[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3025891B2 - Thin film superconductor and method of manufacturing the same - Google Patents

Thin film superconductor and method of manufacturing the same

Info

Publication number
JP3025891B2
JP3025891B2 JP2101617A JP10161790A JP3025891B2 JP 3025891 B2 JP3025891 B2 JP 3025891B2 JP 2101617 A JP2101617 A JP 2101617A JP 10161790 A JP10161790 A JP 10161790A JP 3025891 B2 JP3025891 B2 JP 3025891B2
Authority
JP
Japan
Prior art keywords
thin film
film
oxide
superconducting
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2101617A
Other languages
Japanese (ja)
Other versions
JPH042182A (en
Inventor
朝明 松嶋
洋 市川
真一郎 八田
謙太郎 瀬恒
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, Matsushita Electric Works Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2101617A priority Critical patent/JP3025891B2/en
Publication of JPH042182A publication Critical patent/JPH042182A/en
Application granted granted Critical
Publication of JP3025891B2 publication Critical patent/JP3025891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Thin Magnetic Films (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、100゜K以上の高臨界温度が期待されるビス
マスを含む酸化物超電導体の薄膜の製造方法に関するも
のである。
The present invention relates to a method for producing a bismuth-containing oxide superconductor thin film expected to have a high critical temperature of 100 ° K or higher.

(従来の技術) 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(Nb3Ge)などが知
られていたが、これらの材料の超電導転移温度はたかだ
か23゜Kであった。一方、ペロブスカイト系化合物は、
さらに高い転移温度が期待され、Ba−La−Cu−O系の高
温超電導体が提案された[J.G.Bednorz and K.A.Mulle
r,ツァイトシュリフト・フュア・フィジーク(Zetshrif
t Fr Physik B)−Condensed Matter,Vol.64,189−19
3(1986)]。
As (prior art) high-temperature superconductors, although such niobium nitride (NbN) and germanium niobium (Nb 3 Ge) is known as A15 type binary compounds, superconducting transition temperature is at most 23 ° K of these materials Met. On the other hand, perovskite compounds
Higher transition temperatures are expected and Ba-La-Cu-O based high-temperature superconductors have been proposed [JGBednorz and KAMulle
r, Zetshrif
t Fr Physik B) -Condensed Matter, Vol. 64, 189-19
3 (1986)].

さらに、Bi−Sr−Ca−Cu−O系の材料が100゜K以上の
転移温度を示すことも発見された[H.Maeda,Y.Tanaka,
M.Fukutomi and T.Asano,ジャパニーズ・ジャーナル・
オブ・アプライド・フィジックス(Japanese Journal o
f Applied Physics)Vol.27,L209−210(1988)]。こ
の種の材料の超電導機構の詳細は明らかではないが、転
移温度が室温以上に高くなる可能性があり、高温超電導
体として従来の2元系化合物より、より有望な特性が期
待される。
Furthermore, it has been discovered that Bi-Sr-Ca-Cu-O-based materials exhibit a transition temperature of 100 K or higher [H. Maeda, Y. Tanaka,
M.Fukutomi and T.Asano, Japanese Journal
Of Applied Physics (Japanese Journal o
f Applied Physics) Vol.27, L209-210 (1988)]. Although the details of the superconducting mechanism of this type of material are not clear, the transition temperature may be higher than room temperature, and more promising properties are expected as a high-temperature superconductor than conventional binary compounds.

さらに超電導体と磁性体とを交互に積層することによ
り、より高い臨界電流密度およびより高い臨界磁場が従
来から期待されている。
Further, a higher critical current density and a higher critical magnetic field have been conventionally expected by alternately laminating superconductors and magnetic materials.

(発明が解決しようとする課題) しかしながら、Bi−Sr−Ca−Cu−O系の材料は、現在
の技術では主として焼結という過程でしか形成できない
ため、セラミックの粉末あるいはブロックの形状でしか
得られない。一方、この種の材料を実用化する場合、薄
膜状に加工することが強く要望されているが、従来の技
術では、良好な超電導特性を有する薄膜作製は難しいも
のであった。すなわち、Bi−Sr−Ca−Cu−O系には超電
導転移温度の異なるいくつかの相が存在することが知ら
れているが、特に転移温度が100゜K以上の相を薄膜の形
態で達成するのは、非常に困難とされていた。
(Problems to be Solved by the Invention) However, Bi-Sr-Ca-Cu-O-based materials can be formed only in the process of sintering with the current technology, and are obtained only in the form of ceramic powder or blocks. I can't. On the other hand, when this kind of material is put to practical use, it is strongly desired to process it into a thin film, but it has been difficult to produce a thin film having good superconducting properties with the conventional technology. That is, it is known that there are several phases having different superconducting transition temperatures in the Bi-Sr-Ca-Cu-O system, and in particular, a phase having a transition temperature of 100 ° K or more is achieved in the form of a thin film. It was very difficult to do.

また、従来このBi系において良好な超電導特性を示す
薄膜を形成するためには少なくとも700℃以上の熱処理
あるいは形成時の加熱が必要であり、そのため高い臨界
電流密度、高い臨界磁場が期待される磁性薄膜との周期
的な積層構造を得ることは極めて困難と考えられ、また
この構造を利用した集積化デバイスを構成することもた
いへん困難であるとされていた。
Conventionally, in order to form a thin film exhibiting good superconducting properties in this Bi system, it is necessary to perform heat treatment at least at 700 ° C or heating during the formation. It was considered extremely difficult to obtain a periodic laminated structure with a thin film, and it was also very difficult to construct an integrated device using this structure.

本発明の目的は、従来の欠点を解消し、100゜K以上の
高臨界温度が期待されるビスマスを含む酸化物超電導薄
膜およびその製造方法を提供することである。
An object of the present invention is to solve the conventional disadvantages and to provide a bismuth-containing oxide superconducting thin film expected to have a high critical temperature of 100 ° K or more and a method for producing the same.

(課題を解決するための手段) 本発明者らによる第1の発明の薄膜超電導体は、主体
成分が少なくともビスマス(Bi)、銅(Cu)、およびア
ルカリ土類(II a族)を含み、結晶構造が層状の酸化物
超電導薄膜と、主体成分がペロブスカイト型酸化物から
なる磁性薄膜が交互に積層された構造を持つものであ
る。
(Means for Solving the Problems) The thin film superconductor of the first invention by the present inventors has a main component containing at least bismuth (Bi), copper (Cu), and alkaline earth (Group IIa), It has a structure in which an oxide superconducting thin film having a layered crystal structure and a magnetic thin film whose main component is a perovskite oxide are alternately laminated.

さらに第2の発明の薄膜超電導体の製造方法は、基体
上に、少なくともBiを含む酸化物と少なくとも銅および
アルカリ土類(II a族)を含む酸化物とを周期的に積層
させて形成する結晶構造が層状の酸化物超電導薄膜と、
ペロブスカイト型酸化物からなる磁性薄膜とを、交互に
積層させて得る薄膜超電導体の製造方法である。
Further, in the method for manufacturing a thin film superconductor according to the second invention, an oxide containing at least Bi and an oxide containing at least copper and an alkaline earth (Group IIa) are periodically laminated on a substrate. An oxide superconducting thin film having a layered crystal structure,
This is a method for producing a thin film superconductor obtained by alternately laminating magnetic thin films made of perovskite oxide.

ここでアルカリ土類は、II a族元素のうちの少なくと
も一種あるいは二種以上の元素を示す。また、ペロブス
カイト型酸化物とはRFeO3(R=Y,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Lu)あるいは、MMnO3(M=Bi,La0.7Ca0.3,La
0.7Sr0.3,La0.7Ba0.3,La0.6,Pb0.4,La0.7Cd0.3),ある
いは、AMnO6(A=Gd2Co,Ba2Fe,Ca2Fe)であらわされる
酸化物磁性体である。
Here, the alkaline earth refers to at least one or two or more of the Group IIa elements. The perovskite oxide is RFeO 3 (R = Y, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, Lu) or MMnO 3 (M = Bi, La 0.7 Ca 0.3 , La
0.7 Sr 0.3 , La 0.7 Ba 0.3 , La 0.6 , Pb 0.4 , La 0.7 Cd 0.3 ) or AMnO 6 (A = Gd 2 Co, Ba 2 Fe, Ca 2 Fe).

(作 用) 第1の発明においては、安定なBi2O2酸化膜層または
これを主体とした層によりともに覆われた結晶構造とな
っているところの、Bi系超電導薄膜と、ペロブスカイト
型酸化物からなる磁性薄膜とが、交互に積層された構造
をとることによって、超電導薄膜と磁性薄膜との間での
相互拡散の少ない積層が可能となる。また、磁性薄膜の
もつ磁気モーメントまたはスピンと超電導体との相互作
用により、Bi系超電導薄膜における臨界電流密度および
臨界磁場の向上が実現されたものである。
(Operation) In the first invention, a Bi-based superconducting thin film and a perovskite-type oxide having a crystal structure covered with a stable Bi 2 O 2 oxide film layer or a layer mainly composed of the Bi 2 O 2 oxide film layer are used. By taking a structure in which magnetic thin films made of a material are alternately stacked, it is possible to stack with less mutual diffusion between the superconducting thin film and the magnetic thin film. Further, the critical current density and the critical magnetic field of the Bi-based superconducting thin film are improved by the interaction between the magnetic moment or spin of the magnetic thin film and the superconductor.

さらに第2の発明においては上記構造を達成するた
め、少なくともBiを含む酸化物と、少なくとも銅および
アルカリ土類(II a族)を含む酸化物あるいはペロブス
カイト型酸化物とを、周期的に積層させて分子レベルの
制御による薄膜の作製を行うことによって、再現性良く
Bi系超電導薄膜と磁性薄膜との積層を得るものである。
Further, in the second invention, in order to achieve the above structure, an oxide containing at least Bi and an oxide containing at least copper and an alkaline earth (Group IIa) or a perovskite oxide are periodically laminated. By producing thin films by controlling at the molecular level,
This is to obtain a laminate of a Bi-based superconducting thin film and a magnetic thin film.

(実施例) まず、Bi系超電導薄膜と磁性薄膜との周期的な積層構
造を実現するため、Bi系超電導薄膜と種々の磁性薄膜と
の界面での相互作用について検討した。
(Example) First, in order to realize a periodic laminated structure of a Bi-based superconducting thin film and a magnetic thin film, the interaction at the interface between the Bi-based superconducting thin film and various magnetic thin films was examined.

通常、Bi系超電導薄膜は500〜700℃に加熱した基体上
に蒸着して得る。蒸着後、そのままでも薄膜は超電導特
性を示すが、その後800〜950℃の熱処理を施し、超電導
特性を向上させる。
Usually, a Bi-based superconducting thin film is obtained by vapor deposition on a substrate heated to 500 to 700 ° C. After vapor deposition, the thin film shows superconducting properties as it is, but is then subjected to a heat treatment at 800 to 950 ° C. to improve the superconducting properties.

しかしながら、基体温度が高いときに磁性薄膜をBi系
超電導薄膜に続いて積層したり、磁性薄膜を形成後熱処
理を行った場合、超電導薄膜と磁性薄膜との間で、元素
の相互拡散が起こり超電導特性が大きく劣化することが
判明した。相互拡散を起こさないためには、超電導薄
膜,磁性薄膜の結晶性が優れていること、超電導薄膜,
磁性薄膜間での格子の整合性が優れていること、磁性薄
膜が800〜950℃の熱処理に対して安定であることが不可
欠と考えられる。
However, if the magnetic thin film is laminated next to the Bi-based superconducting thin film or the heat treatment is performed after the formation of the magnetic thin film when the substrate temperature is high, mutual diffusion of elements occurs between the superconducting thin film and the magnetic thin film, causing It was found that the characteristics were greatly deteriorated. To prevent mutual diffusion, superconducting thin films and magnetic thin films must have excellent crystallinity,
It is indispensable that the lattice matching between the magnetic thin films is excellent and that the magnetic thin films are stable against heat treatment at 800 to 950 ° C.

種々の検討を行った結果、ペロブスカイト型酸化物薄
膜が磁性薄膜として適していることを見いだした。この
理由は明らかではないが、ペロブスカイト型酸化物は、
Bi系超電導体との格子の整合性がきわめて優れており、
また高温の熱処理においても、Bi系超電導体との界面が
非常に安定であると考えられる。
As a result of various studies, it was found that a perovskite oxide thin film was suitable as a magnetic thin film. Although the reason for this is not clear, perovskite oxides
The lattice matching with the Bi-based superconductor is extremely excellent,
Also, it is considered that the interface with the Bi-based superconductor is very stable even in the high-temperature heat treatment.

さらにBi系超電導薄膜とペロブスカイト型酸化物薄膜
を周期的に積層したとき、Bi系超電導薄膜本来の臨界電
流密度および臨界磁場が向上することを見いだした。
Furthermore, it was found that when the Bi-based superconducting thin film and the perovskite-type oxide thin film were periodically laminated, the intrinsic critical current density and critical magnetic field of the Bi-based superconducting thin film were improved.

第1の発明の内容をさらに深く理解されるために、第
1図を用い具体的な実施例を示す。
In order to further understand the contents of the first invention, a specific embodiment will be described with reference to FIG.

(実施例1) 第1図は、本実施例で用いた高周波二元マグネトロン
スパッタ装置内部の概略図であり、11はBi−Sr−Ca−Cu
−Oターゲット、12はBi−Mn−Oターゲット、13はシャ
ッター、14はアパーチャー、15は基体、16は基体加熱用
ヒーターを示す。焼結体をプレス成形加工して作製した
2個のターゲット11,12を用い、第1図に示すように配
置させた。すなわち、MgO(100)基体15に焦点を結ぶよ
うに各ターゲットが約30゜傾いて設置されている。ター
ゲットの前方には回転するシャッター13があり、その中
にはアパーチャー14が設けられている。シャッター13の
回転をパルスモータで制御することにより、アパーチャ
ー14をBi−Sr−Ca−Cu−OターゲットまたはBi−Mn−O
ターゲット上に停止させることができる。このようにし
て、Bi−Sr−Ca−Cu−O→Bi−Mn−O→Bi−Sr−Ca−Cu
−O→Bi−Mn−O→Bi−Sr−Ca−Cu−Oのサイクルでス
パッタ蒸着が行うことができる。Bi−Sr−Ca−Cu−O
膜、Bi−Mn−O膜の積層の様子を概念的に第2図に示
す。同図において、21はBi−Mn−O膜、22はBi−Sr−Ca
−Cu−O膜を示す。ターゲット11,12への入力電力、お
よびそれぞれのターゲットのスパッタ時間を制御するこ
とにより、基体15上に蒸着するBi−Mn−O膜21、Bi−Sr
−Ca−Cu−O膜22の膜厚を変えることができる。基体15
をヒーター16で約700℃に加熱し、アルゴン・酸素(1:
1)混合雰囲気0.5Paのガス中で各ターゲットのスパッタ
リングを行なった。薄膜作製後は酸素雰囲気中におい
て、800℃の熱処理を2時間施した。本実施例では、各
ターゲットのスパッタ電力を、Bi−Sr−Ca−Cu−O:150
w,Bi−Mn−O:100wとし、ターゲット11,12のスパッタ時
間を制御した。Bi−Sr−Ca−Cu−O膜22の元素の組成比
率がBi:Sr:Ca:Cu=2:2:2:3、Bi−Mn−O膜21の元素の組
成比率がBi:Mn:O=1:1:3になるよう、ターゲット11,12
の元素の組成比率を調整した。Bi−Sr−Ca−Cu−O膜22
をBi−Mn−O膜21と積層せずに基体15上に形成した場
合、すなわちBi−Sr−Ca−Cu−O膜22そのものの特性
は、110゜Kで超電導転移を起こし、100゜Kで抵抗値がゼ
ロになるものであった。また、BiMnO3膜だけを成膜し磁
化を測定するとバルクの値と同一であった。BiMnO3膜お
よびBi2Sr2Ca2Cu3Oy膜の膜厚をそれぞれ500Åとし1層
づつ積層した。この膜の抵抗値の温度特性を第3図に示
す。超電導転移温度(オンセット温度)は、110゜Kであ
りBiMnO3膜を積層していない場合とかわらなかった。外
部磁場10kOeを積層膜の膜面に垂直に印加し、磁性体膜
を磁化させたのち外部磁場を取り除いた状態で測定した
臨界電流密度の温度依存性を第4図に示す。臨界電流密
度は磁場をかける前の値にたいして各温度において約30
%大きくなっている。第5図は外部磁場を印加した状態
における電気抵抗の温度特性を示す。BiMnO3膜を積層し
ていないBi−Sr−Ca−Cu−O膜自身の結果と比較すると
積層膜においては、磁場による超電導転移温度領域の広
がりが小さくなることがわかった。このことは上部臨界
磁場の向上を意味している。これらの臨界電流密度およ
び上部臨界磁場の向上の理由は明らかではないがBiMnO3
膜の磁化またはスピンがBi−Sr−Ca−Cu−O膜の超伝導
機構に影響をもたらした結果であると考えられる。ま
た、BiMnO3膜およびBi−Sr−Ca−Cu−O膜単独で成膜し
たとき、膜厚がそれぞれ100Åおよび50Å以上のとき結
晶性の薄膜が得られることがわかった。第2図におい
て、Bi−Mn−O膜21の膜厚を100ÅとしてBi−Sr−Ca−C
u−O膜22の膜厚が100Å,300Å,500Å,繰り返し回数を
20回としたときの特性をそれぞれ第6図において、特性
61,62,63に示す。特性61においてはゼロ抵抗温度が約30
゜KとBi−Sr−Ca−Cu−O膜22の特性が劣化することが
わかった。この理由として、Bi−Sr−Ca−Cu−O膜22と
Bi−Mn−O膜21との間で元素の相互拡散による膜21,22
の結晶性の破壊が考えられる。さらに特性63において
は、Bi−Mn−O膜21との周期的な積層なしに基体15上に
つけたときのBi−Sr−Ca−Cu−O膜22本来の超電導特性
とほとんど同じであり、磁性薄膜Bi−Mn−O膜21との積
層効果は確認されなかった。しかし、特性62において、
臨界電流密度は磁性膜を積層していない膜と比較して約
30%向上し、77゜Kで320万A/oとなった。上記臨界磁場
はBi−Sr−Ca−Cu−O膜本来のものより約20%向上し
た。4.2゜Kにおいて、c軸に平行方向に磁場を加えたと
きの値は30テスラ、またc軸に垂直方向では450テスラ
であった。現在、これらの効果の詳細な理由については
未だ不明であるが、Bi−Mn−O膜21が持つ磁気モーメン
トまたはスピンの影響、または、薄いBi−Mn−O膜21を
介して複数のBi−Sr−Ca−Cu−O膜22を積層することに
よりBi−Sr−Ca−Cu−O膜22において超電導機構になん
らかの変化が引き起こされたことが考えられる。
(Example 1) Fig. 1 is a schematic view of the inside of a high-frequency dual magnetron sputtering apparatus used in this example, and 11 is Bi-Sr-Ca-Cu.
An -O target, 12 a Bi-Mn-O target, 13 a shutter, 14 an aperture, 15 a substrate, and 16 a substrate heating heater. Using two targets 11 and 12 produced by press-forming a sintered body, they were arranged as shown in FIG. That is, each target is set to be inclined by about 30 ° so as to focus on the MgO (100) base 15. In front of the target is a rotating shutter 13, in which an aperture 14 is provided. By controlling the rotation of the shutter 13 with a pulse motor, the aperture 14 is made to be a Bi-Sr-Ca-Cu-O target or a Bi-Mn-O
Can be stopped on the target. Thus, Bi-Sr-Ca-Cu-O → Bi-Mn-O → Bi-Sr-Ca-Cu
Sputter deposition can be performed in a cycle of -O->Bi-Mn-O-> Bi-Sr-Ca-Cu-O. Bi-Sr-Ca-Cu-O
FIG. 2 conceptually shows how the film and the Bi-Mn-O film are stacked. In the figure, 21 is a Bi-Mn-O film, 22 is Bi-Sr-Ca
3 shows a -Cu-O film. By controlling the input power to the targets 11 and 12, and the sputtering time of each target, the Bi-Mn-O film 21, Bi-Sr
-The thickness of the Ca-Cu-O film 22 can be changed. Base 15
Is heated to about 700 ° C. by a heater 16 and argon / oxygen (1:
1) Each target was sputtered in a mixed atmosphere of 0.5 Pa gas. After forming the thin film, a heat treatment at 800 ° C. was performed for 2 hours in an oxygen atmosphere. In this embodiment, the sputtering power of each target is set to Bi-Sr-Ca-Cu-O: 150
w, Bi-Mn-O: 100 w, and the sputtering time of the targets 11 and 12 was controlled. The composition ratio of the elements of the Bi-Sr-Ca-Cu-O film 22 is Bi: Sr: Ca: Cu = 2: 2: 2: 3, and the composition ratio of the elements of the Bi-Mn-O film 21 is Bi: Mn: Targets 11, 12 so that O = 1: 1: 3
The composition ratio of the elements was adjusted. Bi-Sr-Ca-Cu-O film 22
Is formed on the substrate 15 without being laminated with the Bi-Mn-O film 21, that is, the characteristics of the Bi-Sr-Ca-Cu-O film 22 itself cause a superconducting transition at 110 ° K and a temperature of 100 ° K And the resistance value became zero. When only the BiMnO 3 film was formed and the magnetization was measured, the value was the same as the bulk value. The thicknesses of the BiMnO 3 film and the Bi 2 Sr 2 Ca 2 Cu 3 O y film were each set to 500 °, and were stacked one by one. FIG. 3 shows the temperature characteristics of the resistance value of this film. The superconducting transition temperature (onset temperature) was 110 ° K, which was not different from the case where the BiMnO 3 film was not laminated. FIG. 4 shows the temperature dependence of the critical current density measured in a state where an external magnetic field of 10 kOe was applied perpendicularly to the film surface of the laminated film to magnetize the magnetic film and then remove the external magnetic field. The critical current density is about 30 at each temperature relative to the value before applying the magnetic field.
% Has increased. FIG. 5 shows a temperature characteristic of electric resistance in a state where an external magnetic field is applied. Compared with the result of the Bi—Sr—Ca—Cu—O film itself without the BiMnO 3 film, it was found that the superconducting transition temperature region due to the magnetic field was less widened in the laminated film. This means that the upper critical magnetic field is improved. The reasons for the enhancement of these critical current densities and the upper critical magnetic field are not clear, but BiMnO 3
It is considered that the magnetization or spin of the film affected the superconducting mechanism of the Bi-Sr-Ca-Cu-O film. Further, it was found that when the BiMnO 3 film and the Bi—Sr—Ca—Cu—O film were formed alone, a crystalline thin film was obtained when the film thickness was 100 ° or more and 50 ° or more, respectively. In FIG. 2, Bi-Sr-Ca-C
The thickness of the u-O film 22 is 100Å, 300Å, 500Å, and the number of repetitions
In Fig. 6, the characteristics at 20 times are shown in Fig. 6.
61, 62 and 63. In characteristic 61, the zero resistance temperature is about 30
It was found that the properties of ΔK and Bi—Sr—Ca—Cu—O film 22 deteriorated. The reason for this is that the Bi-Sr-Ca-Cu-O film 22
Films 21 and 22 by interdiffusion of elements with Bi-Mn-O film 21
The crystallinity may be destroyed. Further, the characteristic 63 is almost the same as the original superconducting characteristic of the Bi-Sr-Ca-Cu-O film 22 when the film is provided on the substrate 15 without periodic lamination with the Bi-Mn-O film 21. No laminating effect with the thin Bi-Mn-O film 21 was confirmed. However, in property 62,
Critical current density is about
It improved by 30% to 3.2 million A / o at 77 ゜ K. The critical magnetic field was improved by about 20% from the original Bi-Sr-Ca-Cu-O film. At 4.2 ° K, the value when a magnetic field was applied in the direction parallel to the c-axis was 30 Tesla, and 450 Tesla in the direction perpendicular to the c-axis. At present, the detailed reasons for these effects are still unknown, but the influence of the magnetic moment or spin of the Bi-Mn-O film 21 or a plurality of Bi- It is considered that the superconducting mechanism in the Bi-Sr-Ca-Cu-O film 22 caused some change by laminating the Sr-Ca-Cu-O film 22.

なお、ターゲット11、もしくは12に鉛(Pb)を添加し
てスパッタしたとき、基体15の温度が上記実施例よりも
約100℃低くても、上記実施例と同等な結果が得られる
ことを見いだした。
It should be noted that, when lead (Pb) is added to the target 11 or 12 and sputtered, even if the temperature of the substrate 15 is lower by about 100 ° C. than in the above embodiment, it is found that the same result as in the above embodiment can be obtained. Was.

さらに、Biの酸化物と、Sr,Ca,Cuの酸化物を異なる蒸
発源から真空中で別々に蒸発させ、基体上にBi−O→Sr
−Cu−O→Ca−Cu−O→Sr−Cu−O→Bi−Oの順で周期
的に積層させた場合、さらにMnターゲットを用い真空中
で蒸発させ、積層させた場合、(実施例1)に示した積
層構造作製方法より極めて制御性良く、安定した膜質
の、しかも膜表面が極めて平坦なBi−Sr−Ca−Cu−O超
電導薄膜およびBi−Mn−O磁性薄膜が得られることを見
いだした。
Further, the oxides of Bi and the oxides of Sr, Ca, and Cu are separately evaporated in vacuum from different evaporation sources, and Bi-O → Sr
In the case where the layers are periodically stacked in the order of -Cu-O → Ca-Cu-O → Sr-Cu-O → Bi-O, and further evaporated in vacuum using a Mn target, and the layers are stacked, (Example A Bi-Sr-Ca-Cu-O superconducting thin film and a Bi-Mn-O magnetic thin film having extremely good controllability, stable film quality, and an extremely flat film surface can be obtained by the method of manufacturing a laminated structure shown in 1). Was found.

さらに、Bi−O、Sr−Cu−O、Ca−Cu−O、Bi−Mn−
Oを別々の蒸発源から蒸発させ、Bi−Sr−Ca−Cu−O超
電導薄膜とBi−Mn−O磁性薄膜を周期的に積層したと
き、極めて制御性良くm(Bi−Sr−Ca−Cu−O)・n
(Bi−Mn−O)の周期構造を持つ薄膜を形成できること
を見いだした。ここでm,nはそれぞれ少なくとも1以上
の正の整数を示す。さらに、このm(Bi−Sr−Ca−Cu−
O)・n(Bi−Mn−O)薄膜は、(実施例1)に示した
Bi−Sr−Ca−Cu−Oを同時に蒸着して得る超電導薄膜
と、Bi−Mn−Oを同時に蒸着して得る酸化物磁性薄膜と
を周期的に積層して得た薄膜に比べて、はるかに結晶性
が優れ、臨界電流密度および上部臨界磁場の特性におい
て勝っていることも併せて見いだした。さらに、上記の
方法で作製したBi−Sr−Ca−Cu−O超電導薄膜とBi−Mn
−O磁性薄膜はともに薄膜表面が極めて平坦であること
を見いだした。
Furthermore, Bi-O, Sr-Cu-O, Ca-Cu-O, Bi-Mn-
When O is evaporated from separate evaporation sources and the Bi-Sr-Ca-Cu-O superconducting thin film and the Bi-Mn-O magnetic thin film are periodically laminated, m (Bi-Sr-Ca-Cu −O) · n
It has been found that a thin film having a periodic structure of (Bi-Mn-O) can be formed. Here, m and n each represent a positive integer of at least one or more. Furthermore, this m (Bi-Sr-Ca-Cu-
The O) .n (Bi-Mn-O) thin film is shown in (Example 1).
Compared to a thin film obtained by periodically laminating a superconducting thin film obtained by simultaneously depositing Bi-Sr-Ca-Cu-O and an oxide magnetic thin film obtained by simultaneously depositing Bi-Mn-O, It was also found that the crystallinity was excellent and the characteristics of the critical current density and the upper critical magnetic field were superior. Further, the Bi-Sr-Ca-Cu-O superconducting thin film and the Bi-Mn
Both the -O magnetic thin films were found to have extremely thin film surfaces.

これらのことは、異なる元素を別々に順次積層してい
くことにより、基体表面に対し平行な面内だけで積層さ
れた蒸着元素が動くだけで、基体表面に対し垂直方向へ
の元素の移動がないことによるものと考えられる。
This is because, by sequentially stacking different elements separately, the deposited elements only move in a plane parallel to the substrate surface, and the movement of the elements in the direction perpendicular to the substrate surface is prevented. It is thought that it is not.

さらに、良好な超電導特性を得るに必要な基体の温
度、熱処理温度も、従来より低いことを見いだした。
Further, they have also found that the temperature of the substrate and the heat treatment temperature necessary for obtaining good superconducting properties are lower than before.

Bi−O、Sr−Cu−O、Ca−Cu−O、Bi−Mn−Oを周期
的に積層させる方法としては、いくつか考えられる。一
般に、MBE装置あるいは多元のEB蒸着装置で蒸発源の前
を開閉シャッターで制御したり、気相成長法で作製する
際にガスの種類を切り替えたりすることにより、周期的
積層を達成することができる。しかしこの種の非常に薄
い層の積層には従来スパッタリング蒸着は不向きとされ
ていた。この理由は、成膜中のガス圧の高さに起因する
不純物の混入およびエネルギーの高い粒子によるダメー
ジと考えられている。しかし、このBi系酸化物超電導体
に対してスパッタリングにより異なる薄い層の積層を行
うと、良好な積層膜作製が可能なことを発見した。スパ
ッタ中の高い酸素ガス圧およびスパッタ放電が、Bi系の
100゜K以上の臨界温度を持つ相の形成、およびBi−Mn−
O絶縁膜の形成に都合がよいためではなかろうかと考え
られる。
There are several possible methods for periodically stacking Bi-O, Sr-Cu-O, Ca-Cu-O, and Bi-Mn-O. In general, periodic stacking can be achieved by controlling the front of the evaporation source with an opening / closing shutter using an MBE device or a multi-source EB evaporation device, or by switching the type of gas when manufacturing by vapor phase growth. it can. However, sputtering deposition has heretofore been unsuitable for stacking very thin layers of this type. It is considered that the reason for this is that impurities are mixed due to the high gas pressure during the film formation and damage is caused by high energy particles. However, they have found that a good laminated film can be formed by laminating different thin layers on the Bi-based oxide superconductor by sputtering. High oxygen gas pressure and sputtering discharge during sputtering
Formation of a phase with a critical temperature of 100 ° K or higher, and Bi-Mn-
This is probably because it is convenient for forming the O insulating film.

スパッタ蒸着で異なる物質を積層させる方法として
は、組成分布を設けた1個のスパッタリングターゲット
の放電位置を周期的に制御するという方法があるが、組
成の異なる複数個のターゲットのスパッタリングという
方法を用いると比較的簡単に達成することができる。こ
の場合、複数個のターゲットの各々のスパッタ量を周期
的に制御したり、あるいはターゲットの前にシャッター
を設けて周期的に開閉したりして、周期的積層膜を作製
することができる。また基板を周期的に運動させて各々
ターゲットの上を移動させる方法でも作製が可能であ
る。レーザースパッタあるいはイオンビームスパッタを
用いた場合には、複数個のターゲットを周期運動させて
ビームの照射するターゲットを周期的に変えれば、周期
的積層膜が実現される。このように複数個のターゲット
を用いたスパッタリングにより比較的簡単にBi系酸化物
の周期的積層が作製可能となる。
As a method of laminating different materials by sputter deposition, there is a method of periodically controlling the discharge position of one sputtering target having a composition distribution, but a method of sputtering a plurality of targets having different compositions is used. And can be achieved relatively easily. In this case, a periodic laminated film can be manufactured by periodically controlling the amount of sputtering of each of the plurality of targets, or by providing a shutter in front of the targets and periodically opening and closing them. Further, it can be manufactured by a method in which the substrate is moved periodically on the target by periodically moving the substrate. In the case of using laser sputtering or ion beam sputtering, a periodic laminated film can be realized by periodically moving a plurality of targets to change the target to be irradiated with a beam periodically. Thus, the periodic lamination of the Bi-based oxide can be relatively easily produced by sputtering using a plurality of targets.

以下第2の発明の内容をさらに深く理解するために、
具体的な実施例を示す。
In order to better understand the content of the second invention,
A specific example will be described.

(実施例2) 第7図に本実施例で用いた4元マグネトロンスパッタ
装置の概略図を示す。第7図において、71はBiターゲッ
ト、72はSrCu合金ターゲット、73はCaCu合金ターゲッ
ト、74はMnターゲット、75はシャッター、76はアパーチ
ャー、77は基体、78は基体加熱用ヒーターを示す。計4
個のターゲット71,72,73,74は第7図に示すのと同様に
配置させた。すなわち、MgO(100)基体77に焦点を結ぶ
ように各ターゲットが約30゜傾いて設置されている。タ
ーゲットの前方には回転するシャッター75があり、パル
スモータで駆動することによりその中に設けられたアパ
ーチャー76の回転が制御され、各ターゲットのサイクル
およびスパッタ時間を設定することができる。基体77を
ヒーター78で約600℃に加熱し、アルゴン・酸素(5:1)
混合雰囲気3Paのガス中で各ターゲットのスパッタリン
グを行なった。各ターゲットのスパッタ電流を、Bi:30m
A,SrCu:80mA,CaCu:300mA,Mn:80mAにして実験を行った。
Bi→SrCu→CaCu→SrCu→Biのサイクルでスパッタし、Bi
−Sr−Ca−Cu−O膜の元素の組成比率がBi:Sr:Ca:Cu:O
=2:2:2:3となる各ターゲットのスパッタ時間を調整
し、上記サイクルを20周期行うと、110゜K以上の臨界温
度を持つ相を作製することができる。このまま状態でも
このBi−Sr−Ca−Cu−O膜は110゜K以上の超電導転移を
示すが、さらに酸素中で600℃、1時間の熱処理を行う
と非常に再現性がよくなり、超電導転移温度は115゜Kで
抵抗値がゼロになる温度は100゜Kになった。超電導転移
温度が100゜Kを超す相は金属元素がBi−Sr−Cu−Ca−Cu
−Ca−Cu−Sr−Biの順序で並んだ酸化物の層から成り立
っているとも言われており、本発明の製造方法がこの構
造を作るのに非常に役だっているのではないかと考えら
れる。
Embodiment 2 FIG. 7 is a schematic diagram of a quaternary magnetron sputtering apparatus used in this embodiment. In FIG. 7, 71 is a Bi target, 72 is a SrCu alloy target, 73 is a CaCu alloy target, 74 is a Mn target, 75 is a shutter, 76 is an aperture, 77 is a substrate, and 78 is a substrate heating heater. 4 in total
The targets 71, 72, 73, 74 were arranged in the same manner as shown in FIG. That is, each target is set to be inclined by about 30 ° so as to focus on the MgO (100) base 77. In front of the target, there is a rotating shutter 75, which is driven by a pulse motor to control the rotation of an aperture 76 provided therein, so that the cycle and sputtering time of each target can be set. The substrate 77 is heated to about 600 ° C. by a heater 78, and argon and oxygen (5: 1)
Each target was sputtered in a gas of a mixed atmosphere of 3 Pa. Sputter current of each target, Bi: 30m
The experiment was performed with A, SrCu: 80 mA, CaCu: 300 mA, and Mn: 80 mA.
Sputter in the cycle of Bi → SrCu → CaCu → SrCu → Bi, Bi
-The composition ratio of the elements of the Sr-Ca-Cu-O film is Bi: Sr: Ca: Cu: O
By adjusting the sputtering time of each target such that = 2: 2: 2: 3 and performing the above cycle 20 times, a phase having a critical temperature of 110 ° K or more can be produced. Even in this state, the Bi-Sr-Ca-Cu-O film shows a superconducting transition of 110 ° K or more. The temperature was 115 ゜ K, and the temperature at which the resistance value became zero became 100 ゜ K. The phase whose superconducting transition temperature exceeds 100 K is metal element Bi-Sr-Cu-Ca-Cu
-It is said that it is composed of oxide layers arranged in the order of -Ca-Cu-Sr-Bi, and it is considered that the production method of the present invention was very useful in producing this structure. .

また、Bi−Mn−Oを単独で成膜したとき膜厚が少なく
とも70Å以上でペロブスカイト型結晶構造をとることを
見いだした。
In addition, it has been found that when Bi-Mn-O is formed alone, the film has a perovskite-type crystal structure with a thickness of at least 70 ° or more.

Bi→SrCu→CaCu→SrCuの積層を1周期としてn周期積
層しその上にBi−Mn−Oを膜厚d(Å)になるよう各タ
ーゲットをスパッタし、n(Bi−Sr−Ca−Cu−O)・d
(Bi−Mn−O)薄膜を基体77上に作製した。ここでnは
1以上の正の整数を示す。n=10のとき、Bi−Mn−O薄
膜の膜厚dを変化させて積層して得た膜の超電導特性を
調べた。このときBi−Sr−Ca−Cu−O薄膜/Bi−Mn−O
薄膜の積層繰り返し回数は10回とした。第8図にd=7
0,200,1000Åのときに得た多層膜の抵抗の温度変化をそ
れぞれ特性81,82,83に示す。第8図において、d=200
Åのとき、最も高い超電導転移温度およびゼロ抵抗温
度、すなわち特性82が得られた。特性82の超電導転移温
度、ゼロ抵抗温度はBi−Sr−Ca−Cu−O膜本来のそれら
の値と同等である。臨界電流密度は77゜Kにおいて、360
万A/oとなり、磁性体薄膜を積層していない薄膜の値よ
り45%高くなった。また、上部臨界磁場はBi−Sr−Ca−
Cu−O膜本来のものより約30%向上する。4.2゜Kにおい
て、c軸に平行方向に磁場を加えたときの値は33テス
ラ、またc軸に垂直方向では490テスラであった。この
効果の詳細な理由については未だ不明であるが、本実施
例に示した方法でBi−Sr−Ca−Cu−O膜とBi−Mn−O膜
とを周期的に積層することによって、Bi−Sr−Ca−Cu−
O膜とBi−Mn−O膜がエピタキシャル成長していること
により積層界面での元素の相互拡散の影響がなく、かつ
結晶性に優れた薄いBi−Mn−O膜を介して同じく結晶性
に優れたBi−Sr−Ca−Cu−O膜を積層することによりBi
−Sr−Ca−Cu−O膜において超電導機構になんらかの変
化が引き起こされたことが考えられる。
The stacking of Bi->SrCu->CaCu-> SrCu is defined as one cycle, and the cycle is stacked for n cycles. −O) · d
A (Bi-Mn-O) thin film was formed on the substrate 77. Here, n represents a positive integer of 1 or more. When n = 10, the superconducting characteristics of the films obtained by laminating the Bi-Mn-O thin films while changing the film thickness d were examined. At this time, Bi-Sr-Ca-Cu-O thin film / Bi-Mn-O
The number of times of lamination of the thin film was set to 10 times. In FIG. 8, d = 7
Characteristics 81, 82, and 83 show the temperature changes of the resistance of the multilayer film obtained at 0, 200, and 1000 °, respectively. In FIG. 8, d = 200
In the case of Å, the highest superconducting transition temperature and zero resistance temperature, that is, characteristic 82, were obtained. The superconducting transition temperature and the zero resistance temperature of the characteristic 82 are equivalent to those of the Bi—Sr—Ca—Cu—O film. Critical current density at 360
10,000 A / o, 45% higher than the value of the thin film without the magnetic thin film laminated. The upper critical magnetic field is Bi-Sr-Ca-
It is about 30% higher than the original Cu-O film. At 4.2 ゜ K, the value when a magnetic field was applied in the direction parallel to the c-axis was 33 Tesla, and 490 Tesla in the direction perpendicular to the c-axis. Although the detailed reason for this effect is still unknown, the Bi-Sr-Ca-Cu-O film and the Bi-Mn-O film are periodically laminated by the method described in the present embodiment to obtain Bi. -Sr-Ca-Cu-
O film and Bi-Mn-O film are epitaxially grown, so there is no influence of interdiffusion of elements at the lamination interface, and the crystallinity is also excellent through the thin Bi-Mn-O film with excellent crystallinity. Bi-Sr-Ca-Cu-O film
It is considered that some change was caused in the superconducting mechanism in the -Sr-Ca-Cu-O film.

さらに、ターゲット71、もしくは74に鉛(Pb)を添加
してスパッタしたとき、基体77の温度が上記実施例より
も約100℃低くても、上記実施例と同等な結果が得られ
ることを見いだした。
Furthermore, it has been found that when lead (Pb) is added to the target 71 or 74 and sputtered, even if the temperature of the substrate 77 is about 100 ° C. lower than that of the above-described embodiment, the same result as that of the above-described embodiment can be obtained. Was.

(発明の効果) 第1の発明の薄膜超電導体は、Bi系薄膜超電導体の臨
界電流密度、臨界磁場の向上をはかる構造を提供するも
のであり、第2の発明の薄膜超電導体の製造方法は第1
の発明をより効果的に実現し、デバイス等の応用には必
須の低温でのプロセスを確立したものであり、本発明の
工業的価値は大きい。
(Effect of the Invention) The thin-film superconductor of the first invention provides a structure for improving the critical current density and the critical magnetic field of the Bi-based thin-film superconductor, and the method of manufacturing the thin-film superconductor of the second invention Is the first
The invention of the present invention has been realized more effectively, and a low-temperature process essential for application of devices and the like has been established, and the industrial value of the present invention is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は第1の発明の実施例における薄膜の製造装置の
概略図、第2図は第1の発明の構造概念図、第3図,第
6図は第1図の装置により得た薄膜における抵抗値の温
度特性図、第4図は第1図の装置により得た薄膜におけ
る臨界電流密度の温度依存性を示す図、第5図は第1図
の装置により得た薄膜における外部磁場下における抵抗
値の温度特性図、第7図は第2の発明の実施例における
薄膜の製造装置の概略図、第8図は第7図の装置により
得た薄膜における抵抗値の温度特性図である。 11,12,71,72,73,74……スパッタリングターゲット、13,
75……シャッター、14,76……アパーチャー、15,77……
MgO基体、16,78……ヒーター、21……Bi−Mn−O膜、22
……Bi−Sr−Ca−Cu−O膜、61,62,63,81,82,83……薄
膜の抵抗の温度特性。
FIG. 1 is a schematic view of an apparatus for manufacturing a thin film according to an embodiment of the first invention, FIG. 2 is a conceptual diagram of the structure of the first invention, and FIGS. 3 and 6 are thin films obtained by the apparatus of FIG. FIG. 4 shows the temperature dependence of the critical current density in the thin film obtained by the apparatus shown in FIG. 1, and FIG. 5 shows the temperature dependence of the thin film obtained by the apparatus shown in FIG. , FIG. 7 is a schematic view of an apparatus for manufacturing a thin film according to the second embodiment of the present invention, and FIG. 8 is a temperature characteristic view of a resistance value of the thin film obtained by the apparatus of FIG. . 11,12,71,72,73,74 …… Sputtering target, 13,
75 …… Shutter, 14,76 …… Aperture, 15,77 ……
MgO base, 16,78 heater, 21 Bi-Mn-O film, 22
...... Bi-Sr-Ca-Cu-O film, 61, 62, 63, 81, 82, 83 ... Temperature characteristics of resistance of thin film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市川 洋 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 八田 真一郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 瀬恒 謙太郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 和佐 清孝 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−318014(JP,A) 特開 平3−105807(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroshi Ichikawa 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kentaro Seto 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kiyotaka Wasa 1006, Oaza Kadoma, Kadoma City, Osaka Pref. Document JP-A-63-318014 (JP, A) JP-A-3-105807 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主体成分が少なくともビスマス(Bi),銅
(Cu)およびアルカリ土類(II a族)を含み、層状ペロ
ブスカイト構造の酸化物超電導薄膜と、少なくとも1種
類以上のペロブスカイト型酸化物からなる磁性薄膜が交
互に積層された構造を持つことを特徴とする薄膜超電導
体。 ここで、ペロブスカイト型酸化物とは、RFeO3(R=Y,S
m,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)あるいはMMnO3(M=B
i,La0.7Ca0.3,La0.7Sr0.3,La0.7Ba0.3,La0.6Pb0.4,La
0.7Cd0.3)あるいはAMnO6(A=Gd2Co,Ba2Fe,Ca2Fe)で
あらわされる酸化物磁性体およびこれらのうち少なくと
も2種以上を含む複合酸化物磁性体を示す。
An oxide superconducting thin film having a layered perovskite structure in which a main component contains at least bismuth (Bi), copper (Cu) and alkaline earth (Group IIa), and at least one or more perovskite oxides A thin film superconductor having a structure in which magnetic thin films are alternately stacked. Here, the perovskite oxide is RFeO 3 (R = Y, S
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) or MMnO 3 (M = B
i, La 0.7 Ca 0.3 , La 0.7 Sr 0.3 , La 0.7 Ba 0.3 , La 0.6 Pb 0.4 , La
An oxide magnetic material represented by 0.7 Cd 0.3 ) or AMnO 6 (A = Gd 2 Co, Ba 2 Fe, Ca 2 Fe) and a composite oxide magnetic material containing at least two or more thereof are shown.
【請求項2】基板上に,少なくともビスマス(Bi)を含
む酸化物と、少なくとも銅(Cu)およびアルカリ土類
(II a族)を含む酸化物とを周期的に積層させて形成す
る層状ペロブスカイト構造の酸化物超電導薄膜と、ペロ
ブスカイト型酸化物からなる磁性薄膜とを、交互に積層
させて得ることを特徴とする薄膜超電導体の製造方法。 ここで、ペロブスカイト型酸化物とは、RFeO3(R=Y,S
m,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)あるいはMMnO3(M=B
i,La0.7Ca0.3,La0.7Sr0.3,La0.7Ba0.3,La0.6Pb0.4,La
0.7Cd0.3)あるいはAMnO6(A=Gd2Co,Ba2Fe,Ca2Fe)で
あらわされる酸化物磁性体およびこれらのうち少なくと
も2種以上を含む複合酸化物磁性体を示す。
2. A layered perovskite formed by periodically stacking an oxide containing at least bismuth (Bi) and an oxide containing at least copper (Cu) and an alkaline earth (Group IIa) on a substrate. A method for producing a thin film superconductor, comprising alternately laminating an oxide superconducting thin film having a structure and a magnetic thin film made of a perovskite oxide. Here, the perovskite oxide is RFeO 3 (R = Y, S
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) or MMnO 3 (M = B
i, La 0.7 Ca 0.3 , La 0.7 Sr 0.3 , La 0.7 Ba 0.3 , La 0.6 Pb 0.4 , La
An oxide magnetic material represented by 0.7 Cd 0.3 ) or AMnO 6 (A = Gd 2 Co, Ba 2 Fe, Ca 2 Fe) and a composite oxide magnetic material containing at least two or more thereof are shown.
【請求項3】積層して形成する物質の蒸発を少なくとも
2種以上の蒸発源で行うことを特徴とする請求項2記載
の薄膜超電導体の製造方法。
3. The method for producing a thin film superconductor according to claim 2, wherein the evaporation of the substances formed by lamination is performed by at least two or more kinds of evaporation sources.
【請求項4】積層して形成する物質の蒸発をスパッタリ
ングで行うことを特徴とする請求項2記載の薄膜超電導
体の製造方法。
4. The method for producing a thin film superconductor according to claim 2, wherein the evaporation of the substance formed by lamination is performed by sputtering.
JP2101617A 1990-04-19 1990-04-19 Thin film superconductor and method of manufacturing the same Expired - Lifetime JP3025891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101617A JP3025891B2 (en) 1990-04-19 1990-04-19 Thin film superconductor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101617A JP3025891B2 (en) 1990-04-19 1990-04-19 Thin film superconductor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH042182A JPH042182A (en) 1992-01-07
JP3025891B2 true JP3025891B2 (en) 2000-03-27

Family

ID=14305367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101617A Expired - Lifetime JP3025891B2 (en) 1990-04-19 1990-04-19 Thin film superconductor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3025891B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523647B2 (en) * 1987-06-19 1996-08-14 株式会社日立製作所 Metal oxide superconducting thin film
JP2714176B2 (en) * 1989-09-20 1998-02-16 株式会社日立製作所 Laminated thin film of oxide superconductor and oxide magnetic material

Also Published As

Publication number Publication date
JPH042182A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
JPS63242532A (en) Super conductor and its manufacture
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JP2733368B2 (en) Superconducting thin film and method for producing the same
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JPH0316920A (en) Oxide superconductive thin film and its production
JPH05170448A (en) Production of thin ceramic film
JP2558880B2 (en) Method for producing copper oxide thin film
JP2866476B2 (en) Laminated superconductor and manufacturing method thereof
JPH0465320A (en) Superconducting thin film and its production
JP2502744B2 (en) Method of manufacturing thin film super-electric body
JP2961852B2 (en) Manufacturing method of thin film superconductor
JPH03170333A (en) Thin filmy super conductor and its preparation
JPH0822742B2 (en) Thin film superconductor and method of manufacturing the same
JPH0316919A (en) Superconductive thin film and its production
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH02122065A (en) Production of thin film type superconductor
JPH05171414A (en) Superconducting thin film and its production
JPH0822740B2 (en) Oxide superconducting thin film and method for producing the same
JPH0437609A (en) Oxide superconducting thin film and its production
JPH02167827A (en) Thin-film superconductor
JPH0714817B2 (en) Oxide superconducting thin film and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11