[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3007839B2 - Shunt - Google Patents

Shunt

Info

Publication number
JP3007839B2
JP3007839B2 JP8055709A JP5570996A JP3007839B2 JP 3007839 B2 JP3007839 B2 JP 3007839B2 JP 8055709 A JP8055709 A JP 8055709A JP 5570996 A JP5570996 A JP 5570996A JP 3007839 B2 JP3007839 B2 JP 3007839B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
container
sectional area
connection position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8055709A
Other languages
Japanese (ja)
Other versions
JPH08233409A (en
Inventor
広明 加瀬
長生 木戸
治 青柳
亮 青木
隆 中邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP8055709A priority Critical patent/JP3007839B2/en
Publication of JPH08233409A publication Critical patent/JPH08233409A/en
Application granted granted Critical
Publication of JP3007839B2 publication Critical patent/JP3007839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主として空気調和機
等に用いられ、気相と液相の二相の冷媒を均等に分配、
もしくは合流する分流器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly used for air conditioners and the like, and distributes two-phase refrigerants, gas phase and liquid phase, evenly.
Alternatively, it relates to a merging diverter.

【0002】[0002]

【従来の技術】冷凍サイクルを構成している蒸発器は、
小型の場合には、冷媒の管内抵抗は少なく冷媒流路も一
流路でよいが、大型の場合には冷媒の総流量が増し、一
つの流路では管内抵抗が大きくなるため複数の流路に
し、蒸発器の能力を最大限に発揮し得る均等分流器が必
要となる。
2. Description of the Related Art An evaporator constituting a refrigeration cycle includes:
In the case of a small size, the internal resistance of the refrigerant is small and the refrigerant flow path may be one flow path, but in the case of a large size, the total flow rate of the refrigerant increases, and in one flow path, the internal resistance increases, so that a plurality of flow paths are required. In addition, a uniform flow divider that can maximize the capacity of the evaporator is required.

【0003】以下、従来の分流器を図3〜図6に基づい
て説明する。図3は従来の分流器を用いた蒸発器の正面
図、図4は従来の分流器の斜視図、図5および図6は従
来の分流器の縦断面図である。
Hereinafter, a conventional flow divider will be described with reference to FIGS. FIG. 3 is a front view of an evaporator using the conventional flow divider, FIG. 4 is a perspective view of the conventional flow divider, and FIGS. 5 and 6 are longitudinal sectional views of the conventional flow divider.

【0004】図3において、1は入口側分流器、2は出
口側分流器、3は伝熱管、4はフィン、5は流入管、6
は流出管である。また図4は入口側分流器1の斜視図で
ある。
In FIG. 3, reference numeral 1 denotes an inlet side flow divider, 2 denotes an outlet side flow divider, 3 denotes a heat transfer tube, 4 denotes a fin, 5 denotes an inflow tube, 6
Is an outflow pipe. FIG. 4 is a perspective view of the inlet-side flow divider 1.

【0005】図3において、気液二相状態の冷媒がA側
から流入管5を経て入口側分流器1に流入し、次に複数
の伝熱管3を通り、出口側分流器2で合流した後、流出
管6よりE側へ流出する。
In FIG. 3, a refrigerant in a gas-liquid two-phase state flows into the inlet-side splitter 1 from the side A via the inflow pipe 5, then passes through a plurality of heat transfer tubes 3, and joins at the outlet-side splitter 2. Thereafter, it flows out of the outflow pipe 6 to the E side.

【0006】次に従来の分流器の内部を図5に基づいて
説明する。なお、δは分流器1もしくは分流器2内へ挿
入した伝熱管3の挿入部の長さのばらつきを表し、この
量δは、組立工程上避け難いものであり、分配のバラン
スに大きく影響を及ぼす要因であった。
Next, the inside of a conventional flow divider will be described with reference to FIG. Note that δ represents the variation in the length of the insertion portion of the heat transfer tube 3 inserted into the flow divider 1 or the flow divider 2, and this amount δ is unavoidable in the assembly process and greatly affects the distribution balance. Was an influential factor.

【0007】そこで、この量δを小さく規制するため
に、図6に示すように、伝熱管3の先端部をテーパー加
工してテーパー部8を形成し、このテーパー部8と容器
9の穴加工の相互の公差によりδを規制していた。
Therefore, in order to restrict the amount δ to a small value, as shown in FIG. 6, the tip of the heat transfer tube 3 is tapered to form a tapered portion 8, and a hole is formed between the tapered portion 8 and the container 9. Δ was regulated by the mutual tolerance of.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では次のような課題があった。
However, the above configuration has the following problems.

【0009】一般に乾き度の小さい入口側分流器1内で
は冷媒の体積速度は遅く、重力の影響により気相と液相
は上下に分離してしまい、各伝熱管3に均等に冷媒が流
れないという問題点があった。
In general, the volume velocity of the refrigerant is low in the inlet-side flow divider 1 having a small degree of dryness, and the gas phase and the liquid phase are separated vertically by the influence of gravity, so that the refrigerant does not flow evenly through each heat transfer tube 3. There was a problem.

【0010】一方、乾き度の大きい出口側分流器2内で
は気相状態であるため、出口側分流器2の上部での体積
速度は非常に速いが、出口側分流器2の下部では合流す
る流路が少なく、体積速度は遅いので、液だまりを生
じ、各伝熱管3に均等に冷媒が流れないという問題点が
あった。
On the other hand, since the gas is in a gaseous state in the outlet flow divider 2 having a high degree of dryness, the volume velocity at the upper part of the outlet flow divider 2 is very high, but it merges at the lower part of the outlet flow divider 2. Since the number of flow paths is small and the volume speed is low, there is a problem that a pool is formed and the refrigerant does not flow evenly through each heat transfer tube 3.

