[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3013623B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP3013623B2
JP3013623B2 JP4229614A JP22961492A JP3013623B2 JP 3013623 B2 JP3013623 B2 JP 3013623B2 JP 4229614 A JP4229614 A JP 4229614A JP 22961492 A JP22961492 A JP 22961492A JP 3013623 B2 JP3013623 B2 JP 3013623B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
stannic oxide
lead
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4229614A
Other languages
Japanese (ja)
Other versions
JPH0676825A (en
Inventor
徹 山本
孝一 山坂
和也 岩本
美由紀 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4229614A priority Critical patent/JP3013623B2/en
Publication of JPH0676825A publication Critical patent/JPH0676825A/en
Application granted granted Critical
Publication of JP3013623B2 publication Critical patent/JP3013623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車のようなサ
イクル使用の密閉式鉛蓄電池の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a cycle type sealed lead-acid battery such as an electric vehicle.

【0002】[0002]

【従来の技術】密閉式鉛蓄電池は、自動車のスタータ用
などのトリクル使用でのメンテナンスフリーの二次電池
として比較的安価で安定な性能を有しているため一般に
普及している。又近年ではポータブル機器や電動車の電
源に用いられるサイクル使用の移動用電源、コンピュー
タなどのバックアップに用いる据え置き用電源としても
普及してきた。
2. Description of the Related Art Sealed lead-acid batteries are widely used because they are relatively inexpensive and have stable performance as maintenance-free secondary batteries using a trickle such as for a starter of an automobile. In recent years, it has also become widespread as a portable power supply for use in portable devices and electric vehicles, and a stationary power supply used as a backup for computers and the like.

【0003】最近、自動車の無公害対策として電気自動
車が脚光を浴びており、これにつれてその電源として価
格の安い密閉式鉛蓄電池の高性能化への要望が高まって
きている。しかし鉛蓄電池の高性能化にはとりわけ長寿
命化、高エネルギー密度化が大きな課題となっている。
[0003] Recently, electric vehicles have been spotlighted as non-pollution measures for vehicles, and demands for higher performance of inexpensive sealed lead-acid batteries as power sources have been increasing. However, long life and high energy density are particularly important issues for improving the performance of lead storage batteries.

【0004】これらの課題は活物質、特に正極活物質に
よるところが大きい。寿命が短い原因の一つとして、充
放電サイクルにより正極活物質粒子間の結着性が悪くな
るため、活物質の軟化、脱落が進行し、活物質間の導電
性が低下することが挙げられる。一方、鉛蓄電池のエネ
ルギー密度の低い原因の一つとして、正極活物質の利用
率の低さが挙げられる。正極の放電反応は、次式に示す
ようにPbO2とH2SO4の反応であり、 PbO2+4H+2e+SO4 2- → PbSO4+2H2
O SO4 2-イオンの移動のしやすさが正極の利用率を向上
するのに重要となる。
[0004] These problems largely depend on the active material, particularly the positive electrode active material. One of the causes of the short life is that the charge-discharge cycle deteriorates the binding property between the positive electrode active material particles, so that the softening and falling off of the active material progresses and the conductivity between the active materials decreases. . On the other hand, one of the causes of the low energy density of the lead storage battery is a low utilization rate of the positive electrode active material. The positive electrode discharge reaction is a reaction between PbO 2 and H 2 SO 4 as shown in the following equation: PbO 2 + 4H + 2e + SO 4 2- → PbSO 4 + 2H 2
The easiness of the movement of the O 2 SO 4 2− ion is important for improving the utilization rate of the positive electrode.

【0005】これらのことから充放電サイクル特性の向
上および高エネルギー密度化のための正極活物質の改善
が望まれている。
[0005] For these reasons, it is desired to improve the positive electrode active material for improving the charge / discharge cycle characteristics and increasing the energy density.

【0006】鉛蓄電池の正極の活物質は、原料となる鉛
粉を添加物とともに、希硫酸またはその他の練液と混合
し、攪拌しながらペーストを作り、このペーストを格子
中に充填し、所定の熟成、乾燥の工程を経て未化成活物
質が作製され、化成により正極活物質は二酸化鉛(Pb
2)となる。
The active material of the positive electrode of the lead-acid battery is prepared by mixing a lead powder as a raw material, together with an additive, with dilute sulfuric acid or other kneading solution, stirring to form a paste, filling the paste into a grid, and filling the grid. A non-chemically activated material is produced through the steps of aging and drying, and the positive electrode active material is converted to lead dioxide (Pb
O 2 ).

【0007】この正極活物質の粒子の大きさと形状は、
未化成活物質の影響を大きく受けている。従来の未化成
活物質の組成の主成分は三塩基性硫酸鉛であり、結晶の
粒子径は1μm程度であって、そのタイプは柱状であ
り、この三塩基性硫酸鉛から化成してできた二酸化鉛は
粒子が細かく、反応性が高い。
The size and shape of the particles of the positive electrode active material are as follows:
It is greatly influenced by unchemically activated materials. The main component of the composition of the conventional unformed active material is tribasic lead sulfate, the crystal particle size is about 1 μm, and the type is columnar, and it was formed from this tribasic lead sulfate. Lead dioxide has fine particles and high reactivity.

【0008】一方、正極活物質中に錫化合物を添加して
サイクル特性の改善をはかる試みも、例えば、特開昭5
4−49538号公報や特開昭54−60429号公報
でなされている。
On the other hand, attempts to improve the cycle characteristics by adding a tin compound to the positive electrode active material have been made, for example, in Japanese Patent Application Laid-Open No.
This is described in JP-A-4-49538 and JP-A-54-60429.

【0009】[0009]

【発明が解決しようとする課題】上記のように三塩基性
硫酸鉛を主成分とする未化成活物質は、その反応性が高
いため、充放電サイクルによる活物質粒子の軟化、脱落
が進行しやすく、同時に活物質と格子界面との間での腐
食反応も起こりやすくなるため、格子界面の導電性が低
下し、充放電サイクル寿命が短くなる欠点を有してい
た。
As described above, since the unactivated chemical active material containing tribasic lead sulfate as a main component has high reactivity, softening and falling off of active material particles due to charge / discharge cycles progress. Therefore, the corrosion reaction between the active material and the lattice interface is likely to occur at the same time, so that the conductivity of the lattice interface is reduced and the charge / discharge cycle life is shortened.

【0010】一方、正極活物質に硫酸第一錫や酸化第二
錫等の錫化合物を添加した場合は、サイクル寿命は伸び
るが、長期保存後の容量低下を生じるという欠点があっ
た。
On the other hand, when a tin compound such as stannous sulfate or stannic oxide is added to the positive electrode active material, the cycle life is prolonged, but there is a disadvantage that the capacity is reduced after long-term storage.

【0011】本発明は上記の課題に鑑み、正極活物質の
利用率を向上させ、さらに格子界面での不働態層の生成
を抑制してサイクル長寿命化および長期保存後の容量の
回復性を向上させた密閉式鉛蓄電池を提供することを目
的とするものである。
In view of the above problems, the present invention improves the utilization rate of a positive electrode active material, suppresses the formation of a passive layer at a lattice interface, and prolongs cycle life and recovers capacity after long-term storage. It is an object of the present invention to provide an improved sealed lead-acid battery.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め本発明の密閉式鉛蓄電池は、正極活物質特に四塩基性
硫酸鉛を主成分とする未化成活物質中に、酸化第二錫
(SnO2)および硫酸第一錫(SnSO4)をその総添
加量が、全正極活物質量に対して0.01〜5wt%で
あり、酸化第二錫の錫化合物(酸化第二錫と硫酸第一
錫)総添加量に対する比率が5〜20wt%となるよう
添加したものを正極に用いた密閉式鉛蓄電池である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a sealed lead-acid battery according to the present invention comprises a stannic oxide in a positive electrode active material, in particular, an unformed active material mainly containing tetrabasic lead sulfate. (SnO 2 ) and stannous sulfate (SnSO 4 ) are added in a total amount of 0.01 to 5 wt% based on the total amount of the positive electrode active material, and a tin compound of stannic oxide (stannic oxide and tin oxide) is used. This is a sealed lead-acid battery using, as a positive electrode, one added in a ratio of 5 to 20 wt% relative to the total amount of stannous sulfate.

【0013】[0013]

【作用】正極活物質中に酸化第二錫および硫酸第一錫を
添加することにより、放電後に生成される硫酸鉛中に導
体である酸化第二錫が混在するため不働態化を防ぐこと
ができ、電池の劣化を抑制するとともに、サイクル寿命
を伸ばし長期保存後の回復性を向上させることが可能と
なる。また、三塩基性硫酸鉛より粒子形状(2次凝集
体)が大きい四塩基性硫酸鉛を含む未化成活物質を化成
して得られる正極活物質を用いることにより四塩基性硫
酸鉛の2次凝集体の結晶サイズが10数μmと三塩基性
硫酸鉛に比べて大きいので、化成中に酸化される際、四
塩基性硫酸鉛の結晶の形・大きさが保たれたまま、微細
な1次粒子の凝集体としての大きな二酸化鉛となる。こ
のため、四塩基性硫酸鉛より作製される正極活物質は三
塩基性硫酸鉛より作製された正極活物質に比べて、正極
活物質の1次粒子が緻密に配列しており、電解液の拡散
性が低く、反応性が低い。したがって、充放電サイクル
による活物質の軟化、脱落が抑制され、サイクル特性が
向上する。
By adding stannic oxide and stannous sulfate to the positive electrode active material, passivation can be prevented because stannic oxide, which is a conductor, is mixed in lead sulfate generated after discharge. It is possible to suppress the deterioration of the battery, extend the cycle life, and improve the recoverability after long-term storage. In addition, by using a positive electrode active material obtained by forming an unformed active material containing tetrabasic lead sulfate having a larger particle shape (secondary aggregate) than tribasic lead sulfate, secondary tetrabasic lead sulfate can be obtained. Since the crystal size of the aggregate is more than 10 μm, which is larger than that of tribasic lead sulfate, when oxidized during chemical formation, a fine 1 It becomes large lead dioxide as an aggregate of the secondary particles. For this reason, the positive electrode active material made of tetrabasic lead sulfate has a more dense arrangement of the primary particles of the positive electrode active material than the positive electrode active material made of tribasic lead sulfate. Low diffusivity and low reactivity. Therefore, softening and falling off of the active material due to charge / discharge cycles are suppressed, and cycle characteristics are improved.

【0014】[0014]

【実施例】以下、本発明の一実施例の密閉式鉛蓄電池に
ついて図面を参照しながら説明する。密閉式鉛蓄電池の
極板は、所定量の鉛粉に全錫化合物の総添加重量が1w
t%となるように酸化第二錫を0.1wt%、硫酸第一
錫を0.9wt%添加して攪拌した。これに、常法に従
い水と希硫酸を滴下しながら80℃で20分間練合し、
酸化第二錫および硫酸第一錫を含有した四塩基性硫酸鉛
を主成分とする正極用ペーストを作製し、Pb−Ca系
合金の鋳造格子に充填して正極板を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sealed lead-acid battery according to one embodiment of the present invention will be described below with reference to the drawings. The electrode plate of a sealed lead-acid battery has a total weight of 1 w of all tin compounds added to a predetermined amount of lead powder.
0.1 wt% of stannic oxide and 0.9 wt% of stannous sulfate were added so as to be t%, and stirred. This is kneaded at 80 ° C. for 20 minutes while dropping water and dilute sulfuric acid according to a conventional method,
A positive electrode paste mainly composed of tetrabasic lead sulfate containing stannic oxide and stannous sulfate was prepared and filled in a casting lattice of a Pb-Ca alloy to obtain a positive electrode plate.

【0015】上記の正極板2枚と負極板3枚用い、その
間にガラス繊維からなるマット状セパレータを介在させ
て組み合わせ、電解液として希硫酸を含浸させて、公称
容量2Ah(10時間率)、2Vの電池を作製した。
The above two positive electrode plates and three negative electrode plates are combined with a mat-shaped separator made of glass fiber interposed therebetween, and impregnated with dilute sulfuric acid as an electrolyte to have a nominal capacity of 2 Ah (10 hour rate). A 2V battery was produced.

【0016】この電池について充電200mA、放電6
00mAの定電流充放電で充放電サイクル試験を行い、
電池の容量と、充放電サイクル寿命を測定した。なお放
電の終止電圧は1.75V、充電電気量は放電電気量の
120%とし、また充放電サイクル寿命は容量が1Ah
に達したサイクル数とした。また、この実施例の電池と
(表1)に示す正極の活物質重量を一定とし上記条件で
作製した各種電池を40℃の恒温室で2ヵ月保存し、6
00mAの定電流放電で容量チェックを行い、その保存
後電池特性を調べた。
The battery was charged at 200 mA and discharged at 6 mA.
A charge / discharge cycle test was performed with a constant current charge / discharge of 00 mA.
The battery capacity and charge / discharge cycle life were measured. The discharge end voltage was 1.75 V, the amount of charged electricity was 120% of the amount of discharged electricity, and the charge / discharge cycle life was 1 Ah.
Was reached. Further, the battery of this example and various batteries produced under the above-mentioned conditions while keeping the weight of the active material of the positive electrode shown in Table 1 constant were stored in a constant temperature room at 40 ° C. for 2 months.
The capacity was checked at a constant current discharge of 00 mA, and after storage, the battery characteristics were examined.

【0017】[0017]

【表1】 [Table 1]

【0018】従来電池(三塩基性硫酸鉛が主成分で錫化
合物を含まないもの)では初期容量が1.75Ahであ
ったが、本実施例では2.00Ahと容量の向上が認め
られた。酸化第二錫(SnO2)や硫酸第一錫(SnS
4)のみを正極活物質に1wt%添加したものも効果
は見られたが十分ではない。本実施例ではサイクル寿命
は520サイクル、放電後の容量残率も86%といずれ
も従来電池や錫化合物単独の添加電池より優れていた。
また三塩基性硫酸鉛を主成分とする未化成物質を化成し
て得られる正極活物質に酸化第二錫0.1wt%と硫酸
第一錫0.9wt%を混合したものでも(表1)より明
らかなように従来電池よりは優れていることがわかっ
た。これらの改善要因としては、正極活物質に酸化第二
錫および硫酸第一錫を添加することで放電時に生成され
る硫酸鉛(PbSO4)による不働態化を導体である酸
化第二錫の混入で抑え、さらに自己放電が抑制できたた
めと考えられる。
The initial capacity of the conventional battery (having tribasic lead sulfate as a main component and not containing a tin compound) was 1.75 Ah, but in this embodiment, the capacity was improved to 2.00 Ah. Stannic oxide (SnO 2 ) or stannous sulfate (SnS)
The effect of adding only O 4 ) to the positive electrode active material at 1 wt% was also observed, but was not sufficient. In this example, the cycle life was 520 cycles, and the residual capacity after discharge was 86%, both of which were superior to the conventional battery and the battery containing only the tin compound.
Also, a mixture of 0.1 wt% of stannic oxide and 0.9 wt% of stannous sulfate mixed with a positive electrode active material obtained by chemical conversion of an unchemical conversion material containing tribasic lead sulfate as a main component (Table 1) As is clear, it was found to be superior to the conventional battery. As an improvement factor, passivation due to lead sulfate (PbSO 4 ) generated at the time of discharge by adding stannic oxide and stannous sulfate to the positive electrode active material is mixed with stannic oxide, which is a conductor. It is considered that self-discharge was further suppressed.

【0019】図1に四塩基性硫酸鉛を主成分とする未化
成活物質を化成して得られる正極活物質に添加する酸化
第二錫と硫酸第一錫の添加量(酸化第二錫と硫酸第一錫
の重量比は1:9で固定)を変えた時の電池特性を示
す。
FIG. 1 shows the amounts of stannic oxide and stannous sulfate to be added to the positive electrode active material obtained by forming an unformed active material containing tetrabasic lead sulfate as a main component. The battery characteristics when the weight ratio of stannous sulfate is fixed at 1: 9) are shown.

【0020】これらの電池について充電200mA、放
電600mAの定電流充放電で充放電サイクル試験を行
い、各電池の容量と、充放電サイクル寿命を測定した。
なお放電の終止電圧は1.75V、充電電気量は放電電
気量の120%とし、またサイクル寿命は容量が1Ah
に達したサイクル数とした。また、40℃の恒温室で2
ヵ月間保存し、600mAの定電流放電で容量チェック
を行い保存時の自己放電を調べた。
A charge / discharge cycle test was performed on these batteries at a constant current charge / discharge of 200 mA for charging and 600 mA for discharging, and the capacity of each battery and the charge / discharge cycle life were measured.
The discharge end voltage is 1.75 V, the amount of charge is 120% of the amount of discharge, and the cycle life is 1 Ah.
Was reached. In a constant temperature room at 40 ° C, 2
After storage for a month, the capacity was checked by discharging at a constant current of 600 mA, and the self-discharge during storage was examined.

【0021】図1から錫化合物の添加量が増加するに従
い、放電容量が増加することがわかる。しかし、添加量
が5wt%以上になると容量差はほとんど見られず、ま
た0.01wt%以下でも従来電池との容量差はなかっ
た。さらにサイクル寿命においても添加量0.01〜5
wt%の範囲で錫化合物無添加の従来電池より長くなる
ことがわかった。しかし、添加量6wt%では充放電サ
イクル寿命は380サイクルと従来電池よりむしろ短く
なった。また、錫化合物を添加すると保存特性は添加量
が多くなるほど向上するが、1wt%で最高の保存率と
なり7wt%では無添加の従来電池と同等になった。従
って、添加量は0.01〜5wt%の範囲が最良である
ことがわかった。
FIG. 1 shows that the discharge capacity increases as the addition amount of the tin compound increases. However, when the addition amount was 5 wt% or more, almost no difference in capacity was observed, and even when the addition amount was 0.01 wt% or less, there was no difference in capacity from the conventional battery. Further, the addition amount is 0.01 to 5 in the cycle life.
It was found that the range of wt% was longer than that of the conventional battery without tin compound added. However, when the addition amount was 6 wt%, the charge / discharge cycle life was 380 cycles, which was shorter than that of the conventional battery. Further, when the tin compound was added, the storage characteristics were improved as the amount of addition increased, but the storage rate was the highest at 1 wt%, and was equivalent to that of the conventional battery with no addition at 7 wt%. Therefore, it was found that the best addition amount was in the range of 0.01 to 5 wt%.

【0022】一方、図2に酸化第二錫と硫酸第一錫の総
量を2wt%で固定しておき酸化第二錫と硫酸第一錫の
混合比を変えた場合のサイクル寿命特性を示す。この結
果から、酸化第二錫の全錫化合物(酸化第二錫と硫酸第
一錫)に対する比率が5〜20wt%でサイクル特性が
各々単独に錫化合物を添加した場合よりも向上する領域
のあることがわかった。この原因としては導体である少
量の酸化第二錫を硫酸第一錫に混入することで反応初期
から硫酸鉛の生成による不働態化が防げ、硫酸鉛の結晶
サイズを小さく抑えることができ、これがサイクル特性
を伸ばすものと考えられる。
On the other hand, FIG. 2 shows cycle life characteristics when the total amount of stannic oxide and stannous sulfate is fixed at 2 wt% and the mixing ratio of stannic oxide and stannous sulfate is changed. From this result, there is a region where the ratio of stannic oxide to the total tin compound (stannic oxide and stannous sulfate) is 5 to 20 wt% and the cycle characteristics are improved as compared with the case where each tin compound is added alone. I understand. The reason for this is that by mixing a small amount of stannic oxide, which is a conductor, into stannous sulfate, passivation due to the formation of lead sulfate can be prevented from the beginning of the reaction, and the crystal size of lead sulfate can be suppressed to a small value. It is considered that the cycle characteristics are extended.

【0023】[0023]

【発明の効果】このように本発明の構成によると、初期
容量が向上し、サイクル寿命も伸び、また放置後の容量
劣化も少なかった。さらに充放電条件によるサイクル寿
命への影響を抑えることにも有効であった。
As described above, according to the structure of the present invention, the initial capacity is improved, the cycle life is extended, and the capacity deterioration after standing is small. Furthermore, it was effective in suppressing the influence on the cycle life due to the charge / discharge conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極活物質への錫化合物量と電池特性との関係
を示す図
FIG. 1 is a diagram showing the relationship between the amount of a tin compound in a positive electrode active material and battery characteristics.

【図2】酸化第二錫と硫酸第一錫の混合比とサイクル寿
命特性との関係を示す図
FIG. 2 is a diagram showing the relationship between the mixing ratio of stannic oxide and stannous sulfate and cycle life characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊田 美由紀 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭54−50839(JP,A) 特開 昭51−47233(JP,A) 特開 昭59−167959(JP,A) 特開 平4−14758(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/14,4/57,4/62 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Miyuki Toyoda 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-54-50839 (JP, A) JP-A-51- 47233 (JP, A) JP-A-59-167959 (JP, A) JP-A-4-14758 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/14, 4 / 57,4 / 62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極活物質中に、酸化第二錫および硫酸第
一錫を添加したことを特徴とする密閉式鉛蓄電池。
1. A sealed lead-acid battery characterized in that stannic oxide and stannous sulfate are added to a positive electrode active material.
【請求項2】四塩基性硫酸鉛を主成分とする未化成活物
質中への酸化第二錫および硫酸第一錫の総添加量が、こ
の全正極活物質量に対して0.01〜5wt%であり、
酸化第二錫の錫化合物総添加量に対する比率が5〜20
wt%である請求項1記載の密閉式鉛蓄電池。
2. The total amount of stannic oxide and stannous sulfate added to an unformed active material containing tetrabasic lead sulfate as a main component is 0.01 to 0.01% based on the total amount of the positive electrode active material. 5 wt%,
The ratio of stannic oxide to the total amount of tin compound added is 5 to 20.
The sealed lead-acid battery according to claim 1, wherein the content is wt%.
JP4229614A 1992-08-28 1992-08-28 Sealed lead-acid battery Expired - Fee Related JP3013623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229614A JP3013623B2 (en) 1992-08-28 1992-08-28 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229614A JP3013623B2 (en) 1992-08-28 1992-08-28 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH0676825A JPH0676825A (en) 1994-03-18
JP3013623B2 true JP3013623B2 (en) 2000-02-28

Family

ID=16894946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229614A Expired - Fee Related JP3013623B2 (en) 1992-08-28 1992-08-28 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3013623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787167B2 (en) * 2011-12-28 2015-09-30 株式会社Gsユアサ Liquid lead-acid battery

Also Published As

Publication number Publication date
JPH0676825A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
JP2003123760A (en) Negative electrode for lead-acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP3178015B2 (en) Positive electrode plate for lead storage battery and method for producing the same
JP3013623B2 (en) Sealed lead-acid battery
JP2002100347A (en) Lead-acid battery
JP2949773B2 (en) Lead storage battery
JP3038995B2 (en) Lead storage battery
JP2949772B2 (en) Liquid-filled lead-acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP3047463B2 (en) Lead storage battery
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP4066509B2 (en) Manufacturing method of lead acid battery
JP2003142147A (en) Lead-acid battery
JPS59173961A (en) Organic electrolyte secondary battery
WO2024035663A2 (en) Titanium dioxide in flooded deep cycle lead-acid batteries
JP3196556B2 (en) Lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP2007213896A (en) Lead-acid storage battery
JP3498560B2 (en) Lead storage battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JP2548227B2 (en) Manufacturing method of electrode plate for lead-acid battery
CN116114084A (en) Method of manufacturing lead acid battery assembly
JPH0414759A (en) Lead-acid accumulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees