin solution. b. This resin liquid was dried by a spray drying method to obtain a powdery resin. c. The resin powder obtained in the step b, the release agent, and the curing catalyst were pulverized and mixed in a ball mill to obtain a mixed powder. d. Place the mixed powder in a mold heated to 150 ° C,
The molded product was held at a pressure of 0 kg / cm 2 for 60 minutes. In this molding, the mold was opened and degassing was performed. e. The molded product obtained in the step d was pulverized and pulverized with a ball mill to obtain powders having particle diameters of 0.5 μm and 5.5 μm. f. 60 parts by weight of a phenol novolak type epoxy resin (manufactured by Yuka Shell), 40 parts by weight of bisphenol A type epoxy resin (manufactured by Yuka Shell) and 5 parts by weight of an imidazole-based curing agent (manufactured by Shikoku Chemicals) were dissolved in butyl cellosolve acetate. With respect to 100 parts by weight of the solid content of the composition, 15 parts by weight of the fine powder prepared in step e above and 30 parts by weight of the fine powder having a particle size of 5.5 μm were mixed.
The mixture was kneaded with this roll, and butyl cellosolve acetate was further added to prepare an adhesive solution having a solid content of 75%.
The viscosity of this solution was measured at 20 ° C. for 60 seconds using a digital viscometer manufactured by Tokyo Keiki in accordance with JIS-K7117. The viscosity was 5.2 Pa · s at 6 rpm and 2.6 Pa · s at 60 rpm. The value (thixotropic property) was 2.0. g. The glass epoxy substrate is roughened by polishing, and JIS-B0
After forming a roughened layer of 601 R max = 2 to 3 μm, the adhesive solution prepared in step f above was applied to the substrate using a roll coater. The coating method used at this time was a coating roll for resist for medium and high viscosity (made by Dainippon Screen) with a gap of 0.4 mm between the coating roller and the doctor bar, and a gap of 1.4 mm between the coating roller and the backup roller. Transfer speed 400m
m / s. Then, after standing for 20 minutes in a horizontal state,
By drying at 70 ° C., an adhesive layer 5 having a thickness of about 50 μm was formed. h. The substrate on which the adhesive layer 5 is formed is immersed in an oxidizing agent composed of a 500 g / l chromic acid (CrO 3 ) aqueous solution at 70 ° C. for 15 minutes to roughen the surface of the adhesive layer 5 and then neutralized. (Made by Shipley Co.) and washed with water. The surface of the adhesive layer 5 was activated by applying a palladium catalyst (manufactured by Shipley) to the substrate having the adhesive layer 5 roughened. i. Next, the substrate subjected to the treatment h was subjected to a heat treatment for fixing the catalyst at 120 ° C. for 30 minutes in a nitrogen gas atmosphere (10 ppm). j. Next, a resin solution obtained by imparting photosensitivity to the adhesive solution prepared in the step f above was applied on the substrate treated in the step i.
Was applied using a roll coater in the same manner as described above. The obtained coating layer was subjected to a heat treatment at 80 ° C. for 30 minutes in order to remove the solvent, then exposed through a mask for pattern formation, developed with an Eterna IR (manufactured by Asahi Kasei), and then irradiated with ultraviolet rays (UV After curing, a heat treatment was performed to form a plating resist 6 (40 μm in thickness). k. After the plating resist 6 has been formed, the substrate obtained in j is immersed in an electroless copper plating solution having the composition and conditions shown in Table 1 for 11 hours to form a conductor portion 1. Electroless copper plating of 25 μm was applied. l. In the wiring pattern thus obtained, the surface of the resist 6 is further buff-polished, while the surface of the chemical copper plating is blackened, and then the above processes g to k (formation of the adhesive layer 5 to plating) By repeating formation of the resist 6 to electroless copper plating), a plurality of wiring patterns were laminated. m. Finally, a photoresist is formed as the solder resist 2 using the resin composition obtained by removing the filler from the adhesive layer composition of the above f, and a photoresist is formed in the same manner as in h. Was formed.

【0016】[0016]

【表1】 [Table 1]

【0017】(比較例1)図3に示すように、表面実装
基板同士をコネクターを用いて接続した半導体搭載基板
を作製した。
(Comparative Example 1) As shown in FIG. 3, a semiconductor mounting substrate in which surface mounting substrates were connected to each other using a connector was manufactured.

【0018】(比較例2)図4に示すように、表面実装
基板同士をピン接続した半導体搭載基板を作製した。
Comparative Example 2 As shown in FIG. 4, a semiconductor mounting substrate in which surface mounting substrates were pin-connected to each other was manufactured.

【0019】(比較例3)図5に示すように、表面実装
基板同士をフレキシブル基板を用いて接続した半導体搭
載基板を作製した。
(Comparative Example 3) As shown in FIG. 5, a semiconductor mounting substrate in which surface mounting substrates were connected to each other using a flexible substrate was manufactured.

【0020】上述のようにして作製した半導体搭載基板
について、集積度、接続信頼性および製造性を比較し
た。その結果を表2に示す。この表に示す結果から明ら
かなように、この発明にかかる半導体搭載基板は、他の
半導体搭載基板と違って、集積度、接続信頼性および製
造性の総てについて良好であった。
The degree of integration, connection reliability, and manufacturability of the semiconductor mounting substrate manufactured as described above were compared. Table 2 shows the results. As is clear from the results shown in this table, the semiconductor mounting board according to the present invention was excellent in all of the degree of integration, connection reliability and manufacturability, unlike other semiconductor mounting boards.

【0021】[0021]

【表2】 [Table 2]

【0022】(実施例3)この発明のチップ・イン・ボ
ードタイプの半導体搭載基板は、集積回路のパッケージ
方式の一つであるBGA (ボールグリッドアレイ)タイプ
(図6参照)、QFP (クアッドフラットパッケージ)タ
イプ(図7参照)、PGA (ピングリッドアレイ)タイプ
(図8参照)などの各種構造のパッケージに用いること
ができる。
(Embodiment 3) A chip-in-board type semiconductor mounting substrate according to the present invention is a BGA (ball grid array) type (see FIG. 6), which is one of the integrated circuit package systems, and a QFP (quad flat). It can be used for packages having various structures such as a package) type (see FIG. 7) and a PGA (pin grid array) type (see FIG. 8).

【0023】[0023]

【発明の効果】以上説明したように、この発明の半導体
搭載基板は、複数の基板間の配線パターンをはんだバン
プにて接続するようにし、そのはんだバンプをSn薄膜層
と、少なくともSn結晶粒子の一部がPbで被覆されてなる
Sn-Pb被覆結晶とで形成され、加熱溶融後、冷却するこ
とによって合金層とすることによって形成したので、接
続端子数が増しても、実装エリア、配線エリアを阻害す
ることなく電子部品の高集積化を実現できると共に、従
来の置換型の無電解共晶はんだめっきの欠点である析出
膜厚の不足を解消することができ、狭ピッチの実装も信
頼性よく容易に行なうことができる。したがって、接続
信頼性および製造性に優れる集積度の高いチップ・イン
・ボードタイプの半導体搭載基板を提供することができ
る。
As described above, in the semiconductor mounting substrate of the present invention, the wiring pattern between a plurality of substrates is connected by solder bumps, and the solder bumps are connected to the Sn thin film layer and at least the Sn crystal particles. Partly covered with Pb
Since it was formed with Sn-Pb coated crystal and was heated and melted and then cooled to form an alloy layer, even if the number of connection terminals increased, the mounting area and wiring area were not hindered even if the number of connection terminals increased. In addition to realizing the integration, the shortage of the deposited film thickness, which is a drawback of the conventional substitution type electroless eutectic solder plating, can be eliminated, and the mounting at a narrow pitch can be easily performed with high reliability. Therefore, a highly integrated chip-in-board type semiconductor mounting substrate excellent in connection reliability and manufacturability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の半導体搭載基板にかかる一製造工程
を示す図である。
FIG. 1 is a view showing one manufacturing process according to a semiconductor mounting substrate of the present invention.

【図2】電子部品搭載用凹部を他の方法により形成した
場合の表面実装用基板での断面を示す略図である。
FIG. 2 is a schematic view showing a cross section of a surface mounting substrate when an electronic component mounting concave portion is formed by another method.

【図3】表面実装基板同士をコネクターを用いて接続し
た半導体搭載基板を示す略図である。
FIG. 3 is a schematic diagram showing a semiconductor mounting substrate in which surface mounting substrates are connected to each other using a connector.

【図4】表面実装基板同士をピンを用いて接続した半導
体搭載基板を示す略図である。
FIG. 4 is a schematic view showing a semiconductor mounting substrate in which surface mounting substrates are connected to each other using pins.

【図5】表面実装基板同士をフレキシブル基板を用いて
接続した半導体搭載基板を示す略図である。
FIG. 5 is a schematic view showing a semiconductor mounting substrate in which surface mounting substrates are connected to each other using a flexible substrate.

【図6】この発明にかかる半導体搭載基板をBGA タイプ
のパッケージに適応した場合のパッケージ構造を示す略
図である。
FIG. 6 is a schematic view showing a package structure when the semiconductor mounting substrate according to the present invention is applied to a BGA type package.

【図7】この発明にかかる半導体搭載基板をQFP タイプ
のパッケージに適応した場合のパッケージ構造を示す略
図である。
FIG. 7 is a schematic view showing a package structure when the semiconductor mounting substrate according to the present invention is applied to a QFP type package.

【図8】この発明にかかる半導体搭載基板をPGA タイプ
のパッケージに適応した場合のパッケージ構造を示す略
図である。
FIG. 8 is a schematic diagram showing a package structure when the semiconductor mounting substrate according to the present invention is applied to a PGA type package.

【符号の説明】[Explanation of symbols]

1 導体 2 ソルダーレジスト 3 はんだ(はんだバンプ) 4 電子部品 5 感光性絶縁層(感光性接着剤層) 6 めっきレジスト 7 スルーホール 8 バイアホール Reference Signs List 1 conductor 2 solder resist 3 solder (solder bump) 4 electronic component 5 photosensitive insulating layer (photosensitive adhesive layer) 6 plating resist 7 through hole 8 via hole

フロントページの続き (56)参考文献 特開 平4−370957(JP,A) 特開 平6−45517(JP,A) 特開 昭63−156395(JP,A) 特開 昭61−39551(JP,A) 特開 平7−106509(JP,A) 特開 平6−216492(JP,A) 国際公開93/25060(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01L 25/00 H01L 23/12 H01L 21/60 H05K 1/14 H05K 1/18 H05K 3/46 Continuation of the front page (56) References JP-A-4-370957 (JP, A) JP-A-6-45517 (JP, A) JP-A-63-156395 (JP, A) JP-A-61-39551 (JP) JP-A-7-106509 (JP, A) JP-A-6-216492 (JP, A) WO 93/25060 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) ) H01L 25/00 H01L 23/12 H01L 21/60 H05K 1/14 H05K 1/18 H05K 3/46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 積層した複数の基板上または該基板内部
に電子部品を搭載してなる半導体搭載基板において、 重ね合わせる上記基板のうち少なくとも一方の内側面に
凹部を設け、この凹部を介して電子部品を搭載すると共
に、Sn薄膜層と、少なくともSn結晶粒子の一部がPbで被
覆されてなるSn-Pb被覆結晶とで形成され、加熱溶融
後、冷却することによって合金層としたはんだバンプに
より、積層基板どうしを対面接合してなることを特徴と
する半導体搭載基板。
1. A semiconductor mounting substrate having electronic components mounted on or inside a plurality of stacked substrates, wherein a concave portion is provided on at least one inner side surface of the substrates to be superimposed, and an electronic component is provided through the concave portion. While mounting the components, the Sn thin film layer and at least a part of the Sn crystal particles are covered with Pb.
Sn-Pb-coated crystals that are covered
A semiconductor mounting substrate wherein the laminated substrates are joined face-to-face by solder bumps that are cooled to form an alloy layer .
【請求項2】 上記はんだバンプは、Sn薄膜層と,少な
くともSn結晶粒子の一部がPbで被覆されてなるSn−Pb被
覆結晶とで形成され、加熱溶融後、冷却することにより
合金層とした請求項1に記載の半導体搭載基板。
2. The solder bump is formed of a Sn thin film layer and a Sn—Pb coated crystal in which at least a part of Sn crystal particles is coated with Pb. The semiconductor mounting substrate according to claim 1.
JP06598294A 1994-04-04 1994-04-04 Semiconductor mounting board Expired - Fee Related JP3152559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06598294A JP3152559B2 (en) 1994-04-04 1994-04-04 Semiconductor mounting board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06598294A JP3152559B2 (en) 1994-04-04 1994-04-04 Semiconductor mounting board

Publications (2)

Publication Number Publication Date
JPH07283335A JPH07283335A (en) 1995-10-27
JP3152559B2 true JP3152559B2 (en) 2001-04-03

Family

ID=13302729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06598294A Expired - Fee Related JP3152559B2 (en) 1994-04-04 1994-04-04 Semiconductor mounting board

Country Status (1)

Country Link
JP (1) JP3152559B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69626747T2 (en) 1995-11-16 2003-09-04 Matsushita Electric Industrial Co., Ltd. Printed circuit board and its arrangement
JP2001267492A (en) * 2000-03-14 2001-09-28 Ibiden Co Ltd Manufacturing method for semiconductor module
JP3910045B2 (en) 2001-11-05 2007-04-25 シャープ株式会社 Method for manufacturing electronic component internal wiring board
JP5188327B2 (en) * 2008-08-29 2013-04-24 日立オートモティブシステムズ株式会社 Transfer mold type electronic control device, method for manufacturing the same, and transmission
JP5014470B2 (en) 2010-06-28 2012-08-29 三菱電機株式会社 Resin-sealed electronic control device and manufacturing method thereof
CN113038703B (en) * 2021-03-17 2022-08-05 京东方科技集团股份有限公司 Flexible circuit board, manufacturing method thereof and electronic equipment
US20210385948A1 (en) * 2021-08-25 2021-12-09 Intel Corporation Asymmetrical laminated circuit boards for improved electrical performance

Also Published As

Publication number Publication date
JPH07283335A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
US9161445B2 (en) Printed wiring board and method for manufacturing printed wiring board
CN101180727B (en) Printed wiring board and manufacturing method thereof
EP0713359A1 (en) Printed circuit boards with selectively filled plated through holes
WO2004077560A1 (en) Multilayer printed wiring board
WO1993017457A1 (en) Substrate for mounting semiconductor and method of producing the same
WO1996039796A1 (en) Printed wiring board
CN1879213A (en) Substrate for mounting semiconductor
US8809692B2 (en) Wiring board
KR19990072967A (en) Manufacture of flip-chip devices
KR20050010976A (en) Flexible wiring base material and process for producing the same
US20040132230A1 (en) Ball grid array substrate and method for preparing the same
JP3152559B2 (en) Semiconductor mounting board
US7910156B2 (en) Method of making circuitized substrate with selected conductors having solder thereon
JP2004265955A (en) Multilayer printed circuit board
JP4230680B2 (en) Multilayer circuit board
EP1104647B1 (en) Method for manufacturing solderless high density electronic modules
EP0644713B1 (en) Solder-precoated wiring board and method for manufacturing the same
US6992397B1 (en) Electroless nickel immersion gold semiconductor flip chip package
JP2005150417A (en) Substrate for semiconductor device, its manufacturing method, and semiconductor device
JP4520665B2 (en) Printed wiring board, manufacturing method thereof, and component mounting structure
JPH07326853A (en) Ball bump forming method for printed wiring board
JP3616657B2 (en) Printed wiring board and printed wiring board manufacturing method
JP2001237338A (en) Flip chip ball grid array substrate and method of manufacturing the same
Harazono et al. A new built-up epoxy resin PCB technology for high density surface mount package and device attachment
JP2688099B2 (en) Semiconductor mounting substrate and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees