JP3004509B2 - Method and apparatus for producing ethanol from microalgae - Google Patents
Method and apparatus for producing ethanol from microalgaeInfo
- Publication number
- JP3004509B2 JP3004509B2 JP5239845A JP23984593A JP3004509B2 JP 3004509 B2 JP3004509 B2 JP 3004509B2 JP 5239845 A JP5239845 A JP 5239845A JP 23984593 A JP23984593 A JP 23984593A JP 3004509 B2 JP3004509 B2 JP 3004509B2
- Authority
- JP
- Japan
- Prior art keywords
- ethanol
- microalgae
- starch
- slurry
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/12—Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/58—Reaction vessels connected in series or in parallel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/26—Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/02—Separating microorganisms from the culture medium; Concentration of biomass
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/10—Separation or concentration of fermentation products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Sustainable Development (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Clinical Laboratory Science (AREA)
- Analytical Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、微細藻が蓄積するデン
プンを原料として燃料や化学工業原料等として有用なエ
タノールを製造する方法及びそのための装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ethanol, which is useful as a fuel or a raw material for the chemical industry, using starch accumulated by microalgae as a raw material, and an apparatus therefor.
【0002】[0002]
【従来の技術】従来エタノールは、石炭、石油などの化
石資源を原料とし、エチレンを経由して化学合成する方
法、あるいはサトウキビの糖やトウモロコシのデンプン
などのバイオマス資源を原料として、カビ、酵母などの
微生物による発酵方法などにより製造されている。バイ
オマス原料の中でクロレラ、ドナリエラ、クラミドモナ
ス、セネデスムス、スピルリーナなどで代表される微細
な光合成生物である微細藻の中にはアルコールの原料と
なるデンプンやグリコーゲンを多量に(乾重量の50%
以上)含有するものが知られており、これらの微細藻デ
ンプンを原料としてエタノールを製造する方法がある。
これらの微細藻デンプンを原料とするエタノールの製造
は従来次のような方法により行われている。 (1)微細藻を、光独立栄養的に明所で光合成により炭
酸同化させ増殖させるかあるいは従属栄養的に糖や有機
酸などの有機物を与えて暗所で増殖させるなどの方法に
より培養して増殖させる。 (2)増殖した微細藻は主として細胞内にデンプンを貯
蔵しているため、機械的な手段(超音波破砕、爆砕な
ど)あるいは細胞壁を溶解させる酵素等を用いてデンプ
ンを細胞より露出させ、水や有機溶剤を用いて抽出分離
する。 (3)抽出分離したデンプンは次に、酵素糖化方法など
によりブドウ糖に分解し、更にブドウ糖にアルコール酵
母を加えて発酵させ、エタノールに変換させる。2. Description of the Related Art Conventionally, ethanol is produced by using fossil resources such as coal and petroleum as raw materials and chemically synthesizing via ethylene, or by using biomass resources such as sugar cane sugar and corn starch as raw materials to mold, yeast, etc. It is manufactured by a fermentation method using microorganisms. Among biomass raw materials, microalgae, which are fine photosynthetic organisms represented by Chlorella, Donariella, Chlamydomonas, Scenedesmus, Spirulina, etc., contain a large amount of starch and glycogen (50% of dry weight) as alcohol raw materials.
The above is known, and there is a method for producing ethanol using these microalga starch as a raw material.
The production of ethanol from these microalga starches has been conventionally performed by the following method. (1) Microalgae are cultivated by a method such as photoautotrophic carbonation assimilation by photosynthesis in a light place and growth, or heterotrophic growth by providing organic substances such as sugars and organic acids in a dark place. Proliferate. (2) Since the grown microalgae mainly stores starch in the cells, the starch is exposed from the cells by mechanical means (such as ultrasonic crushing and explosion) or by using an enzyme or the like that dissolves the cell wall, and And extraction using an organic solvent. (3) Next, the extracted and separated starch is decomposed into glucose by an enzymatic saccharification method or the like, and is further fermented by adding alcoholic yeast to glucose and converted into ethanol.
【0003】[0003]
【発明が解決しようとする課題】上記の従来方法におい
ては次のような問題点があった。 (1)細胞内のデンプンを一旦抽出分離する必要がある
が、微細藻の細胞壁は強固なものが多く、機械的な破砕
に多くの動力を消費したり、高価な細胞壁溶解酵素を必
要とする。また、デンプン抽出の過程では多量の有機溶
剤や遠心分離の動力が必要である。 (2)抽出分離したデンプンは生の状態であるため、糖
化酵素等によりブドウ糖までに分解する前に加熱処理
(糊化、あるいはαデンプン化と称する)を行う工程を
要することから、この加熱エネルギが大であることが問
題となる。通常この加熱エネルギはエタノール製造工程
全体でのエネルギの2〜3割を占めるとされている。 これらの問題のため、微細藻デンプンはイモやトウロコ
シなどの農産物に比べて利点が多いにもかかわらず、現
在のところ、大規模に実用化されるには至っていない。
本発明の目的は、前記従来技術の問題点を解決し、デン
プンを蓄積する微細藻を原料として多量のエネルギや薬
剤を必要とせず、簡単なプロセスにより効率よくエタノ
ールを製造できる方法及びそのための装置を提供するこ
とにある。However, the above-mentioned conventional method has the following problems. (1) Although it is necessary to once extract and separate the starch in the cells, the cell walls of the microalgae are often strong, requiring a lot of power for mechanical crushing, and requiring expensive cell wall lysing enzymes. . In the process of starch extraction, a large amount of organic solvent and power for centrifugation are required. (2) Since the extracted and separated starch is in a raw state, a step of performing a heat treatment (referred to as gelatinization or α-starch) is required before it is decomposed into glucose by a saccharifying enzyme or the like. Is large. Usually, it is said that this heating energy accounts for 20 to 30% of the energy in the whole ethanol production process. Due to these problems, microalgae starch has not yet been put into practical use on a large scale, although it has many advantages over agricultural products such as potatoes and corn.
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and a method and an apparatus for efficiently producing ethanol by a simple process without using a large amount of energy or chemicals using microalgae that accumulate starch as a raw material Is to provide.
【0004】[0004]
【課題を解決するための手段】本発明者らは、前記目的
を達成するため、微細藻細胞からのデンプンの抽出分離
及び生デンプンの加熱に要する多量のエネルギーコスト
を削減する手段について研究する中で、微細藻特有の細
胞内デンプンのアルコール化反応を有効利用することに
より、細胞からのデンプン抽出分離及び加熱処理を行う
ことなくアルコール製造が可能であること見出した。Means for Solving the Problems In order to achieve the above object, the present inventors have been studying means for reducing a large amount of energy cost required for extraction and separation of starch from microalgae cells and heating of raw starch. Thus, it has been found that by effectively utilizing the alcoholization reaction of intracellular starch specific to microalgae, it is possible to produce alcohol without performing starch extraction and separation from cells and heat treatment.
【0005】すなわち本発明は、(1)細胞内にデンプ
ンを蓄積する微細藻を培養し、培養した藻体を含む培養
液を濃縮して得られるスラリーを、pHを6.0〜9.
0の範囲に保ちながら暗黒かつ嫌気性雰囲気に保持して
エタノールを生成させることを特徴とする微細藻からの
エタノール製造方法、(2)細胞内にデンプンを蓄積す
る微細藻を培養するための培養手段、培養液を濃縮する
濃縮手段、濃縮した藻体のスラリーを暗黒かつ嫌気性雰
囲気に保持する保持手段、該保持手段内のpHを調整す
るpH調整手段及び生成したエタノールを分離濃縮する
分離濃縮手段よりなることを特徴とする微細藻からのエ
タノール製造装置、である。That is, the present invention provides (1) a slurry obtained by culturing a microalga that accumulates starch in cells and concentrating a culture solution containing the cultured alga bodies, having a pH of 6.0 to 9.0.
A method for producing ethanol from microalgae, wherein ethanol is produced while maintaining a dark and anaerobic atmosphere while maintaining the range of 0, (2) culturing for culturing microalgae that accumulate starch in cells Means, concentration means for concentrating the culture solution, holding means for holding the concentrated algal slurry in a dark and anaerobic atmosphere, pH adjusting means for adjusting the pH in the holding means, and separation and concentration for separating and concentrating the produced ethanol Means for producing ethanol from microalgae.
【0006】微細藻は太陽光等の照射を受けて光合成を
行い、細胞内にデンプンを蓄積することが出来る。ま
た、糖などの有機物を栄養として暗条件でも増殖してデ
ンプン蓄積するものも存在する。一方、光や有機物(栄
養)のない条件になると、通常細胞内のデンプンなどの
貯蔵物質を消費し、炭酸ガスまで酸化分解しながら生命
活動を維持する。このような条件ではアルコールの生産
は起こらない。ここで人為的に暗条件で且つ酸素のな
い、嫌気的な条件を与えるとデンプンの炭酸ガスへの完
全な酸化反応は進行しなくなり、微細藻の種類によって
は水素ガス、炭酸ガス、アルコール、乳酸、ギ酸、酢酸
等を種々の割合で生産するものが存在することがわかっ
てきた。本発明者らは、各種のデンプン蓄積微細藻を培
養、濃縮し、暗黒かつ嫌気性雰囲気に保持して、細胞内
デンプンからのエタノール生産性を調べた結果、エタノ
ールの生産が特に多いものが存在することがわかり、こ
のような微細藻を用いることにより、効率よくエタノー
ル生産が可能であることを見出した。[0006] Microalgae undergo photosynthesis under irradiation of sunlight or the like, and can accumulate starch in cells. In addition, there is also a substance that grows even under dark conditions and accumulates starch by using an organic substance such as sugar as a nutrient. On the other hand, when there is no light and no organic matter (nutrition), storage substances such as starch in cells are usually consumed, and life activity is maintained while oxidatively decomposing to carbon dioxide. No alcohol production occurs under these conditions. Here, when artificially provided with anaerobic conditions under dark conditions and no oxygen, the complete oxidation reaction of starch to carbon dioxide gas does not proceed, and depending on the type of microalgae, hydrogen gas, carbon dioxide gas, alcohol, lactic acid , Formic acid, acetic acid, etc. in various ratios have been found to exist. The present inventors have cultured and concentrated various types of starch-accumulating microalgae, and kept them in a dark and anaerobic atmosphere, and examined the productivity of ethanol from intracellular starch. It was found that by using such microalgae, it was possible to produce ethanol efficiently.
【0007】本発明の方法において、エタノール製造用
原料として使用できる微細藻は、細胞内にデンプン、グ
リコーゲンなどブドウ糖によって構成される多糖類を多
量に(望ましくは乾燥重量の50%以上)含有し、更に
暗黒かつ嫌気性雰囲気のもとで該デンプン、グリコーゲ
ンなどを速やかに代謝し、エタノールを多く生産する特
性を有するものである。これらの条件を満たすものの例
としては、緑藻綱、プラシノ藻綱、クリプト藻綱、藍藻
綱に分類される微細藻類が挙げられ、更に属レベルの名
称を示すと、緑藻綱のクラミドモナス、クロレラ及び藍
藻綱のスピルリーナ、オシラトリア、ミクロシスティス
などを挙げることができる。[0007] In the method of the present invention, the microalgae which can be used as a raw material for producing ethanol contains a large amount (preferably 50% or more by dry weight) of polysaccharides composed of glucose such as starch and glycogen in cells. Furthermore, it has the property of rapidly metabolizing the starch, glycogen and the like under a dark and anaerobic atmosphere and producing a large amount of ethanol. Examples of those satisfying these conditions include microalgae classified into green alga, prasino alga, crypto alga, and cyanobacteria, and further indicating the genus-level name, Chlamydomonas, chlorella and blue algae of the green alga Tropical spirulina, osylatoria, microcystis and the like can be mentioned.
【0008】これらの微細藻を含むスラリーを暗黒かつ
嫌気性雰囲気下に保持してエタノールを生産させる場
合、エタノール以外に若干ながら有機酸の生成を伴うた
め、反応の進行によって徐々に液中のpHが低下する。
pHがある値以下に下がるとエタノール生産反応が鈍化
するため、本発明の方法においては微細藻のスラリーを
暗黒かつ嫌気性雰囲気下に保持する間、スラリーのpH
が6.0〜9.0、好ましくは6.5〜8.0の範囲に
保つように調整する。pHが6.0未満になるとエタノ
ールの生成速度が遅くなり、またpH調整用のアルカリ
を供給しすぎることによりpHが9.0を超えるとやは
りエタノールの生成速度が遅くなるので好ましくない。[0008] When ethanol is produced by keeping the slurry containing these microalgae in a dark and anaerobic atmosphere, a small amount of organic acid is generated in addition to ethanol. Decrease.
Since the ethanol production reaction slows down when the pH falls below a certain value, in the method of the present invention, while maintaining the microalgae slurry in a dark and anaerobic atmosphere, the pH of the slurry is maintained.
Is adjusted to be in the range of 6.0 to 9.0, preferably 6.5 to 8.0. If the pH is less than 6.0, the production rate of ethanol becomes low, and if the pH exceeds 9.0 due to excessive supply of alkali for adjusting the pH, the production rate of ethanol also becomes undesirably low.
【0009】本発明によるエタノール製造プロセスの1
例を図1に示す。図1のプロセスにおいて、前記の細胞
内にデンプンを蓄積する微細藻を微細藻培養手段1に供
給して培養する。微細藻培養手段1は前述の光独立栄養
の場合、水深10〜30cm程の流水路型の培養槽で上
面が開放され、窒素、リンなどの無機栄養を与えながら
太陽光を受光して培養する方式を用いることができる。
従属栄養培養の場合、光の照射は不要であり、従来公知
の一般的微生物発酵槽を用いて、槽内及び有機栄養培地
を120℃で15分間程度滅菌した上で培養することが
できる。[0009] One of the ethanol production processes according to the present invention.
An example is shown in FIG. In the process of FIG. 1, the microalgae that accumulates starch in the cells is supplied to the microalga culture means 1 and cultured. In the case of the aforementioned photoautotrophic nutrition, the microalgae culturing means 1 is open at the top in a flowing water type culture tank having a water depth of about 10 to 30 cm, and receives sunlight while culturing by supplying inorganic nutrients such as nitrogen and phosphorus. A method can be used.
In the case of heterotrophic culture, irradiation with light is unnecessary, and the culture can be performed using a conventionally known general microbial fermentation tank after sterilizing the tank and the organic nutrient medium at 120 ° C. for about 15 minutes.
【0010】培養液中の微細藻の濃度が培養液1リット
ル当たり0.1〜1.0g程度になった時点で培養を止
め、微細藻濃縮手段2により濃縮する。微細藻濃縮手段
2においては、沈殿性の高い微細藻の場合には一旦自然
沈殿により固形分1%前後になるよう濃縮した後、遠心
分離、ベルトフィルタなどにより更に固形分10〜20
%に濃縮する。沈殿性の低い微細藻の場合には直接、遠
心分離、ベルトフィルタなどにより固形分10〜20%
に濃縮する。本プロセスにおいては、流動性を有する範
囲で可能な限り高固形分(10〜20%)に濃縮すると
スラリーとしての取扱いや後段での緩速攪拌が可能でか
つエタノール濃度が高くでき後段のエタノール濃縮が有
利になる。When the concentration of the microalgae in the culture solution becomes about 0.1 to 1.0 g per liter of the culture solution, the culture is stopped, and the microalgae is concentrated by the microalgae concentration means 2. In the microalga enrichment means 2, in the case of microalgae having a high sedimentation property, the microalgae is once concentrated by spontaneous sedimentation to a solid content of about 1%, and then the solid content is further increased to 10 to 20% by centrifugation, a belt filter or the like.
Concentrate to%. In the case of microalgae with low sedimentation, the solid content is directly 10-20% by centrifugation, belt filter, etc.
To concentrate. In this process, if the concentration is as high as possible (10 to 20%) within the range having fluidity, handling as a slurry and slow stirring in the subsequent stage are possible, and the ethanol concentration can be increased in the subsequent stage. Is advantageous.
【0011】このようにして得られた微細藻のスラリー
を暗黒かつ嫌気性雰囲気に保持できる保持手段3に導い
てエタノールの生産を行わせる。保持手段3はスラリー
ポンプあるいは攪拌機などの緩速攪拌手段を備えたpH
モニター付密閉型容器からなる。ここで暗黒雰囲気と
は、光合成が行われない程度に光を遮断した状態をい
う。この保持手段3中にスラリーを導入し、緩くかきま
ぜながら暗黒かつ嫌気性雰囲気に保持することによりエ
タノールを生成させる。この間、pHモニターによりス
ラリーのpHを監視しておき、NaOHなどのアルカリ
液あるいはHClなどの酸溶液の供給手段を備えたpH
調整手段4より、アルカリ液あるいは酸溶液を添加して
スラリーのpHを6.0〜9.0、好ましくは6.5〜
8.0の範囲に保つようにする。pH調整手段4は、保
持手段3のpHモニターに連動して作用するようにし、
連続的にスラリーのpHを調整できるようにすることも
できる。保持手段3内での微細藻の滞留時間は、微細藻
の種類、保持条件などにより異なるが5〜50時間の範
囲が一般的である。The microalgae slurry thus obtained is led to a holding means 3 capable of holding a dark and anaerobic atmosphere to produce ethanol. The holding means 3 is provided with a slow stirring means such as a slurry pump or a stirrer.
Consists of a closed container with a monitor. Here, the dark atmosphere means a state where light is blocked to such an extent that photosynthesis is not performed. The slurry is introduced into the holding means 3 and ethanol is generated by holding the slurry in a dark and anaerobic atmosphere with gentle stirring. During this time, the pH of the slurry is monitored by a pH monitor, and the pH of the slurry provided with a means for supplying an alkaline solution such as NaOH or an acid solution such as HCl.
From the adjusting means 4, an alkaline solution or an acid solution is added to adjust the pH of the slurry to 6.0 to 9.0, preferably 6.5 to 9.0.
8.0. The pH adjusting means 4 works in conjunction with the pH monitor of the holding means 3,
It is also possible to adjust the pH of the slurry continuously. The residence time of the microalgae in the holding means 3 varies depending on the type of the microalgae, the holding conditions, and the like, but generally ranges from 5 to 50 hours.
【0012】スラリー中のエタノール濃度が5〜50g
/リットル(5000〜50000ppm)程度になっ
た時点で、エタノール濃縮手段5に導き、エタノールの
分離濃縮を行う。エタノール分離濃縮手段では蒸留方法
の他、エタノールまたは水分離膜による濃縮方法、ある
いはプロパンなどの溶媒を用いた超臨界抽出方法などを
用いることにより、最高は無水エタノールまでの所望の
濃度まで濃縮することができる。エタノールを分離した
あとの残渣は乾燥後、焼却等により処分することができ
る。The ethanol concentration in the slurry is 5 to 50 g
/ Liter (5,000 to 50,000 ppm), the liquid is led to the ethanol concentration means 5 to separate and concentrate ethanol. Ethanol separation / concentration means uses a distillation method, a concentration method using ethanol or a water separation membrane, or a supercritical extraction method using a solvent such as propane, etc., to condense to the desired concentration up to absolute ethanol. Can be. The residue after separating the ethanol can be disposed of by incineration or the like after drying.
【0013】[0013]
【実施例】以下実施例により本発明の方法及び装置をさ
らに具体的に説明する。 (実施例1) エタノール生成に及ぼすpHの影響 クラミドモナス・ラインハルディ(Chlamydomonas rein
hardtii )UTEX2247を、表1に示す組成のA乃
至Eの培地をA:1ミリリットル、B:10ミリリット
ル、C:10マイクロリットル、D:100ミリリット
ル、E:6ミリリットルの割合で混合し水を加えて全量
1リットルとし、NaOHでpHを8.0に調整した培
養液を用いて培養した。この培養液2リットルと、前記
クラミドモナスの培養種0.04gを偏平透明容器に入
れ、白色蛍光灯で約15000ルックス(lux)の連
続照射を行い、空気(5%CO2 添加)を通気しながら
25℃で3日間培養し、2リットル中に1.5g(乾燥
藻体として)の藻体を含む培養液を得た。次にこの液を
遠心沈殿法により濃縮し、16ミリリットルの液中にク
ラミドモナスUTEX2247の藻体1.5gを含む藻
体スラリー液とし、この液を2ミリリットル×8本の試
料に分割した。分割した各試料にユニバーサル緩衝液
(Britton-Robinson 緩衝液〔H3 PO4 −酢酸−ホウ
酸−NaOH〕、pH4〜11、8段階)を各20ミリ
リットルづつ添加混合した後、遠心分離する操作を2回
繰り返し、pH4〜11設定した藻体スラリー(藻体
0.19g/2ミリリットル)各1本を調整した。この
藻体スラリー2ミリリットルをそれぞれ10ミリリット
ルの容器に移し、窒素ガスを短時間スラリー液に注入し
て容器内の酸素を除去した後、密閉し暗黒条件下で25
℃に保ちながら振とう(65往復/分)し、エタノール
の生成を行わせた。48時間振とう後、各スラリー液中
に生成したエタノールの濃度を測定した。その結果を図
2に示す。図2の結果から、本発明の方法により微細藻
類からエタノールを製造する際のpHは6〜9の範囲が
好ましく、pH6.5〜8.0の範囲が特に好ましいこ
とがわかる。The method and apparatus of the present invention will be described more specifically with reference to the following examples. Example 1 Effect of pH on Ethanol Production Chlamydomonas rein
hardtii) UTEX2247 was mixed with mediums A to E having the composition shown in Table 1 in the proportions of A: 1 ml, B: 10 ml, C: 10 microliters, D: 100 ml, E: 6 ml, and water was added. The total volume was adjusted to 1 liter, and the cells were cultured using a culture solution adjusted to pH 8.0 with NaOH. 2 liters of this culture solution and 0.04 g of the above-mentioned Chlamydomonas culture were placed in a flat transparent container, and continuously irradiated with about 15,000 lux (lux) with a white fluorescent lamp, while air (5% CO 2 added) was passed. After culturing at 25 ° C. for 3 days, a culture solution containing 1.5 g (as dry alga bodies) in 2 liters was obtained. Next, this liquid was concentrated by a centrifugal sedimentation method to prepare an algal slurry liquid containing 1.5 g of Chlamydomonas UTEX2247 in 16 ml of the liquid, and this liquid was divided into 2 ml × 8 samples. A universal buffer solution (Britton-Robinson buffer solution [H 3 PO 4 -acetic acid-boric acid-NaOH], pH 4 to 11 , 8 steps) was added to each of the divided samples, mixed in 20 ml portions, and centrifuged. This was repeated twice to prepare one alga body slurry (0.19 g / 2 ml of alga bodies) at pH 4-11. 2 ml of this algal slurry was transferred to each 10 ml container, and nitrogen gas was injected into the slurry liquid for a short time to remove oxygen in the container.
The mixture was shaken (65 reciprocations / minute) while maintaining the temperature at ℃ to produce ethanol. After shaking for 48 hours, the concentration of ethanol formed in each slurry solution was measured. The result is shown in FIG. From the results in FIG. 2, it can be seen that the pH when producing ethanol from microalgae by the method of the present invention is preferably in the range of 6 to 9, and particularly preferably in the range of 6.5 to 8.0.
【0014】(実施例2) 緑藻クラミドモナスからの
アルコール生産 クラミドモナス・ラインハルディ(Chlamydomonas rein
hardtii )UTEX2247を、表1に示す組成のA乃
至Eの培地をA:1ミリリットル、B:10ミリリット
ル、C:10マイクロリットル、D:100ミリリット
ル、E:6ミリリットルの割合で混合し水を加えて全量
1リットルとし、NaOHでpHを8.0に調整した培
養液を用いて培養した。この培養液50リットルと、前
記クラミドモナスの培養種(乾燥藻体として1.0g相
当量)を偏平透明容器に入れ、白色蛍光灯で約1500
0ルックス(lux)の連続照射を行い、空気(5%C
O2 添加)を通気しながら25℃で4日間培養し、50
リットル中に38g(乾燥藻体として)の藻体を含む培
養液を得た。Example 2 Alcohol Production from Chlamydomonas reinhardtii Chlamydomonas rein
hardtii) UTEX2247 was mixed with mediums A to E having the composition shown in Table 1 in the proportions of A: 1 ml, B: 10 ml, C: 10 microliters, D: 100 ml, E: 6 ml, and water was added. The total volume was adjusted to 1 liter, and the cells were cultured using a culture solution adjusted to pH 8.0 with NaOH. 50 liters of this culture solution and the cultured species of Chlamydomonas (corresponding to 1.0 g as dry alga bodies) are placed in a flat transparent container, and the white fluorescent lamp is used for about 1500.
0 lux continuous irradiation, air (5% C
(O 2 added) for 4 days at 25 ° C. with aeration.
A culture solution containing 38 g (as dry algal cells) of algal cells in a liter was obtained.
【0015】[0015]
【表1】 [Table 1]
【0016】次にこの液を遠心沈殿法により濃縮し、3
00ミリリットルの液中にクラミドモナスUTEX22
47の藻体38gを含む藻体スラリー液とし、これを5
00ミリリットルの三角フラスコに移し、窒素ガスを短
時間スラリー液に注入して容器内の酸素を除去した後、
密閉し暗黒条件下で振とう(65往復/分)し、エタノ
ールの生成を行わせた。この間、0.1N−NaOH及
び0.1N−HClを添加してスラリー液のpHを6.
5〜8.0の範囲に保持した。一方、別途調製した藻体
スラリー液を使用し、暗黒かつ嫌気性雰囲気での振とう
の間にpH調整を行わなかったほかは全く同一の条件で
エタノールの生成を行わせた。両者のエタノール生成工
程中におけるスラリー液中のエタノール濃度の経時変化
の状況を図3に示す。図3中、実線はスラリー液のpH
を6.5〜8.0の範囲内に制御した場合、破線はpH
の調整を行わない場合の結果を示す。これより、pHを
調整しない場合は600mg/リットル程度のエタノー
ル濃度にとどまるが、これは反応初期の段階から液中に
有機酸(本実施例のクラミドモナスUTEX2247の
場合は主として乳酸)が生成し、pHが5.5まで低下
し、これにより以後のエタノール生産が鈍化するためと
考えられる。Next, this solution is concentrated by a centrifugal sedimentation method.
Chlamydomonas UTEX22 in 00 ml of liquid
An algal slurry solution containing 38 g of 47 algal bodies was prepared,
After transferring to a 00 ml Erlenmeyer flask and injecting nitrogen gas into the slurry solution for a short time to remove oxygen in the container,
The container was sealed and shaken under dark conditions (65 reciprocations / minute) to produce ethanol. During this time, 0.1N-NaOH and 0.1N-HCl were added to adjust the pH of the slurry to 6.
It was kept in the range of 5-8.0. On the other hand, ethanol was produced under exactly the same conditions except that the pH was not adjusted during shaking in a dark and anaerobic atmosphere using a separately prepared algal slurry. FIG. 3 shows how the concentration of ethanol in the slurry solution changes over time during both ethanol production steps. In FIG. 3, the solid line is the pH of the slurry liquid.
Is controlled within the range of 6.5 to 8.0, the dashed line indicates the pH.
The result when no adjustment is made is shown. From this, when the pH is not adjusted, the ethanol concentration is about 600 mg / liter, but this is because an organic acid (mainly lactic acid in the case of Chlamydomonas UTEX2247 of this example) is formed in the solution from the initial stage of the reaction, Is considered to be reduced to 5.5, which slows down the subsequent ethanol production.
【0017】一方、pH調整を行った場合はエタノール
濃度は7500mg/リットルに達し、pH調整によっ
て著しくエタノールの生産を高められることがわかっ
た。なお、前述の窒素ガス注入は、嫌気条件を迅速に与
えるため実施したものであるが、実際には濃縮した微細
藻体の呼吸(酸素消費)のため、窒素ガス注入等の手段
を採らなくても、比較的短時間(通常30分以内)のう
ちに、嫌気条件に至らせることが可能である。On the other hand, when the pH was adjusted, the ethanol concentration reached 7,500 mg / liter, and it was found that ethanol production could be significantly increased by the pH adjustment. The above-mentioned nitrogen gas injection was performed in order to quickly provide an anaerobic condition. However, in practice, it is not necessary to take any means such as nitrogen gas injection for respiration of concentrated microalgae (oxygen consumption). However, it is possible to reach an anaerobic condition in a relatively short time (usually within 30 minutes).
【0018】[0018]
【発明の効果】本発明によれば、培養により得られたデ
ンプン蓄積微細藻を収穫濃縮した後、暗黒かつ嫌気性雰
囲気下で濃縮藻体スラリー液のpHを6.0〜9.0の
範囲内に保ちながら緩やかに攪拌するだけでエタノール
製造が可能である。これらの操作はいずれも軽微なコス
ト、エネルギーですみ、従来方法における微細藻体濃縮
後の細胞破砕、デンプンの抽出分離、デンプンの加熱に
要していた多大なコスト、エネルギーを大巾(1/10
以下)に低減できる他、極めて簡潔なプロセスでエタノ
ール製造が可能となる。According to the present invention, after harvesting and concentrating starch-accumulated microalgae obtained by culturing, the pH of the concentrated algal slurry is in the range of 6.0 to 9.0 under a dark and anaerobic atmosphere. Ethanol production is possible only by gently stirring while keeping the inside. All of these operations require only a small amount of cost and energy, and the large cost and energy required for cell disruption after microalgae enrichment, extraction and separation of starch, and heating of starch in the conventional method can be greatly reduced (1/1). 10
In addition to this, it is possible to produce ethanol by a very simple process.
【図1】本発明の方法によるエタノール製造プロセスの
1例を示すフロー図。FIG. 1 is a flowchart showing an example of an ethanol production process according to the method of the present invention.
【図2】暗黒かつ嫌気雰囲気下での微細藻類からのエタ
ノール生成に及ぼすpHの影響を示すグラフ。FIG. 2 is a graph showing the effect of pH on ethanol production from microalgae in a dark and anaerobic atmosphere.
【図3】実施例におけるスラリー液中のエタノール濃度
の経時変化を示すグラフ。FIG. 3 is a graph showing a time-dependent change in ethanol concentration in a slurry liquid in an example.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C12P 7/06 C12M 1/00 BIOSIS(DIALOG) CA(STN) WPI(DIALOG)──────────────────────────────────────────────────の Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) C12P 7/06 C12M 1/00 BIOSIS (DIALOG) CA (STN) WPI (DIALOG)
Claims (2)
養し、培養した藻体を含む培養液を濃縮して得られるス
ラリーを、pHを6.0〜9.0の範囲に保ちながら暗
黒かつ嫌気性雰囲気に保持してエタノールを生成させる
ことを特徴とする微細藻からのエタノール製造方法。1. A microalga that accumulates starch in cells is cultured, and a slurry obtained by concentrating a culture solution containing the cultured alga bodies is darkened while maintaining the pH in a range of 6.0 to 9.0. A method for producing ethanol from microalgae, wherein ethanol is produced while maintaining an anaerobic atmosphere.
養するための培養手段、培養液を濃縮する濃縮手段、濃
縮した藻体のスラリーを暗黒かつ嫌気性雰囲気に保持す
る保持手段、該保持手段内のpHを調整するpH調整手
段及び生成したエタノールを分離濃縮する分離濃縮手段
よりなることを特徴とする微細藻からのエタノール製造
装置。2. A culture means for culturing microalgae that accumulate starch in cells, a concentration means for concentrating a culture solution, a holding means for holding a concentrated algal slurry in a dark and anaerobic atmosphere, and the holding means. An apparatus for producing ethanol from microalgae, comprising: pH adjusting means for adjusting the pH in the means; and separation and concentration means for separating and concentrating the produced ethanol.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5239845A JP3004509B2 (en) | 1993-09-27 | 1993-09-27 | Method and apparatus for producing ethanol from microalgae |
DE69427144T DE69427144T2 (en) | 1993-09-27 | 1994-09-22 | Process and system for producing ethanol from microalgae |
EP94114900A EP0645456B1 (en) | 1993-09-27 | 1994-09-22 | Process and system for the production of ethanol from microalgae |
US08/310,769 US5578472A (en) | 1993-09-27 | 1994-09-27 | Process for the production of ethanol from microalgae |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5239845A JP3004509B2 (en) | 1993-09-27 | 1993-09-27 | Method and apparatus for producing ethanol from microalgae |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0787983A JPH0787983A (en) | 1995-04-04 |
JP3004509B2 true JP3004509B2 (en) | 2000-01-31 |
Family
ID=17050730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5239845A Expired - Fee Related JP3004509B2 (en) | 1993-09-27 | 1993-09-27 | Method and apparatus for producing ethanol from microalgae |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3004509B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100120663A (en) | 2008-01-23 | 2010-11-16 | 아지노모토 가부시키가이샤 | Method of producing l-amino acid |
JP2011246605A (en) * | 2010-05-26 | 2011-12-08 | Hitachi Plant Technologies Ltd | Method for producing biofuel |
JP5626854B2 (en) * | 2010-06-08 | 2014-11-19 | 国立大学法人神戸大学 | Ethanol production method |
AU2011297126B2 (en) * | 2010-08-31 | 2014-02-13 | Japan Science And Technology Agency | Alga in which production of photosynthetic products is improved, and use for said alga |
BR112018075700A2 (en) * | 2016-06-17 | 2019-04-02 | Honda Motor Co., Ltd. | microalgae that has aggregation capacity |
-
1993
- 1993-09-27 JP JP5239845A patent/JP3004509B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0787983A (en) | 1995-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5578472A (en) | Process for the production of ethanol from microalgae | |
Bakoyianis et al. | Low-temperature wine making by immobilized cells on mineral kissiris | |
FR2924126A1 (en) | Culturing heterotrophic microalgae comprises preparing inoculum by culturing strain of microalgae, inoculating the culture medium in photobioreactor with inoculum and culturing microalgae in autotrophic/mixotrophic culture conditions | |
CN107287252B (en) | Omega-7 fatty acid composition, method for culturing chrysophyceae to produce composition and application | |
NO326280B1 (en) | Process for Cultivating Crypthecodinium cohnii for the Synthesis of Docosahexaenoic Acid | |
JP5775862B2 (en) | Method for culturing microalgae and method for using microalgae | |
Magdaong et al. | Effect of aeration rate and light cycle on the growth characteristics of Chlorella sorokiniana in a photobioreactor | |
CN113307377A (en) | Method for treating fermentation exhaust gas and wastewater by coupling active microalgae | |
JP3004509B2 (en) | Method and apparatus for producing ethanol from microalgae | |
JP3837589B2 (en) | Seawater microalgae producing ethanol | |
CN116179356B (en) | Method for high-density heterotrophic culture of chlamydomonas reinhardtii and application thereof | |
JP3004510B2 (en) | Ethanol production process from microalgae | |
JP2009261287A (en) | Chlorella/hydrogen production method and chlorella/hydrogen production apparatus | |
US11732278B1 (en) | Systems and methods for co-culture of oxygen sensitive bacteria and yeast | |
JP3468955B2 (en) | Method for producing lactic acid by microalgae | |
JPS5860992A (en) | Preparation of hydrogen from green alga utilizing light and darkness cycle | |
JPH0787986A (en) | Process for producing ethanol from fine alga | |
Nomanbhay et al. | Enhancement of bio-hydrogen production in Chlamydomonas Reinhardtii by immobilization and co-culturing | |
JPS6178374A (en) | Continuous fermentation system using immobilized proliferated microorganism | |
JPH10290698A (en) | Production of ethanol using microalga | |
JP2000228993A (en) | Method and apparatus for producing ethanol from micro- alga | |
US20240043786A1 (en) | Methods of increasing biomass productivity in algae cultures | |
Maheswari et al. | INDUSTRIAL BIOTECHNOLOGY | |
FR2516542A1 (en) | Fuel gas prodn. by anaerobic fermentation of algae - and co-substrate with high insolubles content | |
Lucas | Mixotrophic and heterotrophic cultivation of microalgae using winery wastewater as organic carbon source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991019 |
|
LAPS | Cancellation because of no payment of annual fees |