【0011】本発明は、上記課題に鑑み、各伝熱管に均
等に冷媒が流れる入口側ならびに出口側の分流器を提供
することを目的としているものである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a flow divider on the inlet side and the outlet side on which the refrigerant flows evenly in each heat transfer tube.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
本発明は、分流器の容器内に挿入部材を挿入することに
より、容器内の最も流入管(または流出管)接続位置に
近い側の伝熱管が接続されている部分の流路断面積を、
最も前記流入管(または流出管)接続位置から離れた側
の伝熱管が接続されている部分の流路断面積よりも大き
くするとともに、前記容器内の最も前記流入管(または
流出管)接続位置に近い側の伝熱管と最も前記流入管
(または流出管)接続位置から離れた側の伝熱管との間
の伝熱管が接続されている部分の流路断面積を、流入管
(または流出管)側で隣接する伝熱管が接続されている
部分の流路断面積以下かつ反流入管(または流出管)側
で隣接する伝熱管が接続されている部分の流路断面積以
上にしたのである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to inserting an insertion member into a vessel of a flow divider.
Therefore, the flow path cross-sectional area of the portion where the heat transfer tube on the side closest to the inflow pipe (or outflow pipe) connection position in the container is connected,
The flow passage cross-sectional area of the portion where the heat transfer tube on the side farthest from the inflow pipe (or outflow pipe) connection position is connected is made larger, and the inflow pipe (or outflow pipe) connection position in the vessel is the most. The flow path cross-sectional area of the portion where the heat transfer tube is connected between the heat transfer tube closest to the heat transfer tube and the heat transfer tube farthest from the connection position of the inflow pipe (or outflow pipe) is determined by the inflow pipe (or outflow pipe). ) Side is smaller than the flow path cross-sectional area of the portion where the adjacent heat transfer tubes are connected, and is larger than the flow path cross-sectional area of the portion where the adjacent heat transfer tubes are connected on the anti-inflow pipe (or outflow pipe) side. .

【0013】これにより、各伝熱管に均等に冷媒を流す
ことができる。
[0013] This allows the refrigerant to flow evenly through each heat transfer tube.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、一端に流入管を接続した容器と、前記流入管接続位
置から離れる方向に沿って並列に前記容器に接続された
複数の伝熱管とを備え、前記流入管から前記容器内に流
入した冷媒が複数の前記伝熱管に分流され流出していく
分流器において、前記容器内に挿入部材を挿入すること
により、前記容器内の最も前記流入管接続位置に近い側
の伝熱管が接続されている部分の流路断面積を、最も前
記流入管接続位置から離れた側の伝熱管が接続されてい
る部分の流路断面積よりも大きくするとともに、前記容
器内の最も前記流入管接続位置に近い側の伝熱管と最も
前記流入管接続位置から離れた側の伝熱管との間の伝熱
管が接続されている部分の流路断面積を、流入管側で隣
接する伝熱管が接続されている部分の流路断面積以下か
つ反流入管側で隣接する伝熱管が接続されている部分の
流路断面積以上にしたものであり、容器内に挿入部材を
挿入することにより、容易かつ低コストで、容器内部の
空間部の形状の最適化を図って冷媒の体積速度を均一に
して圧力損失を抑えることができ、気相と液相の分離や
液だまりを抑制し、冷媒を均等に分配し、冷媒を均等に
各伝熱管に流すことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a container having an inflow pipe connected to one end thereof and a plurality of vessels connected in parallel to each other along a direction away from the inflow pipe connection position. A heat transfer tube, wherein a refrigerant flowing into the container from the inflow tube is divided into a plurality of heat transfer tubes and flows out , and an insertion member is inserted into the container.
Accordingly, the flow path cross-sectional area of the portion where the heat transfer tube closest to the inflow pipe connection position in the vessel is connected is the portion where the heat transfer tube most remote from the inflow pipe connection position is connected. And the heat transfer tube between the heat transfer tube closest to the inflow pipe connection position and the heat transfer tube closest to the inflow tube connection position in the container is connected. The cross-sectional area of the flow path at the portion where the heat transfer pipe adjacent to the heat transfer pipe is connected on the inflow pipe side is smaller than the cross-sectional area of the flow path at the section where the adjacent heat transfer pipe is connected at the anti-inflow pipe side. The area is larger than the area, and by inserting the insertion member into the container, the shape of the space inside the container is optimized easily and at low cost, and the volume velocity of the refrigerant is made uniform to suppress the pressure loss. Can suppress the separation of gas and liquid phases and the accumulation of liquid. Refrigerant evenly distribute can flow evenly Kakuden heat pipe coolant.

【0015】また、請求項2に記載の発明は、一端に流
出管を接続した容器と、前記流出管接続位置から離れる
方向に沿って並列に前記容器に接続された複数の伝熱管
とを備え、複数の前記伝熱管から前記容器内に流入した
冷媒が合流して前記流出管から流出していく分流器にお
いて、前記容器内に挿入部材を挿入することにより、
記容器内の最も前記流出管接続位置に近い側の伝熱管が
接続されている部分の流路断面積を、最も前記流出管接
続位置から離れた側の伝熱管が接続されている部分の流
路断面積よりも大きくするとともに、前記容器内の最も
前記流出管接続位置に近い側の伝熱管と最も前記流出管
接続位置から離れた側の伝熱管との間の伝熱管が接続さ
れている部分の流路断面積を、流出管側で隣接する伝熱
管が接続されている部分の流路断面積以下かつ反流出管
側で隣接する伝熱管が接続されている部分の流路断面積
以上にしたものであり、容器内に挿入部材を挿入するこ
とにより、容易かつ低コストで、容器内部の空間部の形
状の最適化を図って冷媒の体積速度を均一にして圧力損
失を抑えることができ、気相と液相の分離や液だまりを
抑制し、冷媒を均等に分配し、冷媒を均等に各伝熱管に
流すことができる。
The invention according to a second aspect of the present invention includes a container having one end connected to an outflow pipe, and a plurality of heat transfer tubes connected to the container in parallel along a direction away from the outflow pipe connection position. A diverter in which the refrigerant flowing into the container from the plurality of heat transfer tubes merges and flows out of the outflow tube; by inserting an insertion member into the container, the most outflow tube in the container; The flow path cross-sectional area of the portion where the heat transfer tube on the side close to the connection position is connected is made larger than the flow path cross-sectional area of the portion where the heat transfer tube on the side farthest from the outflow pipe connection position is connected. The flow path cross-sectional area of a portion where the heat transfer tube is connected between the heat transfer tube closest to the outlet pipe connection position and the heat transfer tube closest to the outlet tube connection position in the container, The adjacent heat transfer tube is connected on the outflow tube side. The cross-sectional area of the part is smaller than the cross-sectional area of the flow path and the cross-sectional area of the flow path of the part to which the adjacent heat transfer tube is connected on the anti-outflow pipe side. By optimizing the shape of the space inside the container, the pressure loss can be suppressed by making the volume velocity of the refrigerant uniform, suppressing the separation and pooling of the gas and liquid phases, and distributing the refrigerant evenly. Thus, the refrigerant can be uniformly flowed through each heat transfer tube.

【0016】以下、本発明の実施の形態を図面を参照し
ながら説明する。 (実施の形態1)図1は、本発明の実施の形態1の入口
側分流器の縦断面図である。同図において、1は入口側
分流器、3は伝熱管、5は流入管、7cは入口側挿入部
材、9は伝熱管3を集合接続する容器である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is a longitudinal sectional view of an inlet-side flow divider according to Embodiment 1 of the present invention. In the figure, reference numeral 1 denotes an inlet-side flow divider, 3 denotes a heat transfer tube, 5 denotes an inflow tube, 7c denotes an inlet-side insertion member, and 9 denotes a container for collectively connecting the heat transfer tubes 3.

【0017】図1において、入口側分流器1の容器9下
端には流入管5が接続されており、入口側分流器1の稜
線上には1列に伝熱管3が所定ピッチで接続されてい
る。また、入口側分流器1の内部には、流入管5接続位
置から離れる上部程、断面積が大きくなるような傾斜面
7を有する入口側挿入部材7cが挿入され、同時に入口
側分流器1内への伝熱管3の挿入部を覆っている。
In FIG. 1, an inlet pipe 5 is connected to a lower end of a vessel 9 of an inlet-side flow divider 1, and heat transfer tubes 3 are connected in a row at a predetermined pitch on a ridge line of the inlet-side flow divider 1. I have. In addition, an inlet-side insertion member 7c having an inclined surface 7 whose cross-sectional area increases as the distance from the connection position of the inflow pipe 5 increases, and is inserted into the inlet-side flow divider 1 at the same time. To cover the insertion portion of the heat transfer tube 3.

【0018】上記構成によれば、図1においてA側より
気液二相状態で流入した冷媒は、流入管5を通り、入口
側分流器1の容器9内(B)に流入した後、複数の伝熱
管3に分配され、蒸発器側(C)へ導かれる。
According to the above configuration, the refrigerant flowing in the gas-liquid two-phase state from the A side in FIG. 1 passes through the inflow pipe 5, flows into the container 9 of the inlet side flow divider 1 (B), and To the evaporator side (C).

【0019】一般に乾き度の小さい入口側分流器1内で
は体積速度は遅く、重力の影響により気相と液相は上下
に分離してしまうが、入口側挿入部材7cにより分流器
内(B)の流路断面積は、上部に至る程小さくなってい
るので、体積速度は入口側分流器1の容器9内(B)で
比較的均一となり、圧力損失を抑えながら気液を撹拌さ
せることができ、各伝熱管3に均等に分配できる。
Generally, the volume velocity is low in the inlet-side flow divider 1 having a small dryness, and the gas phase and the liquid phase are separated vertically by the influence of gravity. Since the cross-sectional area of the flow path becomes smaller toward the upper part, the volume velocity becomes relatively uniform in the container 9 (B) of the inlet-side flow divider 1, and the gas-liquid can be stirred while suppressing the pressure loss. It can be evenly distributed to each heat transfer tube 3.

【0020】このように、本実施の形態では、一端に流
入管5を接続した容器9と、容器9と流入管5との接続
位置から離れる方向に沿って並列に容器9に接続された
複数の伝熱管3とを備え、流入管5から容器9内に流入
した冷媒が複数の伝熱管3に分流され流出していく入口
側分流器1において、入口側挿入部材7cにより容器9
下端の流入管5接続位置から上側に離れる程、容器9内
の流路断面積を小さくして、容器9内の最も流入管5接
続位置に近い側の伝熱管3が接続されている部分の流路
断面積を、最も流入管5接続位置から離れた側の伝熱管
3が接続されている部分の流路断面積よりも大きくする
とともに、容器9内の最も流入管5接続位置に近い側の
伝熱管3と最も流入管5接続位置から離れた側の伝熱管
3との間の伝熱管3が接続されている部分の流路断面積
を、流入管5側で隣接する伝熱管3が接続されている部
分の流路断面積以下かつ反流入管5側で隣接する伝熱管
3が接続されている部分の流路断面積以上にしたもので
あり、容器9内に挿入部材7cを挿入することにより、
容易かつ低コストで、流入管5接続位置より離れる程、
流路断面積を小さくすることにより、体積速度に応じて
圧力損失を抑えながら、冷媒を均等に分配し、冷媒を均
等に各伝熱管3に流すことができる。
As described above, in the present embodiment, the container 9 having one end connected to the inflow pipe 5 and the plurality of containers 9 connected to the container 9 in parallel along the direction away from the connection position between the container 9 and the inflow pipe 5. In the inlet-side flow divider 1 in which the refrigerant flowing from the inflow pipe 5 into the container 9 is divided into a plurality of heat transfer tubes 3 and flows out, the inlet-side insertion member 7c provides
The farther upward from the connection position of the inlet pipe 5 at the lower end, the smaller the cross-sectional area of the flow path in the container 9, and the smaller the portion of the container 9 to which the heat transfer tube 3 closest to the connection position of the inlet pipe 5 is connected. The cross-sectional area of the flow passage is made larger than the cross-sectional area of the flow passage at the portion where the heat transfer tube 3 farthest from the connection position of the inflow pipe 5 is connected, and the side of the vessel 9 closest to the connection position of the inflow pipe 5 The flow passage cross-sectional area of the portion where the heat transfer tube 3 is connected between the heat transfer tube 3 and the heat transfer tube 3 on the side farthest from the connection position of the inflow tube 5 is determined by the heat transfer tube 3 adjacent to the inflow tube 5 side. The insertion member 7c is inserted into the container 9 below the flow path cross-sectional area of the connected part and the flow path cross-sectional area of the part where the adjacent heat transfer tube 3 is connected on the side opposite to the inflow pipe 5. By doing
Easy and low cost, the further away from the connecting position of the inflow pipe 5,
By reducing the cross-sectional area of the flow path, the refrigerant can be evenly distributed and the refrigerant can flow to each heat transfer tube 3 evenly while suppressing the pressure loss according to the volume velocity.

【0021】また、本実施の形態によれば入口側挿入部
材7cを用いたことにより伝熱管3の入口側分流器1の
容器9内(B)への挿入量のばらつきも容易に規制でき
るので均等な分配ができる。
Further, according to the present embodiment, the use of the inlet side insertion member 7c makes it possible to easily regulate the variation in the insertion amount of the heat transfer tube 3 into the vessel 9 (B) of the inlet side flow divider 1. Even distribution is possible.

【0022】尚、本実施の形態では、入口側挿入部材7
cを用いて、入口側分流器1の容器9内の流路断面積
を、連続的に、容器9下端の流入管5接続位置から上側
に離れる程小さくしたが、これに限らず、容器9内の最
も流入管5接続位置に近い側の伝熱管3が接続されてい
る部分の流路断面積を、最も流入管5接続位置から離れ
た側の伝熱管3が接続されている部分の流路断面積より
も大きくするとともに、容器9内の最も流入管5接続位
置に近い側の伝熱管3と最も流入管5接続位置から離れ
た側の伝熱管3との間の伝熱管3が接続されている部分
の流路断面積を、流入管5側で隣接する伝熱管3が接続
されている部分の流路断面積以下かつ反流入管5側で隣
接する伝熱管3が接続されている部分の流路断面積以上
にしていれば良い。
In this embodiment, the entrance-side insertion member 7
c, the cross-sectional area of the flow path in the vessel 9 of the inlet-side flow divider 1 was continuously reduced as the distance from the connection position of the inflow pipe 5 at the lower end of the vessel 9 to the upper side increased, but the invention is not limited to this. The flow path cross-sectional area of the portion where the heat transfer tube 3 closest to the inflow pipe 5 connection position is connected to the flow cross-sectional area of the portion where the heat transfer tube 3 closest to the inflow pipe 5 connection position is connected The heat transfer tube 3 is connected between the heat transfer tube 3 on the side closest to the connection position of the inflow pipe 5 and the heat transfer tube 3 on the side farthest from the connection position of the inflow tube 5 in the container 9 while being larger than the cross-sectional area of the passage. The cross-sectional area of the flow path of the portion is smaller than the cross-sectional area of the flow path where the adjacent heat transfer tube 3 is connected on the inflow pipe 5 side, and the adjacent heat transfer pipe 3 is connected on the side opposite to the inflow pipe 5. What is necessary is just to make it larger than the flow path cross-sectional area of a part.

【0023】(実施の形態2)図2は、本発明の実施の
形態2の入口側分流器の縦断面図である。同図におい
て、2は出口側分流器、3は伝熱管、6は流出管、7d
は出口側挿入部材、9は伝熱管3を集合接続する容器で
ある。
(Embodiment 2) FIG. 2 is a longitudinal sectional view of an inlet-side flow divider according to Embodiment 2 of the present invention. In the figure, 2 is an outlet side flow divider, 3 is a heat transfer tube, 6 is an outflow tube, 7d
Is an outlet side insertion member, and 9 is a container for collectively connecting the heat transfer tubes 3.

【0024】図2において、出口側分流器2の容器9上
端には流出管6が接続されており、出口側分流器2の稜
線上には1列に伝熱管3が所定ピッチで接続されてい
る。また、出口側分流器2の内部には、流出管6接続位
置から離れる下部程、断面積が大きくなるような傾斜面
7を有する出口側挿入部材7dが挿入され、同時に出口
側分流器2内への伝熱管3の挿入部を覆っている。
In FIG. 2, an outlet pipe 6 is connected to the upper end of the vessel 9 of the outlet side flow divider 2, and the heat transfer tubes 3 are connected in a row at a predetermined pitch on the ridge line of the outlet side flow divider 2. I have. Further, an outlet side insertion member 7d having an inclined surface 7 whose cross-sectional area becomes larger toward the lower portion away from the outlet pipe 6 connecting position is inserted into the outlet side flow distributor 2, and at the same time, inside the outlet side flow distributor 2 To cover the insertion portion of the heat transfer tube 3.

【0025】上記構成によれば、図2において、冷媒は
蒸発器内で吸熱し、気相状態で出口側分流器2に蒸発器
側(C)より流入し、出口側分流器2の容器9内(D)
で合流した後、流出管6よりE側へ導かれる。
According to the above configuration, in FIG. 2, the refrigerant absorbs heat in the evaporator, flows into the outlet-side flow divider 2 in a gaseous state from the evaporator side (C), and the container 9 of the outlet-side flow divider 2 Inside (D)
And then guided to the E side from the outflow pipe 6.

【0026】乾き度の大きい出口側分流器2の容器9内
(D)では気相状態であるため体積速度は非常に速く、
また上部ほど速いが、出口側分流器2下部では合流する
流路が少なく、体積速度は遅いので液だまりを生ずるこ
とがある。そのため出口側挿入部材7dにより出口側分
流器2の容器9内(D)の流路断面積を上部程大きくし
ているので、体積速度は比較的均等で,圧力損失を抑
え、液だまりの発生を防止して冷媒を均等に各伝熱管3
に流すことができ、均等に分配できる。
Since the inside of the container 9 (D) of the outlet side flow divider 2 having a large dryness is in a gaseous phase, the volume velocity is very high.
In addition, although the flow rate is higher in the upper part, the flow path that merges in the lower part of the outlet side flow divider 2 is small and the volume velocity is low, so that a liquid pool may occur. Therefore, the outlet side insertion member 7d increases the cross-sectional area of the flow path in the container 9 of the outlet side flow divider 2 (D) toward the upper portion, so that the volume velocity is relatively uniform, the pressure loss is suppressed, and the formation of a liquid pool occurs. The heat transfer tubes 3
And can be evenly distributed.

【0027】このように、本実施の形態では、一端に流
出管6を接続した容器9と、容器9と流出管6との接続
位置から離れる方向に沿って並列に容器9に接続された
複数の伝熱管3とを備え、複数の伝熱管3から容器9内
に流入した冷媒が合流して流出管6から流出していく出
口側分流器2において、出口側挿入部材7dにより容器
9上端の流出管6接続位置から下側に離れる程、容器9
内の流路断面積を小さくして、容器9内の最も流出管6
接続位置に近い側の伝熱管3が接続されている部分の流
路断面積を、最も流出管6接続位置から離れた側の伝熱
管3が接続されている部分の流路断面積よりも大きくす
るとともに、容器9内の最も流出管6接続位置に近い側
の伝熱管3と最も流出管6接続位置から離れた側の伝熱
管3との間の伝熱管3が接続されている部分の流路断面
積を、流出管6側で隣接する伝熱管3が接続されている
部分の流路断面積以下かつ反流出管6側で隣接する伝熱
管3が接続されている部分の流路断面積以上にしたもの
であり、容器9内に挿入部材7dを挿入することによ
り、容易かつ低コストで、流出管6接続位置より離れる
程、流路断面積を小さくすることにより、体積速度に応
じて圧力損失を抑えながら、冷媒を均等に分配し、冷媒
を均等に各伝熱管3に流すことができる。
As described above, in the present embodiment, the container 9 having the outflow pipe 6 connected to one end thereof and the plurality of vessels 9 connected to the container 9 in parallel along the direction away from the connection position between the container 9 and the outflow pipe 6. Of the outlet-side distributor 2 in which the refrigerant flowing into the vessel 9 from the plurality of heat-transfer pipes 3 merges and flows out of the outflow pipe 6 by the outlet-side insertion member 7d. The further away from the outflow pipe 6 connection position, the lower the container 9
The cross-sectional area of the flow passage in the container 9 is reduced, and
The flow path cross-sectional area of the portion where the heat transfer tube 3 closer to the connection position is connected is larger than the flow path cross-sectional area of the portion where the heat transfer tube 3 closest to the outflow pipe 6 connection position is connected. At the same time, the flow of the portion where the heat transfer tube 3 is connected between the heat transfer tube 3 closest to the outlet pipe 6 connection position and the heat transfer tube 3 closest to the outlet pipe 6 connection position in the container 9 is The cross-sectional area of the passage is equal to or smaller than the cross-sectional area of the flow passage of the portion where the adjacent heat transfer tube 3 is connected on the outflow pipe 6 side and the cross-sectional area of the flow passage of the portion where the adjacent heat transfer tube 3 is connected on the anti-outflow pipe 6 side. As described above, by inserting the insertion member 7d into the container 9,
Easy and low cost , the refrigerant is distributed evenly while reducing the pressure loss according to the volume velocity by reducing the cross-sectional area of the flow path as the distance from the connection position of the outflow pipe 6 increases. It can flow through the heat transfer tube 3.

【0028】また、本実施の形態によれば出口側挿入部
材7dを用いたことにより、伝熱管3の出口側分流器2
の容器9内(D)への挿入量のばらつきも容易に規制す
ることができ、均等に分配することができる。
Further, according to the present embodiment, the use of the outlet side insertion member 7d allows the outlet side flow divider 2 of the heat transfer tube 3 to be used.
The variation in the insertion amount into the container 9 (D) can also be easily regulated, and can be evenly distributed.

【0029】尚、本実施の形態では、出口側挿入部材7
dを用いて、出口側分流器2の容器9内の流路断面積
を、連続的に、容器9上端の流出管6接続位置から下側
に離れる程小さくしたが、これに限らず、容器9内の最
も流出管6接続位置に近い側の伝熱管3が接続されてい
る部分の流路断面積を、最も流出管6接続位置から離れ
た側の伝熱管3が接続されている部分の流路断面積より
も大きくするとともに、容器9内の最も流出管6接続位
置に近い側の伝熱管3と最も流出管6接続位置から離れ
た側の伝熱管3との間の伝熱管3が接続されている部分
の流路断面積を、流出管6側で隣接する伝熱管3が接続
されている部分の流路断面積以下かつ反流出管6側で隣
接する伝熱管3が接続されている部分の流路断面積以上
にしていれば良い。
In the present embodiment, the outlet side insertion member 7
d, the cross-sectional area of the flow path in the container 9 of the outlet side flow divider 2 was continuously reduced as the distance from the outlet pipe 6 connection position at the upper end of the container 9 became lower, but the present invention is not limited to this. The cross-sectional area of the flow path of the portion where the heat transfer tube 3 closest to the connection position of the outflow pipe 6 is connected to the portion of the portion where the heat transfer tube 3 farthest from the connection position of the outflow tube 6 is connected. The heat transfer tube 3 between the heat transfer tube 3 on the side closest to the connection position of the outlet pipe 6 and the heat transfer tube 3 on the side farthest from the connection position of the outlet tube 6 in the container 9 is made larger than the cross-sectional area of the flow path. The flow passage cross-sectional area of the connected portion is equal to or smaller than the flow passage cross-sectional area of the portion where the adjacent heat transfer tube 3 is connected on the outflow tube 6 side, and the adjacent heat transfer tube 3 is connected on the anti-outflow tube 6 side. It is only necessary that the flow path cross-sectional area be equal to or larger than the flow path cross-sectional area of the part where the liquid crystal is present.

【0030】[0030]

【発明の効果】以上のように本発明は、一端に流入管を
接続した容器と、前記流入管接続位置から離れる方向に
沿って並列に前記容器に接続された複数の伝熱管とを備
え、前記流入管から前記容器内に流入した冷媒が複数の
前記伝熱管に分流され流出していく分流器において、
記容器内に挿入部材を挿入することにより、前記容器内
の最も前記流入管接続位置に近い側の伝熱管が接続され
ている部分の流路断面積を、最も前記流入管接続位置か
ら離れた側の伝熱管が接続されている部分の流路断面積
よりも大きくするとともに、前記容器内の最も前記流入
管接続位置に近い側の伝熱管と最も前記流入管接続位置
から離れた側の伝熱管との間の伝熱管が接続されている
部分の流路断面積を、流入管側で隣接する伝熱管が接続
されている部分の流路断面積以下かつ反流入管側で隣接
する伝熱管が接続されている部分の流路断面積以上にし
たものであり、容器内に挿入部材を挿入することによ
り、容易かつ低コストで、容器内部の空間部の形状の最
適化を図って冷媒の体積速度を均一にして圧力損失を抑
えることができ、冷媒の体積速度は分流器内で低下する
ことなく気液を撹拌し、気相と液相の分離や液だまりを
抑制し、冷媒を均等に分配し、冷媒を均等に各伝熱管に
流すことができる。
As described above, the present invention comprises a vessel having one end connected to an inflow pipe, and a plurality of heat transfer tubes connected to the vessel in parallel along a direction away from the inflow pipe connection position, in flow divider refrigerant flowing into the container from the inlet pipe flows out is diverted to a plurality of the heat transfer tube, before
By inserting the insertion member into the container, the flow path cross-sectional area of the portion where the heat transfer tube on the side closest to the inflow pipe connection position in the container is connected, the most remote from the inflow pipe connection position The heat transfer tubes on the side closest to the inflow pipe connection position and the heat transfer tubes on the side furthest from the inflow tube connection position in the container are made larger than the flow path cross-sectional area of the portion where the heat transfer tubes on the side are connected. The heat transfer pipes between the heat pipes connected to the heat pipes are smaller than the flow path cross section of the part where the adjacent heat transfer pipes are connected on the inflow pipe side, and the heat transfer pipes adjacent on the anti-inflow pipe side Is greater than or equal to the cross-sectional area of the flow path of the part to which it is connected, and by inserting the insertion member into the container.
Easy and low cost, the pressure loss can be suppressed by optimizing the shape of the space inside the container to make the volume velocity of the refrigerant uniform, and the volume velocity of the refrigerant does not decrease in the flow divider. It is possible to stir gas and liquid, suppress separation of a gas phase and a liquid phase, suppress pooling, distribute the refrigerant evenly, and flow the refrigerant evenly through each heat transfer tube.

【0031】また、一端に流出管を接続した容器と、前
記流出管接続位置から離れる方向に沿って並列に前記容
器に接続された複数の伝熱管とを備え、複数の前記伝熱
管から前記容器内に流入した冷媒が合流して前記流出管
から流出していく分流器において、前記容器内に挿入部
材を挿入することにより、前記容器内の最も前記流出管
接続位置に近い側の伝熱管が接続されている部分の流路
断面積を、最も前記流出管接続位置から離れた側の伝熱
管が接続されている部分の流路断面積よりも大きくする
とともに、前記容器内の最も前記流出管接続位置に近い
側の伝熱管と最も前記流出管接続位置から離れた側の伝
熱管との間の伝熱管が接続されている部分の流路断面積
を、流出管側で隣接する伝熱管が接続されている部分の
流路断面積以下かつ反流出管側で隣接する伝熱管が接続
されている部分の流路断面積以上にしたものであり、
器内に挿入部材を挿入することにより、容易かつ低コス
トで、容器内部の空間部の形状の最適化を図って冷媒の
体積速度を均一にして圧力損失を抑えることができ、気
相と液相の分離や液だまりを抑制し、冷媒を均等に分配
し、冷媒を均等に各伝熱管に流すことができる。
Also, a vessel having an outlet pipe connected to one end thereof, and a plurality of heat transfer pipes connected to the vessel in parallel along a direction away from the outflow pipe connection position are provided. in flow divider inflow refrigerant flows out from the outflow pipe joins the inner insertion portion into the container
By inserting the material, the flow passage cross-sectional area of the portion where the heat transfer tube closest to the outflow pipe connection position in the container is connected, the heat transfer tube most remote from the outflow pipe connection position is The flow path cross-sectional area of the connected portion is made larger, and between the heat transfer tube closest to the outlet pipe connection position and the heat transfer tube closest to the outlet tube connection position in the container. The flow path cross-sectional area of the portion where the heat transfer tube is connected is equal to or less than the flow path cross-sectional area of the portion where the adjacent heat transfer tube is connected on the outflow tube side, and the adjacent heat transfer tube is connected on the anti-outflow tube side. It is obtained by the above flow path cross-sectional area of the portion, volume
Easy and low cost by inserting the insertion member into the container
In this way, it is possible to optimize the shape of the space inside the container, make the volume velocity of the refrigerant uniform, suppress the pressure loss, suppress the separation and pooling of the gas and liquid phases, and distribute the refrigerant evenly. The refrigerant can be distributed and the refrigerant can be evenly passed through each heat transfer tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の入口側分流器の縦断面
FIG. 1 is a longitudinal sectional view of an inlet-side flow divider according to a first embodiment of the present invention.

【図2】本発明の実施の形態2の出口側分流器の縦断面
FIG. 2 is a longitudinal sectional view of an outlet-side flow divider according to a second embodiment of the present invention.

【図3】従来における分流器を取り付けた蒸発器の正面
FIG. 3 is a front view of a conventional evaporator equipped with a flow divider.

【図4】従来の分流器の斜視図FIG. 4 is a perspective view of a conventional flow divider.

【図5】従来の分流器の縦断面図FIG. 5 is a longitudinal sectional view of a conventional flow divider.

【図6】従来の別の分流器の縦断面図FIG. 6 is a longitudinal sectional view of another conventional flow divider.

【符号の説明】[Explanation of symbols]

1 入口側分流器 2 出口側分流器 3 伝熱管 5 流入管 6 流出管 9 容器 DESCRIPTION OF SYMBOLS 1 Inlet side flow splitter 2 Outlet side flow splitter 3 Heat transfer tube 5 Inflow pipe 6 Outflow pipe 9 Container

フロントページの続き (72)発明者 加瀬 広明 大阪府東大阪市高井田本通4丁目2番5 号 松下冷機株式会社内 (72)発明者 木戸 長生 大阪府東大阪市高井田本通4丁目2番5 号 松下冷機株式会社内 (72)発明者 青柳 治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 青木 亮 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 中邨 隆 大阪府大阪市城東区今福西6丁目2番61 号 松下精工株式会社内 (56)参考文献 特開 昭57−196045(JP,A) 実開 昭57−33972(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 41/00 F28F 9/22 Continuation of front page (72) Inventor Hiroaki Kase 4-5-2-5 Takaida Hondori, Higashi-Osaka City, Osaka Inside Matsushita Refrigerating Machinery Co., Ltd. (72) Nagao Kido 4-2-2-5 Takaida Hondori, Higashi-Osaka City, Osaka Prefecture No. Matsushita Refrigeration Machinery Co., Ltd. (72) Inventor Takashi Nakason Matsushita Seiko Co., Ltd., 6-2-61 Imafukunishi, Joto-ku, Osaka-shi, Osaka (56) References JP-A-57-196045 (JP, A) Jpn. , U) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 41/00 F28F 9/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一端に流入管を接続した容器と、前記流
入管接続位置から離れる方向に沿って並列に前記容器に
接続された複数の伝熱管とを備え、前記流入管から前記
容器内に流入した冷媒が複数の前記伝熱管に分流され流
出していく分流器において、前記容器内に挿入部材を挿
入することにより、前記容器内の最も前記流入管接続位
置に近い側の伝熱管が接続されている部分の流路断面積
を、最も前記流入管接続位置から離れた側の伝熱管が接
続されている部分の流路断面積よりも大きくするととも
に、前記容器内の最も前記流入管接続位置に近い側の伝
熱管と最も前記流入管接続位置から離れた側の伝熱管と
の間の伝熱管が接続されている部分の流路断面積を、流
入管側で隣接する伝熱管が接続されている部分の流路断
面積以下かつ反流入管側で隣接する伝熱管が接続されて
いる部分の流路断面積以上にしたことを特徴とする分流
器。
1. A container having one end connected to an inflow pipe, and a plurality of heat transfer tubes connected in parallel to the container along a direction away from the inflow pipe connection position, wherein the heat transfer pipe is provided in the container from the inflow pipe. In a flow divider in which the inflowing refrigerant is divided into a plurality of heat transfer tubes and flows out , an insertion member is inserted into the container.
By inserting, the heat transfer tube on the side farthest from the inflow pipe connection position is connected to the flow path cross-sectional area of the portion where the heat transfer tube on the side closest to the inflow pipe connection position in the container is connected. Heat transfer tube between the heat transfer tube closest to the inflow pipe connection position and the heat transfer tube most remote from the inflow pipe connection position in the container, The flow path cross-sectional area of the portion where is connected is smaller than the flow path cross-sectional area of the portion where the adjacent heat transfer tube is connected on the inflow pipe side, and of the portion where the adjacent heat transfer tube is connected on the anti-inflow pipe side. A flow divider characterized by having a flow path cross-sectional area or more.
【請求項2】 一端に流出管を接続した容器と、前記流
出管接続位置から離れる方向に沿って並列に前記容器に
接続された複数の伝熱管とを備え、複数の前記伝熱管か
ら前記容器内に流入した冷媒が合流して前記流出管から
流出していく分流器において、前記容器内に挿入部材を
挿入することにより、前記容器内の最も前記流出管接続
位置に近い側の伝熱管が接続されている部分の流路断面
積を、最も前記流出管接続位置から離れた側の伝熱管が
接続されている部分の流路断面積よりも大きくするとと
もに、前記容器内の最も前記流出管接続位置に近い側の
伝熱管と最も前記流出管接続位置から離れた側の伝熱管
との間の伝熱管が接続されている部分の流路断面積を、
流出管側で隣接する伝熱管が接続されている部分の流路
断面積以下かつ反流出管側で隣接する伝熱管が接続され
ている部分の流路断面積以上にしたことを特徴とする分
流器。
2. A container having one end connected to an outflow pipe, and a plurality of heat transfer tubes connected in parallel to the container along a direction away from the outflow pipe connection position, wherein a plurality of heat transfer tubes are connected to the container. In the flow divider in which the refrigerant flowing into merges and flows out from the outflow pipe , the insertion member is inserted into the container.
By inserting, the heat transfer tube on the side farthest from the outlet pipe connection position is connected to the flow path cross-sectional area of the portion where the heat transfer tube closest to the outlet pipe connection position in the container is connected. Heat transfer tube between the heat transfer tube closest to the outlet pipe connection position and the heat transfer tube closest to the outlet tube connection position in the container, Is the flow path cross-sectional area of the part where
A flow splitter characterized in that the flow cross-sectional area is equal to or less than the flow path cross-sectional area of a portion where an adjacent heat transfer tube is connected on the outflow pipe side and is equal to or greater than the flow path cross-sectional area of a portion where an adjacent heat transfer tube is connected on the anti-outflow pipe side vessel.
JP8055709A 1996-03-13 1996-03-13 Shunt Expired - Fee Related JP3007839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8055709A JP3007839B2 (en) 1996-03-13 1996-03-13 Shunt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8055709A JP3007839B2 (en) 1996-03-13 1996-03-13 Shunt

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1165998A Division JPH0737865B2 (en) 1989-06-28 1989-06-28 Shunt

Publications (2)

Publication Number Publication Date
JPH08233409A JPH08233409A (en) 1996-09-13
JP3007839B2 true JP3007839B2 (en) 2000-02-07

Family

ID=13006417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8055709A Expired - Fee Related JP3007839B2 (en) 1996-03-13 1996-03-13 Shunt

Country Status (1)

Country Link
JP (1) JP3007839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210019775A (en) * 2019-08-13 2021-02-23 엘지전자 주식회사 Heat exchanger with improved uniformity of refrigerant distribution

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132427A (en) * 1996-10-30 1998-05-22 Daikin Ind Ltd Heat-exchanger
FR2807152B1 (en) * 2000-03-28 2002-12-06 Cie Ind D Applic Thermiques Ci PLATE HEAT EXCHANGER
CA2596557A1 (en) 2005-02-02 2006-08-10 Carrier Corporation Heat exchanger with multiple stage fluid expansion in header
AU2005326655B2 (en) 2005-02-02 2010-09-16 Carrier Corporation Mini-channel heat exchanger with reduced dimension header
CA2595844A1 (en) 2005-02-02 2006-08-10 Carrier Corporation Multi-channel flat-tube heat exchanger
CA2596335A1 (en) 2005-02-02 2006-08-10 Carrier Corporation Mini-channel heat exchanger header
JP2008528945A (en) 2005-02-02 2008-07-31 キャリア コーポレイション Heat exchanger with perforated plate in header
US7931073B2 (en) 2005-02-02 2011-04-26 Carrier Corporation Heat exchanger with fluid expansion in header
JP2008008584A (en) * 2006-06-30 2008-01-17 Sharp Corp Heat exchanger
US8439104B2 (en) * 2009-10-16 2013-05-14 Johnson Controls Technology Company Multichannel heat exchanger with improved flow distribution
JP2013002773A (en) * 2011-06-20 2013-01-07 Sharp Corp Heat exchanger and air conditioner with the same
KR101372096B1 (en) * 2011-11-18 2014-03-07 엘지전자 주식회사 A heat exchanger
CN108131982B (en) * 2018-01-30 2023-11-03 江苏唯益换热器有限公司 Fluid distributor using foam metal and plate heat exchanger comprising same
WO2019207806A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Refrigerant distributor, heat exchanger, and air conditioner
CN112005074B (en) * 2018-04-27 2021-07-13 日立江森自控空调有限公司 Refrigerant distributor, heat exchanger, and air conditioner
EP4095476B1 (en) * 2020-01-23 2024-02-14 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733972U (en) * 1980-08-05 1982-02-23
IT1138781B (en) * 1981-05-22 1986-09-17 Pirelli TERMINAL FOR SOLAR PANELS AND ITS CONSTRUCTION PROCESS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210019775A (en) * 2019-08-13 2021-02-23 엘지전자 주식회사 Heat exchanger with improved uniformity of refrigerant distribution
KR102235402B1 (en) * 2019-08-13 2021-04-02 엘지전자 주식회사 Heat exchanger with improved uniformity of refrigerant distribution

Also Published As

Publication number Publication date
JPH08233409A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3007839B2 (en) Shunt
CN101487669B (en) Heat exchanger comprising multi-pipe distributer
US5448899A (en) Refrigerant evaporator
CN101111730B (en) Tube inset and bi-flow arrangement for a header of a heat pump
CA2381214C (en) Heat exchanger inlet tube with flow distributing turbulizer
WO2014032488A1 (en) Heat exchanger for micro channel
JPH04295599A (en) Heat exchanger
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JP2006029697A (en) Refrigerant evaporator
JPH0737865B2 (en) Shunt
JP3122578B2 (en) Heat exchanger
JPH11325656A (en) Header flow divider
JP2690234B2 (en) Heat exchanger
CN205957527U (en) Refrigerating equipment
JP2574488B2 (en) Heat exchanger
JP2644900B2 (en) Heat exchanger
CN103673404A (en) Micro-channel heat exchanger
JP3083385B2 (en) Heat exchanger
JPH0642885Y2 (en) Refrigerator Evaporator
CN103673403A (en) Micro-channel heat exchanger
JPH08200886A (en) Heat exchanger air conditioning
CN106440861A (en) Heat exchanger assembly and refrigeration system with heat exchanger assembly
JPH0359364A (en) Refrigerant condensor
JPH09273829A (en) Integrated piping for refrigerating cycle
JP2677420B2 (en) Heat exchanger for refrigerant condenser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees