[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3143599B2 - Separator for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell - Google Patents

Separator for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell

Info

Publication number
JP3143599B2
JP3143599B2 JP09067607A JP6760797A JP3143599B2 JP 3143599 B2 JP3143599 B2 JP 3143599B2 JP 09067607 A JP09067607 A JP 09067607A JP 6760797 A JP6760797 A JP 6760797A JP 3143599 B2 JP3143599 B2 JP 3143599B2
Authority
JP
Japan
Prior art keywords
separator
fuel cell
glass
solid oxide
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09067607A
Other languages
Japanese (ja)
Other versions
JPH10270062A (en
Inventor
俊輔 谷口
正天 門脇
耕司 安尾
幸徳 秋山
泰夫 三宅
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09067607A priority Critical patent/JP3143599B2/en
Publication of JPH10270062A publication Critical patent/JPH10270062A/en
Application granted granted Critical
Publication of JP3143599B2 publication Critical patent/JP3143599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性と耐酸化性
にすぐれる固体電解質型燃料電池用セパレータ及びこれ
を具えた固体電解質型燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell separator having excellent conductivity and oxidation resistance, and a solid oxide fuel cell provided with the same.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、高出力、高効
率の発電を行なうことができ、また燃料の改質や、電解
質のメンテナンスが不要であるため注目されている。固
体電解質型燃料電池は、約1000℃の高温で作動する
燃料電池であって、図7に示すように、固体電解質体(2
2)の片面に水素ガスなどの燃料ガス(25)が供給される燃
料極(24)、他面に空気などの酸化剤ガス(27)が供給され
る酸化剤極(26)を配してなる単セル(20)を複数積層して
構成される。単セル間には、燃料ガスと酸化剤ガスを分
け隔て、且つ単セルの電極間を電気的に接続するための
セパレータ(30)が挟まれている。セパレータ(30)の酸化
剤極(26)と接する側の面には、酸化剤ガスの送給口(図
示せず)と連通した酸化剤ガス流路(34)が形成され、燃
料極(24)と接する側の面には、燃料ガスの送給口(図示
せず)と連通する燃料ガス流路(35)が形成されている。
流路(34)(35)は、複雑な凹凸から形成されており、各極
に均等にガスを供給する。
2. Description of the Related Art Solid oxide fuel cells have attracted attention because they can generate high output power and high efficiency and do not require fuel reforming or electrolyte maintenance. The solid oxide fuel cell is a fuel cell that operates at a high temperature of about 1000 ° C. As shown in FIG.
The fuel electrode (24) to which a fuel gas (25) such as hydrogen gas is supplied on one side of the (2), and the oxidant electrode (26) to which an oxidant gas (27) such as air is supplied on the other side are arranged. And a plurality of single cells (20). A separator (30) for separating the fuel gas and the oxidizing gas and electrically connecting the electrodes of the single cell is sandwiched between the single cells. An oxidizing gas flow path (34) communicating with an oxidizing gas supply port (not shown) is formed on a surface of the separator (30) in contact with the oxidizing electrode (26). A fuel gas flow path (35) communicating with a fuel gas supply port (not shown) is formed on the surface in contact with the fuel gas supply port (not shown).
The flow paths (34) and (35) are formed of complicated irregularities, and supply gas equally to each pole.

【0003】[0003]

【発明が解決しようとする課題】固体電解質型燃料電池
は、作動温度が1000℃近傍と高温であるため、セパ
レータは、酸化性雰囲気に対して化学的に安定であり、
すぐれた導電性を有すると共に耐熱性を具えることが要
求される。セパレータの材料には、導電性と耐酸化性に
すぐれる耐熱合金が用いられているが、約1000℃の
高温下で長期間運転した場合、セパレータの酸化剤ガス
と接する側の合金表面が次第に酸化されて、表面の酸化
被膜により抵抗が増大し、導電性が低下する不都合があ
った。セパレータの導電性の低下は、固体電解質型燃料
電池の短命化に繋がるため、約1000℃の高温下です
ぐれた耐酸化性と導電性を長期に亘って確保することの
できるセパレータの開発が望まれている。
Since the operating temperature of a solid oxide fuel cell is as high as about 1000 ° C., the separator is chemically stable against an oxidizing atmosphere.
It is required to have excellent conductivity and heat resistance. As a material for the separator, a heat-resistant alloy having excellent conductivity and oxidation resistance is used. However, when the separator is operated at a high temperature of about 1000 ° C. for a long time, the surface of the alloy in contact with the oxidizing gas of the separator gradually becomes larger. Oxidation causes an increase in resistance due to an oxide film on the surface, and there is a disadvantage that conductivity is reduced. Since a decrease in the conductivity of the separator leads to a shorter life of the solid oxide fuel cell, it is desired to develop a separator capable of securing excellent oxidation resistance and conductivity at a high temperature of about 1000 ° C. for a long period of time. It is rare.

【0004】そこで、発明者らはセパレータの母材表面
に導電性セラミックの粉末をプラズマ溶射法により吹き
付けて、耐酸化性の保護層を形成することを試みた。し
かしながら、得られた保護層は、電池の作動、停止にと
もなう昇降温時に熱膨張率の相違により発生する応力に
よって剥離してしまうという問題があった。
Accordingly, the inventors have attempted to form an oxidation-resistant protective layer by spraying a conductive ceramic powder onto the base material surface of the separator by plasma spraying. However, there is a problem that the obtained protective layer is separated due to stress generated due to a difference in coefficient of thermal expansion when the temperature rises and falls when the battery is operated and stopped.

【0005】本発明の目的は、約1000℃の高温下で
すぐれた耐酸化性と導電性を長期に亘って確保すること
のできる表面保護層を有するセパレータを提供し、これ
を用いた固体電解質型燃料電池の長寿命化を図ることで
ある。
An object of the present invention is to provide a separator having a surface protective layer capable of securing excellent oxidation resistance and conductivity at a high temperature of about 1000 ° C. for a long period of time, and a solid electrolyte using the same. Is to extend the life of the fuel cell.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、固体電解質型燃料電池用のセパレータ母
材(32)の表面に、導電性セラミック粉末とガラスを含む
表面保護層(40)を形成したものである。上記表面保護層
(40)は、セパレータ(30)が酸化剤ガス(27)との接触する
側の表面の一部でもよいが、全面に形成することが望ま
しい。
In order to solve the above-mentioned problems, the present invention provides a solid electrolyte fuel cell separator base material having a surface protective layer containing conductive ceramic powder and glass on a surface thereof. 40). The above surface protection layer
(40) may be a part of the surface of the separator (30) in contact with the oxidizing gas (27), but is preferably formed on the entire surface.

【0007】[0007]

【作用】セパレータ母材(32)の表面に形成する表面保護
層(40)は、導電性セラミック粉末とガラスを混合して構
成される。このセパレータ(30)を単セル(20)と交互に積
層して固体電解質型燃料電池に組み込んで、1000℃
近傍にて固体電解質型燃料電池を作動させると、ガラス
は軟化して、導電性セラミック粒子間に存する隙間に入
り込む。従って、表面保護層(40)に隙間が生ずることが
なく、表面保護層(40)とセパレータ母材(32)の密着性は
良好な状態を維持できる。表面保護層中には、導電性セ
ラミック粒子が存在するから、すぐれた導電性を確保す
ることができる。固体電解質型燃料電池の作動を停止す
ると、温度が低下して表面保護層のガラスは硬化する
が、再び固体電解質型燃料電池を作動させるとガラスは
軟化して、すぐれた保護効果を発揮する。本発明では、
電池の作動、停止にともなう昇降温時に表面保護層が剥
離するという問題も解決できる。なぜならば、表面保護
層中に分散されたガラスが軟化することにより、表面保
護層に発生する応力を緩和するからである。
The surface protective layer (40) formed on the surface of the separator base material (32) is formed by mixing conductive ceramic powder and glass. This separator (30) was alternately stacked with the single cell (20) and incorporated into a solid oxide fuel cell at 1000 ° C.
When a solid oxide fuel cell is operated nearby, the glass softens and enters the gaps between the conductive ceramic particles. Accordingly, there is no gap in the surface protection layer (40), and the adhesion between the surface protection layer (40) and the separator base material (32) can be maintained in a good state. Since conductive ceramic particles are present in the surface protective layer, excellent conductivity can be ensured. When the operation of the solid oxide fuel cell is stopped, the temperature is lowered and the glass of the surface protective layer is hardened. However, when the solid oxide fuel cell is operated again, the glass is softened and exhibits an excellent protective effect. In the present invention,
It is also possible to solve the problem that the surface protective layer is peeled off when the temperature rises and falls when the battery is operated and stopped. This is because the glass dispersed in the surface protective layer is softened, thereby reducing the stress generated in the surface protective layer.

【0008】[0008]

【発明の実施の形態】本発明の固体電解質型燃料電池
は、図1に示すように、固体電解質体(22)の片面に燃料
極(24)、他面に酸化剤極(26)を配してなる単セル(20)
と、該単セルに反応ガスを供給するセパレータ(30)を交
互に積層して構成され、セパレータ(30)は、セパレータ
母材(32)の表面に、導電性セラミック粉末とガラスを含
む表面保護層(40)を形成している。なお図1では、表面
保護層(40)は、酸化剤極(26)との対向面にのみ設けてい
るが、セパレータ母材(32)の両面に設けてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a solid oxide fuel cell according to the present invention has a solid electrolyte body (22) having a fuel electrode (24) on one surface and an oxidizer electrode (26) on the other surface. Single cell made of (20)
And a separator (30) for supplying a reaction gas to the single cell is alternately laminated, and the separator (30) has a surface protection material containing conductive ceramic powder and glass on the surface of the separator base material (32). A layer (40) is formed. In FIG. 1, the surface protective layer (40) is provided only on the surface facing the oxidant electrode (26), but may be provided on both surfaces of the separator base material (32).

【0009】セパレータ母材(32)の表面に形成される表
面保護層(40)は、平均粒径約1μm〜数10μmの導電
性セラミック粉末と、平均粒径約1μm〜数10μmの
ガラス粉末とを混合して、セパレータ母材(32)の表面に
塗着することにより形成できる。塗着方法は、刷毛にて
スラリーを塗布するスラリーコート法、溶射法、スパッ
タリング法、蒸着法などを挙げることができる。これら
塗着方法の中で、スラリーコート法が凹凸のあるセパレ
ータ母材の表面に均一厚さの表面保護層を形成するのに
適しており、製造コストの点でも有利である。また、セ
パレータ母材(32)の表面に、図1に示すようにガス流路
(34)(35)が形成されている場合、溶射法、スパッタリン
グ法では凹部分に十分に表面保護層(40)が形成されない
ことがある。このようなときには、スラリーコート法を
適用することが望ましい。なお、溶射法、スパッタリン
グ法についても吹付角度などを調節することにより、均
一厚さの表面保護層を形成することができる。
The surface protective layer (40) formed on the surface of the separator base material (32) comprises a conductive ceramic powder having an average particle size of about 1 μm to several tens μm and a glass powder having an average particle size of about 1 μm to several tens μm. Are mixed and applied to the surface of the separator base material (32). Examples of the application method include a slurry coating method of applying a slurry with a brush, a thermal spraying method, a sputtering method, and a vapor deposition method. Among these coating methods, the slurry coating method is suitable for forming a surface protective layer having a uniform thickness on the surface of a separator base material having irregularities, and is advantageous in terms of manufacturing cost. As shown in FIG. 1, a gas flow path is provided on the surface of the separator base material (32).
(34) In the case where (35) is formed, the surface protection layer (40) may not be sufficiently formed in the concave portion by the thermal spraying method or the sputtering method. In such a case, it is desirable to apply a slurry coating method. In the case of the thermal spraying method and the sputtering method, a surface protective layer having a uniform thickness can be formed by adjusting the spray angle and the like.

【0010】スラリーコート法による場合、導電性セラ
ミック粉末とガラス粉末を有機溶媒に溶かしてスラリー
調製し、得られたスラリーをセパレータ母材(32)の表面
に刷毛等を用いて塗布し、乾燥させることによって、表
面保護層(40)を形成することができる。
In the case of the slurry coating method, a slurry is prepared by dissolving a conductive ceramic powder and a glass powder in an organic solvent, and the obtained slurry is applied to the surface of a separator base material (32) using a brush or the like, and dried. Thereby, the surface protective layer (40) can be formed.

【0011】何れの塗着方法を利用する場合でも、混合
粉末中に占めるガラス粉末の体積%は20%〜80%と
することが適当であり、20%〜50%とすることが望
ましい望ましい。ガラスの体積%が20%よりも小さく
なると、ガラスによる接合効果が低下して、導電性セラ
ミック粒子が欠落するおそれがある。逆にガラスの体積
%が80%を越えると、十分な導電性を確保できないこ
とがある。
Regardless of which coating method is used, the volume percentage of the glass powder in the mixed powder is preferably 20% to 80%, and more preferably 20% to 50%. When the volume percentage of the glass is less than 20%, the bonding effect of the glass is reduced, and the conductive ceramic particles may be missing. Conversely, if the volume percentage of glass exceeds 80%, sufficient conductivity may not be ensured.

【0012】セパレータ母材(32)の表面に形成される表
面保護層(40)は、厚さが10μm〜100μmとなるよ
うに形成されることが適当であり、10μm〜50μm
となるように形成することが望ましい。表面保護層の厚
さを10μmよりも薄くすると十分な耐酸化性効果を得
ることができないためであり、表面保護層の厚さを10
0μmよりも厚くしても、これ以上の耐酸化性効果は発
揮されず、また導電性が低下するおそれがあるためであ
る。
The surface protective layer (40) formed on the surface of the separator base material (32) is suitably formed so as to have a thickness of 10 μm to 100 μm.
It is desirable to form them so that If the thickness of the surface protective layer is less than 10 μm, a sufficient oxidation resistance effect cannot be obtained.
If the thickness is greater than 0 μm, no further oxidation resistance effect is exhibited, and the conductivity may be reduced.

【0013】導電性セラミック材料として、LaCoO
3系、LaMnO3系、LaCrO3系ペロブスカイト型
酸化物などを挙げることができる。ガラス粉末は、軟化
点が固体電解質型燃料電池の作動温度以下の材料を用い
ることが適当であり、軟化点が約800℃以下の材料を
用いることが望ましい。その種ガラス材料として、パイ
レックスガラス、アルカリホウケイ酸ガラス、アルカリ
土類ホウケイ酸ガラスなどを挙げることができる。有機
溶媒として、テルピネオール溶媒などを挙げることがで
きる。表面保護層を形成するセパレータ母材は、ニッケ
ル基耐熱合金、鉄基耐熱合金などからなる材料は勿論、
その他一般にセパレータ母材の材料に用いられる耐熱合
金にも適用できる。
As the conductive ceramic material, LaCoO is used.
Examples include tri-, LaMnO3-, and LaCrO3-based perovskite-type oxides. As the glass powder, a material whose softening point is lower than the operating temperature of the solid oxide fuel cell is appropriate, and a material whose softening point is lower than about 800 ° C. is preferable. Examples of such a glass material include Pyrex glass, alkali borosilicate glass, and alkaline earth borosilicate glass. Examples of the organic solvent include a terpineol solvent. The separator base material forming the surface protection layer is, of course, a material made of a nickel-based heat-resistant alloy, an iron-based heat-resistant alloy, or the like.
In addition, the present invention can be applied to a heat-resistant alloy generally used as a material of a separator base material.

【0014】図2(a)は、スラリーコート法により表面
保護層(40)を形成し、乾燥を行なった後のセパレータ(3
0)の拡大断面図である。図示するとおり、表面保護層(4
0)中には、導電性セラミック粒子(42)とガラス粒子(44)
が、粒子の状態で存在している。この状態では、表面保
護層(40)は、多孔体であるが、セパレータ(30)を単セル
(20)(20)の間に挟んで、固体電解質型燃料電池を作製
し、ガラスの軟化点よりも高い1000℃近傍で作動さ
せると、ガラス粒子(44)は軟化して、図2(b)に示すよ
うに、導電性セラミック粒子(42)(42)の間に入り込み、
該粒子間を埋める。なお、軟化したガラスを(46)で示
す。従って、酸化剤ガス(27)がセパレータ母材(32)に直
接接することがなく、セパレータ母材の酸化を防止でき
る。また、表面保護層中に導電性セラミック粒子(42)(4
2)が密着状態で存在するから、電気抵抗も小さく、導電
性の点での問題もない。
FIG. 2 (a) shows a surface protective layer (40) formed by a slurry coating method and drying of the separator (3).
It is an enlarged sectional view of (0). As shown, the surface protective layer (4
In (0), conductive ceramic particles (42) and glass particles (44)
Exists in a state of particles. In this state, the surface protective layer (40) is a porous body, but the separator (30) is a single cell.
(20) When a solid oxide fuel cell is manufactured sandwiched between (20) and is operated at around 1000 ° C., which is higher than the softening point of glass, the glass particles (44) soften, and as shown in FIG. ), Penetrate between the conductive ceramic particles (42) (42),
Fill between the particles. The softened glass is indicated by (46). Therefore, the oxidizing gas (27) does not directly contact the separator base material (32), and oxidation of the separator base material can be prevented. In addition, conductive ceramic particles (42) (4
Since 2) exists in a close contact state, the electric resistance is low and there is no problem in terms of conductivity.

【0015】固体電解質型燃料電池の作動を停止し温度
が低下しても、ガラスは粒子状には戻らず、表面保護層
(40)に隙間を形成することなく硬化するから、固体電解
質型燃料電池を起動していないときでもセパレータ母材
(32)が酸化されることはない。固体電解質型燃料電池を
再起動すると、硬化していたガラスは再び軟化し、上記
と同様、セパレータ母材(32)に良好な密着状態の表面保
護層(46)を形成するため、作動、停止のサイクルによる
温度変化にもすぐれた耐性を有する。
[0015] Even if the operation of the solid oxide fuel cell is stopped and the temperature is lowered, the glass does not return to the particulate state,
It hardens without forming a gap in (40), so even when the solid oxide fuel cell is not
(32) is not oxidized. When the solid oxide fuel cell is restarted, the hardened glass softens again, and starts and stops to form the surface protection layer (46) in good adhesion to the separator base material (32), as described above. It has excellent resistance to temperature changes due to the above cycle.

【0016】[0016]

【実施例】実施例1 表1に示す成分組成の鉄基耐熱合金を切削加工して、2
0mm×20mm×5mmのセパレータ母材を複数作製
し、各セパレータ母材に以下の処理を施して、供試No.
1〜No.3を作製し、耐酸化性試験を行なった。
EXAMPLES Example 1 An iron-based heat-resistant alloy having the composition shown in Table 1 was cut to form
A plurality of separator base materials of 0 mm × 20 mm × 5 mm were prepared, and each separator base material was subjected to the following treatment.
Nos. 1 to 3 were prepared and subjected to an oxidation resistance test.

【0017】[0017]

【表1】 [Table 1]

【0018】供試No.1(本発明) 平均粒径1μmである導電性セラミック粉末70体積%
と、平均粒径1μmであるガラス粉末30体積%を混合
した粉末を有機溶媒中で混合しスラリーを調製した。各
材料組成を以下に示す。 導電性セラミック粉末:La0.9Sr0.1CrO3 ガラス粉末 :パイレックスガラス 有機溶媒 :テルピネオール溶媒
Test No. 1 (Invention) 70% by volume of conductive ceramic powder having an average particle size of 1 μm
And 30% by volume of glass powder having an average particle diameter of 1 μm were mixed in an organic solvent to prepare a slurry. The composition of each material is shown below. Conductive ceramic powder: La0.9Sr0.1CrO3 Glass powder: Pyrex glass Organic solvent: Terpineol solvent

【0019】得られたスラリーをセパレータ母材の全表
面に刷毛を用いて塗布し、乾燥させることにより厚さ3
0μmの表面保護層を形成し、セパレータを作製した。
The obtained slurry is applied to the entire surface of the separator base material using a brush and dried to obtain a thickness of 3%.
A 0 μm surface protective layer was formed to produce a separator.

【0020】供試No.2(比較例) 組成及び平均粒径が供試No.1と同一の導電性セラミッ
ク粉末をテルピネオール溶媒に混ぜてスラリーを調製
し、該スラリーをセパレータ母材の全面に刷毛を用いて
塗布し、乾燥させることにより厚さ30μmの表面保護
層を形成し、セパレータを作製した。
Sample No. 2 (Comparative Example) A slurry was prepared by mixing a conductive ceramic powder having the same composition and average particle size as the test No. 1 with a terpineol solvent, and applying the slurry to the entire surface of the separator base material using a brush, By drying, a surface protective layer having a thickness of 30 μm was formed, and a separator was produced.

【0021】供試No.3(比較例) セパレータ母材に表面保護層を形成することなくセパレ
ータとした。
Test No. 3 (Comparative Example) A separator was formed without forming a surface protective layer on the separator base material.

【0022】上記セパレータ供試No.1〜No.3を空気中
1000℃にて所定時間加熱し、耐酸化性試験として、
単位面積当たりの重量変化と、表面被膜電気抵抗を測定
した。
The above separator samples No. 1 to No. 3 were heated in air at 1000 ° C. for a predetermined time, and as an oxidation resistance test,
The weight change per unit area and the surface coating electrical resistance were measured.

【0023】重量変化測定 空気中1000℃にて加熱された供試No.1〜No.3のセ
パレータの重量を所定時間毎に測定した。結果を図3に
示す。なお、供試No.2について、実線はセパレータか
ら剥離した表面保護層を含めた全重量を示しており、二
点鎖線は、剥離分を除いた重量を示している。図3を参
照すると、表面保護層を形成していない供試No.3は、
重量の増加が非常に大きいことがわかる。この重量増加
は、セパレータ母材の表面に形成された酸化被膜による
ものである。つまり、時間の経過と共に、セパレータ母
材の表面は激しく酸化されている。導電性セラミック粒
子のみの表面保護層を有する供試No.2は、供試No.3よ
りも酸化の程度は小さい。これは、導電性セラミック粒
子のみでも、ある程度の耐酸化性効果を有していること
を意味している。しかしながら、約1500時間経過し
た時点から、酸化した表面保護層の剥離が始まり、時間
の経過と共にその剥離量も増えていることがわかる。こ
の表面保護層の剥離は、導電性セラミック粒子どうしの
隙間から空気が侵入し、セラミック母材の表面が酸化さ
れること及び導電性セラミック粒子どうしの接合力が弱
いことに起因する。
Weight Change Measurement The weights of the test samples No. 1 to No. 3 heated at 1000 ° C. in the air were measured at predetermined time intervals. The results are shown in FIG. In Test No. 2, the solid line shows the total weight including the surface protective layer peeled off from the separator, and the two-dot chain line shows the weight excluding the peeled amount. Referring to FIG. 3, Test No. 3 in which the surface protective layer was not formed,
It can be seen that the weight increase is very large. This increase in weight is due to the oxide film formed on the surface of the separator base material. That is, the surface of the separator base material is vigorously oxidized over time. Test No. 2 having a surface protective layer made of only conductive ceramic particles has a smaller degree of oxidation than Test No. 3. This means that only the conductive ceramic particles have a certain degree of oxidation resistance effect. However, it can be seen that the peeling of the oxidized surface protective layer started after about 1500 hours had elapsed, and that the amount of peeling increased with the passage of time. The peeling of the surface protective layer is caused by air entering through gaps between the conductive ceramic particles, oxidizing the surface of the ceramic base material, and weak bonding force between the conductive ceramic particles.

【0024】導電性セラミック粒子とガラスからなる表
面保護層を有する本発明の供試No.1は、時間が経過し
ても殆ど表面が酸化されていない。これは、導電性セラ
ミック粒子間に存する隙間に軟化したガラスが入り込ん
だ表面保護層の存在によるものであり、該表面保護層が
セラミック母材と空気との間を完全に塞いでいるためで
ある。供試 No.1では、供試 No.2のような表面保護層
の剥離は観察されなかった。
In Test No. 1 of the present invention having a surface protective layer composed of conductive ceramic particles and glass, the surface was hardly oxidized even after a lapse of time. This is due to the presence of the surface protection layer in which the softened glass has entered the gaps between the conductive ceramic particles, and the surface protection layer completely blocks the space between the ceramic base material and the air. . In Test No. 1, peeling of the surface protective layer as in Test No. 2 was not observed.

【0025】表面被膜電気抵抗測定 図4に示す測定装置(80)を用いて、供試No.1〜No.3の
セパレータの表面被膜電気抵抗を所定時間毎に測定し
た。測定は、所定時間加熱後の供試セパレータ(82)を常
温下(25℃)に放置し、図4の測定装置(80)にセットし
て、再度1000℃に熱した状態で行なった。図4に示
す測定装置(80)は、供試セパレータ(82)の上下を測定端
子(84)(84)で挟み、その上下をセラミック板(85)(85)で
挟んで荷重W(1kg/cm2)を加え、この状態で測定端子(8
4)(84)間の電圧降下を測定する装置である。測定端子(8
4)(84)は、白金ペーストを塗布した白金網製であって、
該端子(84)(84)には、夫々白金リード線(86)(86)が接続
されている。測定端子(84)(84)間に電流Iを0A〜1A
まで変化させながら供給し、電圧の変化量ΔVを測定し
た。測定された電圧降下ΔVと供給電流値Iから、測定
試料の抵抗R(=ΔV/I)を計算し、その抵抗に供試セ
パレータの面積Sを乗算することにより表面被膜電気抵
抗R・Sを求めた。なお、本実施例では表面保護層をセ
パレータ母材の両面に形成しているため、求められた表
面被膜抵抗を2で割った値を表面被膜電気抵抗値R・S/
2として評価した。結果を表2に示す。なお、表2中の
抵抗値の単位は、mΩcm2である。
Measurement of Surface Coating Electric Resistance The surface coating electric resistance of the test samples No. 1 to No. 3 was measured at predetermined time intervals using a measuring device (80) shown in FIG. The measurement was performed after leaving the test separator (82) heated for a predetermined time at room temperature (25 ° C.), setting it in the measuring device (80) of FIG. 4, and heating it again to 1000 ° C. The measuring device (80) shown in FIG. 4 is configured such that the upper and lower sides of a test separator (82) are sandwiched between measuring terminals (84) and (84), and the upper and lower sides thereof are sandwiched between ceramic plates (85) and (85). cm 2 ).
4) This is a device for measuring the voltage drop between (84). Measurement terminals (8
4) (84) is made of platinum mesh coated with platinum paste,
Platinum lead wires (86) and (86) are connected to the terminals (84) and (84), respectively. Current I is between 0A and 1A between measuring terminals (84) and (84).
, And the amount of change in voltage ΔV was measured. From the measured voltage drop ΔV and the supplied current value I, the resistance R (= ΔV / I) of the measurement sample is calculated, and the resistance is multiplied by the area S of the test separator to obtain the surface coating electric resistance R · S. I asked. In this embodiment, since the surface protective layer is formed on both surfaces of the separator base material, a value obtained by dividing the obtained surface film resistance by 2 is a surface film electric resistance value R · S /.
It was evaluated as 2. Table 2 shows the results. The unit of the resistance value in Table 2 is mΩcm 2 .

【0026】[0026]

【表2】 [Table 2]

【0027】表2を参照すると、本発明の供試No.1
は、ガラスが導電性セラミック粒子間に存在しているた
め、初期の表面被膜抵抗値は供試No.2、No.3に比べて
高いものとなっている。しかしながら、高温酸化雰囲気
下に1000時間放置した場合、供試No.2は表面被膜
抵抗値が約4.5倍、供試No.3は約16倍に増大してお
り、本発明の供試No.1よりも大きくなっている。これ
に対して、本発明の供試No.1は、3000時間経過後
でも、表面被膜抵抗値が2倍以下に保たれている。つま
り、本発明の供試No.1は、長期に亘って安定した導電
性を維持できることがわかる。
Referring to Table 2, the test No. 1 of the present invention
Since the glass exists between the conductive ceramic particles, the initial surface coating resistance value is higher than that of Test Nos. 2 and 3. However, when left for 1000 hours in a high-temperature oxidizing atmosphere, the surface coating resistance of Test No. 2 increased by about 4.5 times and that of Test No. 3 increased by about 16 times. It is larger than No.1. On the other hand, in Test No. 1 of the present invention, even after 3000 hours, the surface coating resistance value is maintained at twice or less. That is, it can be seen that Test No. 1 of the present invention can maintain stable conductivity for a long period of time.

【0028】実施例2 導電性セラミック粉末とガラスの混合比を変えて、表面
保護層を形成し、表面被膜電気抵抗を測定した。導電性
セラミック粉末とガラス粉末の混合比を変えた以外、表
面保護層の形成条件、表面被膜抵抗の測定条件などは実
施例1と同じである。なお、測定は、1000℃の空気
中に1000時間放置したセパレータに実施した。結果
を図5に示す。図5を参照すると、ガラスの体積%が5
0%を越えると、表面被膜抵抗値が大きくなっている。
ガラスの量が多くなりすぎると、表面保護層中に存在す
る導電性セラミック粒子の量が減って、導電性を確保で
きないためである。ガラスの体積%が20%に満たない
場合は、表面被膜抵抗値が大きくなっている。ガラスの
量が少ないと、導電性セラミック粒子どうしが十分接合
されず、表面保護層の密着性が乏しくなると同時に強度
も低くなるためである。また、粒子間に空隙が生じてし
まい、セパレータ母材の表面が空気雰囲気にさらされ
て、酸化抑制の効果は低くなるためである。上記結果よ
り、実施例1に示す組成の導電性セラミック粉末とガラ
ス粉末との組み合わせの場合、混合粉末中のガラス粉末
の量が20体積%〜50体積%となるように混合するこ
とが望ましい。
Example 2 A surface protective layer was formed by changing the mixing ratio of the conductive ceramic powder and glass, and the electric resistance of the surface coating was measured. Except for changing the mixing ratio between the conductive ceramic powder and the glass powder, the conditions for forming the surface protective layer, the conditions for measuring the surface coating resistance, and the like are the same as in Example 1. The measurement was performed on a separator that was left in the air at 1000 ° C. for 1000 hours. The results are shown in FIG. Referring to FIG. 5, the volume percentage of glass is 5%.
If it exceeds 0%, the surface coating resistance value becomes large.
If the amount of the glass is too large, the amount of the conductive ceramic particles present in the surface protective layer is reduced, and the conductivity cannot be secured. When the volume percentage of the glass is less than 20%, the surface coating resistance value is large. When the amount of the glass is small, the conductive ceramic particles are not sufficiently bonded to each other, so that the adhesion of the surface protective layer is poor and the strength is low. Further, voids are generated between the particles, and the surface of the separator base material is exposed to an air atmosphere, so that the effect of suppressing oxidation is reduced. From the above results, in the case of the combination of the conductive ceramic powder and the glass powder having the composition shown in Example 1, it is desirable to mix the mixed powder so that the amount of the glass powder in the mixed powder is 20% by volume to 50% by volume.

【0029】つぎに、混合する導電性セラミック粉末の
組成を、導電性セラミックの中で、1000℃での電気
伝導度の最も高い材料の一つであるLaCoO3系に変
えて、表面保護層を形成し、表面被膜電気抵抗を測定し
た。その他条件は、上記実施例と同じである。結果を図
6に示す。図6を参照すると、ガラスの体積%を80%
程度まで高くしても、抵抗の増加が少ないことがわか
る。これは、使用した導電性セラミックの電気伝導度が
高いため、少量でも十分な導電性を確保できるためであ
る。この場合でも、導電性セラミック粉末どうしを接合
させ、剥離などを防止するために、ガラスの体積%の下
限は20%とすることが望ましい。
Next, the composition of the conductive ceramic powder to be mixed is changed to LaCoO 3 which is one of the materials having the highest electric conductivity at 1000 ° C. in the conductive ceramic, and the surface protective layer is formed. Once formed, the surface coating electrical resistance was measured. Other conditions are the same as in the above embodiment. FIG. 6 shows the results. Referring to FIG. 6, the volume percentage of glass is 80%.
It can be seen that even if it is increased to the extent, the increase in resistance is small. This is because the electric conductivity of the conductive ceramic used is high, so that sufficient electric conductivity can be ensured even in a small amount. Even in this case, the lower limit of the volume percentage of glass is desirably set to 20% in order to join the conductive ceramic powders together and prevent peeling or the like.

【0030】[0030]

【発明の効果】本発明のセパレータ(30)は、セパレータ
母材(32)の表面に形成された表面保護層(40)は、導電性
セラミック粉末が存在するからすぐれた導電性を確保で
きる。また、表面保護層(40)に含まれるガラスは、固体
電解質型燃料電池の作動温度である約1000℃では、
軟化した状態にあり、導電性セラミック粒子間に入り込
んで、該粒子間を埋めるから、酸化剤ガス(27)のセパレ
ータ母材(32)への到達を阻止することができ、セパレー
タ母材(32)の耐酸化性を確保することができる。本発明
のセパレータ(30)は、上述のとおり、約1000℃の高
温下において長期に亘ってすぐれた導電性及びすぐれた
耐酸化性を有するから、本発明のセパレータ(30)を用い
た固体電解質型燃料電池は、長期に亘って高出力、高効
率の発電を行なうことができる。
According to the separator (30) of the present invention, the surface protective layer (40) formed on the surface of the separator base material (32) can secure excellent conductivity due to the presence of the conductive ceramic powder. Further, the glass contained in the surface protective layer (40) has a temperature of about 1000 ° C., which is the operating temperature of the solid oxide fuel cell,
Since it is in a softened state, penetrates between the conductive ceramic particles and fills in the particles, it is possible to prevent the oxidizing gas (27) from reaching the separator base material (32), and the separator base material (32 ) Oxidation resistance can be ensured. As described above, since the separator (30) of the present invention has excellent conductivity and excellent oxidation resistance over a long period of time at a high temperature of about 1000 ° C., the solid electrolyte using the separator (30) of the present invention The fuel cell can generate high output and high efficiency power for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面保護層を有するセパレータと単セ
ルの分解図である。
FIG. 1 is an exploded view of a separator having a surface protective layer of the present invention and a single cell.

【図2】セパレータの拡大断面図である。FIG. 2 is an enlarged sectional view of a separator.

【図3】重量変化測定結果を示すグラフである。FIG. 3 is a graph showing the results of a weight change measurement.

【図4】表面被膜抵抗を測定する測定装置の説明図であ
る。
FIG. 4 is an explanatory view of a measuring device for measuring a surface coating resistance.

【図5】混合するガラスの体積%と表面被膜抵抗の関係
を示すグラフである。
FIG. 5 is a graph showing a relationship between volume% of glass to be mixed and surface coating resistance.

【図6】混合するガラスの体積%と表面被膜抵抗の関係
を示すグラフである。
FIG. 6 is a graph showing the relationship between volume% of glass to be mixed and surface coating resistance.

【図7】従来のセパレータと単セルの分解図である。FIG. 7 is an exploded view of a conventional separator and a single cell.

【符号の説明】[Explanation of symbols]

(20) 単セル (22) 固体電解質体 (24) 燃料極 (26) 酸化剤極 (30) セパレータ (32) セパレータ母材 (40) 表面保護層 (20) Single cell (22) Solid electrolyte (24) Fuel electrode (26) Oxidizer electrode (30) Separator (32) Separator base material (40) Surface protective layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 幸徳 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 三宅 泰夫 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平1−100866(JP,A) 特開 平4−137465(JP,A) 特開 平4−138670(JP,A) 特開 平6−5293(JP,A) 特開 平6−52872(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukinori Akiyama 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yasuo Miyake 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-1-100866 (JP, A) JP-A-4-137465 (JP, A) JP-A-4-138670 (JP, A) JP-A-6-5293 (JP, A) JP-A-6-52872 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H01M 8/00-8/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セパレータ母材(32)の表面に、導電性セ
ラミック粉末とガラスを含む表面保護層(40)を形成した
ことを特徴とする固体電解質型燃料電池用セパレータ。
1. A separator for a solid oxide fuel cell, wherein a surface protective layer (40) containing conductive ceramic powder and glass is formed on the surface of a separator base material (32).
【請求項2】 セパレータ母材(32)を成形した後、導電
性セラミック粉末とガラス粉末を有機溶媒中で混合して
スラリーを作り、該スラリーをセパレータ母材の表面に
塗布して乾燥させ、セパレータ母材表面に導電性セラミ
ック粉末とガラスとを含む表面保護層(40)を形成するこ
とを特徴とする固体電解質型燃料電池用セパレータの作
製方法。
2. After forming the separator base material (32), a conductive ceramic powder and a glass powder are mixed in an organic solvent to form a slurry, and the slurry is applied to the surface of the separator base material and dried. A method for producing a separator for a solid oxide fuel cell, comprising forming a surface protective layer (40) containing conductive ceramic powder and glass on the surface of a separator base material.
【請求項3】 固体電解質体(22)の片面に燃料極(24)、
他面に酸化剤極(26)を配してなる単セル(20)と、該単セ
ルに反応ガスを供給するセパレータ(30)を交互に積層し
てなる固体電解質型燃料電池において、 セパレータ(30)は、セパレータ母材(32)の表面に、導電
性セラミック粉末とガラスを含む表面保護層(40)を有す
ることを特徴とする固体電解質型燃料電池。
3. A fuel electrode (24) on one side of a solid electrolyte body (22).
In a solid oxide fuel cell in which a single cell (20) having an oxidant electrode (26) disposed on the other surface and a separator (30) for supplying a reaction gas to the single cell are alternately stacked, the separator ( 30) A solid oxide fuel cell having a surface protective layer (40) containing a conductive ceramic powder and glass on the surface of a separator base material (32).
JP09067607A 1997-03-21 1997-03-21 Separator for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell Expired - Fee Related JP3143599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09067607A JP3143599B2 (en) 1997-03-21 1997-03-21 Separator for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09067607A JP3143599B2 (en) 1997-03-21 1997-03-21 Separator for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH10270062A JPH10270062A (en) 1998-10-09
JP3143599B2 true JP3143599B2 (en) 2001-03-07

Family

ID=13349802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09067607A Expired - Fee Related JP3143599B2 (en) 1997-03-21 1997-03-21 Separator for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3143599B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057769A1 (en) * 1998-05-06 1999-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrical separator on the basis of a substrate with ceramic coating
US6884535B2 (en) * 1998-06-05 2005-04-26 Nisshinbo Industries, Inc. Fuel cell separator
JP3970026B2 (en) 1999-10-14 2007-09-05 松下電器産業株式会社 Polymer electrolyte fuel cell
JP5242909B2 (en) * 2005-11-14 2013-07-24 日本電信電話株式会社 Solid oxide fuel cell
WO2010061585A1 (en) * 2008-11-26 2010-06-03 日立金属株式会社 Member for solid oxide electrolyte-type fuel cell
JP5144622B2 (en) * 2009-10-26 2013-02-13 日本電信電話株式会社 Solid oxide fuel cell stack and manufacturing method thereof
KR101245626B1 (en) * 2010-08-19 2013-03-20 한국에너지기술연구원 Anode supported flat-tube SOFC and manufacturing method thereof
JP2013093150A (en) * 2011-10-25 2013-05-16 Hitachi Metals Ltd Solid oxide fuel cell member

Also Published As

Publication number Publication date
JPH10270062A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP3100979B2 (en) Ceramic solid electrolyte based electrochemical oxygen concentrator
JP5072305B2 (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell
JP5110816B2 (en) Current collecting member for fuel cell, fuel cell stack, and fuel cell
JP2002289248A (en) Unit cell for fuel cell and solid electrolytic fuel cell
TW201011967A (en) Metal-supported, segmented-in-series high temperature electrochemical device
JPH05198304A (en) Manufacture of solid electrolyte fuel cell
JP3143599B2 (en) Separator for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell
JP2003303603A (en) Fuel cell cell and cell stack and fuel cell
JP5013750B2 (en) Cell stack and fuel cell
JP3599894B2 (en) Fuel electrode of solid oxide fuel cell
JPH09277226A (en) Manufacture of solid electrolyte type fuel cell
JP5000158B2 (en) Solid oxide fuel cell stack and manufacturing method thereof
JP2002309203A (en) Electroconductive bonding material
JP2012084508A (en) Fuel battery and method for manufacturing the same
JP3550231B2 (en) Plate stack type solid oxide fuel cell and method of manufacturing the same
JP2010003623A (en) Solid oxide fuel cell stack, and bonding material
JP2000243405A (en) Manufacture of solid electrolyte fuel cell
JP2002203580A (en) Single cell for fuel cell and solid electrolyte fuel cell
JP4136062B2 (en) Separator material
JP3319136B2 (en) Solid electrolyte fuel cell
JP3113347B2 (en) Solid oxide fuel cell
JPH08273676A (en) Fuel electrode of solid lectrolyte fuel cell and its film forming method
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JP3040645B2 (en) Dimple type solid electrolyte cell
KR100215598B1 (en) A process for preparing a collector of a solid electrolyte fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001205

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees