JP3097258B2 - Method for producing electrode for ion exchange membrane fuel cell - Google Patents
Method for producing electrode for ion exchange membrane fuel cellInfo
- Publication number
- JP3097258B2 JP3097258B2 JP04000623A JP62392A JP3097258B2 JP 3097258 B2 JP3097258 B2 JP 3097258B2 JP 04000623 A JP04000623 A JP 04000623A JP 62392 A JP62392 A JP 62392A JP 3097258 B2 JP3097258 B2 JP 3097258B2
- Authority
- JP
- Japan
- Prior art keywords
- exchange membrane
- electrode
- ion exchange
- ion
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料として純水素、ま
たはメタノール及び化石燃料からの改質水素などの還元
剤を用い、空気や酸素を酸化剤とする燃料電池に関する
ものであり、特にイオン交換膜燃料電池用の電極の製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell using a reducing agent such as pure hydrogen or reformed hydrogen from methanol and fossil fuel as fuel and using air or oxygen as an oxidizing agent. The present invention relates to a method for manufacturing an electrode for an exchange membrane fuel cell.
【0002】[0002]
【従来の技術】イオン交換膜燃料電池の放電性能を左右
する最も重要な因子の1つは、イオン交換膜と電極の界
面近傍において、反応ガスの供給路となる細孔とプロト
ン導電体であるイオン交換樹脂と電子伝導体である電極
材料とが形成する三相界面の広さである。そこで、従
来、この三相界面を増大させるために、電極材料とイオ
ン交換膜樹脂を混合させた層を、膜と多孔質電極の界面
に付与する試みがなされてきた。例えば、特公昭62−
61118、特公昭62−61119では、イオン交換
膜樹脂の溶液と触媒化合物の混合物をイオン交換膜上に
塗着し、電極材料とホットプレス後、触媒化合物を還元
する方法、もしくは還元後、塗着し、ホットプレスを行
う方法を用いていた。また、特公平2−48632で
は、多孔質電極を成型後、電極上にイオン交換膜樹脂の
溶液を散布し、この電極とイオン交換膜とをホットプレ
スする方法を用いていた。2. Description of the Related Art One of the most important factors influencing the discharge performance of an ion exchange membrane fuel cell is a pore serving as a supply path of a reaction gas and a proton conductor near an interface between the ion exchange membrane and an electrode. This is the width of the three-phase interface formed by the ion exchange resin and the electrode material that is an electronic conductor. Therefore, conventionally, in order to increase the three-phase interface, an attempt has been made to provide a layer in which an electrode material and an ion exchange membrane resin are mixed at the interface between the membrane and the porous electrode. For example,
61118 and JP-B-62-61119, a method of applying a mixture of a solution of an ion-exchange membrane resin and a catalyst compound on an ion-exchange membrane, hot-pressing the electrode material and reducing the catalyst compound, or applying a coating after reduction. Then, a hot press method was used. In Japanese Patent Publication No. 2-48632, a method is used in which a porous electrode is molded, a solution of an ion exchange membrane resin is sprayed on the electrode, and the electrode and the ion exchange membrane are hot pressed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記従来
の方法では、イオン交換膜及び電極基板上に塗着したイ
オン交換膜樹脂の溶液が電極内部への浸透が不十分な状
態で、乾燥させるために電極とイオン交換膜の十分な接
合がなされず、広い三相界面が得られないという欠点を
有していた。However, in the above-mentioned conventional method, the solution of the ion-exchange membrane resin applied on the ion-exchange membrane and the electrode substrate is dried in a state where the permeation into the inside of the electrode is insufficient. The electrode and the ion exchange membrane were not sufficiently bonded, and a wide three-phase interface was not obtained.
【0004】本発明は上記従来の課題を解決するもので
電極内部へのイオン交換膜樹脂の付与を十分に行うこと
によって、三相界面を増大させ、より高い性能を発揮す
るイオン交換膜燃料電池を実現するための電極の製造方
法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems. An ion-exchange membrane fuel cell having a higher performance by sufficiently applying an ion-exchange membrane resin inside an electrode to increase a three-phase interface. It is an object of the present invention to provide an electrode manufacturing method for realizing the above.
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
に、本発明のイオン交換膜燃料電池用電極は、低級飽和
一価アルコールの水溶液に、イオン交換膜樹脂と貴金属
触媒を担持した炭素微粉末とを添加してイオン交換膜樹
脂と炭素微粉末触媒の分散液を形成する工程と、このイ
オン交換膜樹脂と炭素微粉末との分散液をろ過、乾燥
後、粉砕する工程とから得られた炭素微粉末にイオン交
換膜樹脂を付与した電池用触媒と、フッ素樹脂で撥水処
理した炭素微粉末とを混合し、これを導伝性電極基板上
に加圧成型する製法を用いて電極とした後、イオン交換
膜と接合する方法を用いた。また、本発明のイオン交換
膜燃料電池用電極は、低級飽和一価アルコールの水溶液
に、イオン交換膜樹脂と貴金属触媒を担持した炭素微粉
末とフッ素樹脂で撥水処理した炭素微粉末とを添加し
て、イオン交換膜樹脂と炭素微粉末触媒と撥水処理炭素
微粉末との分散液を形成する工程と、このイオン交換膜
樹脂と炭素微粉末触媒と撥水処理炭素微粉末との分散液
を多孔質導電性電極基板上に、電極基板の下方から吸引
した状態で、塗布する工程から得られた電極を、加圧成
型する製法を用いた。さらに、本発明のイオン交換膜燃
料電池用電極は、貴金属触媒を担持した炭素微粉末とフ
ッ素樹脂で撥水処理した炭素微粉末とを混合し、この混
合粉末を多孔質導電性電極基板上に加圧成型した電極成
型体上に、低級飽和一価アルコールの水溶液にイオン交
換膜樹脂を加えた分散液を、電極基板の下方から吸引し
た状態で、塗布する製法を用いた。In order to achieve this object, an electrode for an ion exchange membrane fuel cell according to the present invention comprises a carbon fine powder having an ion exchange membrane resin and a noble metal catalyst supported in an aqueous solution of a lower saturated monohydric alcohol. A step of forming a dispersion of the ion exchange membrane resin and the carbon fine powder catalyst by adding the powder, and a step of filtering, drying, and grinding the dispersion of the ion exchange membrane resin and the carbon fine powder. a catalyst for batteries provided with ion exchange membranes resin powder carbon fines were, mixed with carbon fine powder which has been water-repellent treated with a fluorine resin, by using a method of pressure molding it into-conductive electrode substrate electrode And then ion exchange
A method of bonding with a film was used . Further, the electrode for an ion exchange membrane fuel cell of the present invention is obtained by adding a carbon fine powder carrying an ion exchange membrane resin and a noble metal catalyst and a carbon fine powder water-repellent to a fluororesin to an aqueous solution of a lower saturated monohydric alcohol. Forming a dispersion of the ion-exchange membrane resin, the carbon fine powder catalyst, and the water-repellent carbon fine powder; and a dispersion of the ion-exchange membrane resin, the carbon fine powder catalyst, and the water-repellent carbon fine powder. Was pressed onto a porous conductive electrode substrate from below the electrode substrate, and the electrode obtained from the step of applying was pressed and molded. Further, the electrode for an ion-exchange membrane fuel cell of the present invention is obtained by mixing a carbon fine powder carrying a noble metal catalyst and a carbon fine powder subjected to a water-repellent treatment with a fluororesin, and placing the mixed powder on a porous conductive electrode substrate. A method was used in which a dispersion of an aqueous solution of a lower saturated monohydric alcohol and an ion-exchange membrane resin was applied onto the pressure-molded electrode molded body while sucking the dispersion from below the electrode substrate.
【0006】[0006]
【作用】この製造方法によって、電極の触媒層内部の深
部にイオン交換膜樹脂を分散させることが可能になっ
た。この触媒層構成によって、水素などの燃料ガスもし
くは酸素などの酸化剤ガスの供給路となる撥水処理炭素
微粉末の形成するガスチャネルと、イオン交換膜樹脂が
形成するプロトン導電チャネルと、炭素微粉末材料の形
成する電子伝導チャネルの3つの相が、同じ触媒層内部
の極近傍に形成される。According to this manufacturing method, it is possible to disperse the ion exchange membrane resin in a deep portion inside the catalyst layer of the electrode. With this catalyst layer configuration, a gas channel formed by a water-repellent carbon fine powder serving as a supply path for a fuel gas such as hydrogen or an oxidizing gas such as oxygen, a proton conductive channel formed by an ion exchange membrane resin, The three phases of the electron conducting channel formed by the powder material are formed very close within the same catalyst layer.
【0007】そこで、水素極では、Therefore, at the hydrogen electrode,
【0008】[0008]
【化1】 Embedded image
【0009】の反応において、また、酸素極では、In the above reaction, and at the oxygen electrode,
【0010】[0010]
【化2】 Embedded image
【0011】の反応において、水素及び酸素ガスの供給
と、プロトン及び電子の伝達がスムーズかつ広範囲に行
われるようになり、反応速度及び反応面積が増大して、
より高い放電性能を発揮するイオン交換膜燃料電池を実
現することが可能となる。In the above reaction, the supply of hydrogen and oxygen gas and the transfer of protons and electrons are performed smoothly and widely, and the reaction rate and reaction area are increased.
It is possible to realize an ion exchange membrane fuel cell exhibiting higher discharge performance.
【0012】[0012]
【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0013】(実施例1) 図1は、本発明の実施例1のイオン交換膜燃料電池用電
極の製造方法の工程を示すものである。まず、イオン交
換膜樹脂として、米国デュポン社製のNafion(登
録商標)を用いた米国アルドリッチ・ケミカル社製のイ
オン交換膜樹脂粉末の5重量%溶液を用い、このイオン
交換膜樹脂溶液1ml当り、イソプロピルアルコール4
ml及び水250mlと混合する。これを超音波ホモジ
ナイザーを用いて約5分間分散処理した。つぎに、この
分散液に触媒を10〜25重量%担持させた炭素微粉末
を添加した。ここではイオン交換樹脂の添加量が貴金属
触媒を担持した炭素微粉末に対する重量比で10〜30
%となるようにした。ついで超音波ホモジナイザーを用
いて約10分間分散処理した。この分散液をろ過し、1
10℃で乾燥し、溶媒を除去した後粉砕し、イオン交換
膜樹脂付きの触媒担持炭素微粉末を作成した。このイオ
ン交換膜樹脂付きの触媒担持炭素微粉末を、ポリテトラ
フルオロエチレン(以下、PTFEという)を25〜7
0重量%添加することによって撥水処理した炭素微粉末
と混合した。この触媒層用の混合粉末を、PTFEを重
量比で50〜70%添加した炭素微粉末からなる導伝性
シートである電極基板上に、または、4フッ化エチレン
と6フッ化プロピレンとの共重合体からなるフッ素樹脂
を重量比で20〜40%添加した多孔質炭素焼成板であ
る電極基板上に、散布し、このフッ素樹脂を結着材とし
て予備成型した。この成型体を340〜380℃の温
度、5〜20kg/cm2の圧力でホットプレスすることに
より、本発明の実施例1のイオン交換膜燃料電池用電極
を作製した。Embodiment 1 FIG. 1 shows the steps of a method for manufacturing an electrode for an ion exchange membrane fuel cell according to Embodiment 1 of the present invention. First, as an ion exchange membrane resin, Nafion (registered trademark ) manufactured by DuPont, USA
With 5 wt% solution of US Aldrich Chemical Co. ion exchange membranes resin powder using a recording trademark), the ion-exchange membrane resin solution 1ml per isopropyl alcohol 4
mix with water and 250 ml of water. This was dispersed for about 5 minutes using an ultrasonic homogenizer. Next, carbon fine powder carrying 10 to 25% by weight of a catalyst was added to the dispersion. Here, the addition amount of the ion exchange resin is 10 to 30 by weight ratio to the carbon fine powder supporting the noble metal catalyst.
%. Subsequently, a dispersion treatment was performed for about 10 minutes using an ultrasonic homogenizer. The dispersion is filtered and
After drying at 10 ° C. and removing the solvent, the mixture was pulverized to prepare a fine catalyst-supporting carbon powder with an ion-exchange membrane resin. The catalyst-carrying carbon fine powder with the ion-exchange membrane resin was prepared by mixing polytetrafluoroethylene (hereinafter referred to as PTFE) with 25 to 7 particles.
The powder was mixed with the water-repellent fine carbon powder by adding 0% by weight. The mixed powder for the catalyst layer is coated on an electrode substrate, which is a conductive sheet made of a fine carbon powder to which 50 to 70% by weight of PTFE is added, or a mixture of ethylene tetrafluoride and propylene hexafluoride. It was sprayed on an electrode substrate which is a porous carbon fired plate to which a fluororesin composed of a polymer was added in a weight ratio of 20 to 40%, and was preformed using the fluororesin as a binder. This molded body was hot-pressed at a temperature of 340 to 380 ° C. and a pressure of 5 to 20 kg / cm 2 to produce an electrode for an ion exchange membrane fuel cell of Example 1 of the present invention.
【0014】(実施例2) 図2は、本発明の実施例2のイオン交換膜燃料電池用電
極の製造方法の工程を示すものである。まず、イオン交
換膜樹脂として、米国デュポン社製のNafion(登
録商標)を用いた米国アルドリッチ・ケミカル社製のイ
オン交換膜樹脂粉末の5重量%溶液を用い、このイオン
交換膜樹脂溶液1g当り、イソプロピルアルコール10
mlと、水10mlと、所定量の触媒を10〜25重量
%担持させた炭素微粉末と、PTFEを25〜70重量
%添加することによって撥水処理した炭素微粉末とを混
合し、超音波ホモジナイザーを用いて約5分間分散処理
した。この分散液を、PTFEを重量比で50〜70%
添加した炭素微粉末からなる導伝性シートである電極基
板上に、または、4フッ化エチレンと6フッ化プロピレ
ンとの共重合体からなるフッ素樹脂を重量比で20〜4
0%添加した多孔質炭素焼成板である電極基板上に、電
極基板の下方からポンプによって吸引した状態で、塗布
した。この分散液の溶媒を、分散液が流れ落ちない程度
まで吸引した後、真空乾燥機を用いて、70℃で真空加
熱しアルコールおよび水を除去した。この電極を340
〜380℃の温度、5〜20kg/cm2の圧力でホットプ
レスすることにより、本発明の実施例2のイオン交換膜
燃料電池用電極を作製した。Example 2 FIG. 2 shows steps of a method for manufacturing an electrode for an ion exchange membrane fuel cell according to Example 2 of the present invention. First, as an ion exchange membrane resin, Nafion (registered trademark ) manufactured by DuPont, USA
With 5 wt% solution of US Aldrich Chemical Co. ion exchange membranes resin powder using a recording trademark), the ion-exchange membrane resin solution per 1g, isopropyl alcohol 10
of water, 10 ml of water, 10 to 25% by weight of a predetermined amount of catalyst supported on carbon, and carbon fine powder treated with water repellency by adding 25 to 70% by weight of PTFE. The dispersion treatment was performed for about 5 minutes using a homogenizer. This dispersion is made up of 50-70% by weight of PTFE.
20 to 4 parts by weight of a fluororesin made of a copolymer of ethylene tetrafluoride and propylene hexafluoride on an electrode substrate which is a conductive sheet made of added carbon fine powder, or
It was applied to a 0% -added porous carbon fired plate as an electrode substrate while being sucked by a pump from below the electrode substrate. After sucking the solvent of this dispersion liquid to such an extent that the dispersion liquid did not flow down, it was heated in a vacuum at 70 ° C. using a vacuum dryer to remove alcohol and water. This electrode is 340
An electrode for an ion-exchange membrane fuel cell of Example 2 of the present invention was prepared by hot pressing at a temperature of 380 ° C. and a pressure of 5-20 kg / cm 2 .
【0015】(実施例3) 図3は、本発明の実施例3のイオン交換膜燃料電池用電
極の製造方法の工程を示すものである。まず、触媒を1
0〜25重量%担持させた炭素微粉末を、PTFEを2
5〜70重量%添加することによって撥水処理した炭素
微粉末と混合した。この触媒層用の混合粉末を、PTF
Eを重量比で50〜70%添加した炭素微粉末からなる
導伝性シートである電極基板上に、または、4フッ化エ
チレンと6フッ化プロピレンとの共重合体からなるフッ
素樹脂を重量比で20〜40%添加した多孔質炭素焼成
板である電極基板上に、散布し、このフッ素樹脂を結着
材として予備成型した。この成型体を340〜380℃
の温度、5〜20kg/cm2の圧力でホットプレスし、ガ
ス拡散電極を作成した。また、イオン交換膜樹脂とし
て、米国デュポン社製のNafion(登録商標)を用
いた米国アルドリッチ・ケミカル社製のイオン交換膜樹
脂粉末の5重量%溶液を用い、このイオン交換膜樹脂溶
液1g当り、7mlのイソプロピルアルコールに分散し
た。前記ガス拡散電極上に、このイオン交換膜樹脂溶液
の分散液を、電極基板の下方からポンプによって吸引し
た状態で、塗布した。この分散液の溶媒を、分散液が流
れ落ちない程度まで吸引した後、真空乾燥機を用いて、
70℃で真空加熱しアルコールおよび水を除去し、本発
明の実施例3のイオン交換膜燃料電池用電極を作製し
た。Embodiment 3 FIG. 3 shows the steps of a method for manufacturing an electrode for an ion exchange membrane fuel cell according to Embodiment 3 of the present invention. First, the catalyst
0 to 25% by weight of supported carbon fine powder is
It was mixed with the water-repellent fine carbon powder by adding 5 to 70% by weight. The mixed powder for the catalyst layer is
E on an electrode substrate, which is a conductive sheet made of fine carbon powder to which 50 to 70% by weight of E is added, or a fluororesin made of a copolymer of ethylene tetrafluoride and propylene hexafluoride on a weight basis Was sprayed on an electrode substrate which was a porous carbon fired plate to which 20 to 40% was added, and this fluororesin was preformed as a binder. This molded body is heated to 340 to 380 ° C.
At a temperature of 5 to 20 kg / cm 2 to produce a gas diffusion electrode. Further, as the ion exchange membrane resin, a 5% by weight solution of ion exchange membrane resin powder manufactured by Aldrich Chemical Co., USA using Nafion (registered trademark) manufactured by DuPont, USA was used. Dispersed in 7 ml of isopropyl alcohol. The dispersion liquid of the ion exchange membrane resin solution was applied onto the gas diffusion electrode in a state where the dispersion liquid was sucked by a pump from below the electrode substrate. After sucking the solvent of the dispersion to such an extent that the dispersion does not flow down, using a vacuum dryer,
An alcohol and water were removed by vacuum heating at 70 ° C. to produce an electrode for an ion exchange membrane fuel cell of Example 3 of the present invention.
【0016】(比較例)図4は、従来の技術によるイオ
ン交換膜燃料電池用電極の製造方法の一例を示すもので
ある。実施例3のガス拡散電極上にイオン交換膜樹脂溶
液の分散液を塗布する工程において、電極基板の下方か
らのポンプによる吸引をしない状態で、塗布した他は、
本発明の実施例3と全く同じ工程で、電極を作製した。(Comparative Example) FIG. 4 shows an example of a method for manufacturing an electrode for an ion exchange membrane fuel cell according to a conventional technique. In the step of applying the dispersion of the ion-exchange membrane resin solution on the gas diffusion electrode of Example 3, except that the application was performed without suction by a pump from below the electrode substrate,
An electrode was manufactured in exactly the same steps as in Example 3 of the present invention.
【0017】以上の本発明の実施例及び比較例の電極
と、イオン交換膜とを120〜150℃の温度、20〜
60kg/cm2の圧力でホットプレスし、負極とイオン交
換膜と正極との接合を行った。この接合体を用いて、図
5に示したイオン交換膜燃料電池の単セルを作成した。
図5中、10はイオン交換膜を示し、本実施例では米国
デュポン社製のNafion117膜を用いた。11及
び12は、それぞれ負極及び正極を示した。負極側に、
90℃の温度で加湿した水素ガスを、また、正極側に、
80℃の温度で加湿した酸素ガスをそれぞれ供給して、
放電試験を行った。The electrodes of the examples and comparative examples of the present invention and the ion exchange membrane were heated at a temperature of 120 to 150 ° C.,
Hot pressing was performed at a pressure of 60 kg / cm 2 to join the negative electrode, the ion exchange membrane, and the positive electrode. Using this assembly, a single cell of the ion exchange membrane fuel cell shown in FIG. 5 was prepared.
In FIG. 5, reference numeral 10 denotes an ion-exchange membrane, and in this example, a Nafion 117 membrane manufactured by DuPont, USA was used. Reference numerals 11 and 12 indicate a negative electrode and a positive electrode, respectively. On the negative electrode side,
Hydrogen gas humidified at a temperature of 90 ° C.
By supplying oxygen gas humidified at a temperature of 80 ° C.,
A discharge test was performed.
【0018】図6に、本発明の実施例1,2,3及び比
較例の製造方法による電極を用いたイオン交換膜燃料電
池の電圧−電流特性をそれぞれ示した。本発明の実施例
1,2及び3の燃料電池は、電流密度200mA/cm2
において、それぞれ電池電圧0.65V,0.67V,
0.64Vを示した。一方、比較例の燃料電池は、電流
密度200mA/cm2において、電池電圧0.53Vを
示した。FIG. 6 shows the voltage-current characteristics of the ion exchange membrane fuel cells using the electrodes according to the production methods of Examples 1, 2, 3 and Comparative Example of the present invention. The fuel cells of Examples 1, 2 and 3 of the present invention have a current density of 200 mA / cm 2.
, The battery voltages 0.65 V, 0.67 V,
0.64V. On the other hand, the fuel cell of the comparative example exhibited a cell voltage of 0.53 V at a current density of 200 mA / cm 2 .
【0019】図7に、本発明の実施例2の製造方法によ
る電極を用いたイオン交換膜燃料電池のイオン交換膜樹
脂添加量と電流密度200mA/cm2における電池電圧
の関係を示した。その結果、イオン交換膜樹脂の触媒担
持炭素微粉末に対する添加量が約10〜30%の範囲
で、極大値を示した。FIG. 7 shows the relationship between the amount of ion exchange membrane resin added and the cell voltage at a current density of 200 mA / cm 2 in an ion exchange membrane fuel cell using electrodes according to the production method of Example 2 of the present invention. As a result, the maximum value was exhibited when the amount of the ion exchange membrane resin added to the catalyst-supporting carbon fine powder was in the range of about 10 to 30%.
【0020】この原因は明確ではないが、イオン交換膜
樹脂自体は電子伝導性は、ほとんどないものであり、イ
オン交換膜樹脂の添加量が30%以上になると、電極全
体の電気抵抗が高くなり、特性が劣化し、イオン交換膜
樹脂の添加量が10%以下の場合、放電性能を左右する
三相界面の広さ即ち反応面積が狭く限られてきたためと
考えられる。Although the cause is not clear, the ion exchange membrane resin itself has almost no electron conductivity. When the addition amount of the ion exchange membrane resin exceeds 30%, the electric resistance of the entire electrode increases. It is considered that when the characteristics are deteriorated and the addition amount of the ion exchange membrane resin is 10% or less, the width of the three-phase interface, that is, the reaction area, which influences the discharge performance, is narrow and limited.
【0021】また実施例1,3の製造方法においても、
上記実施例2の場合と同様に、イオン交換膜樹脂の触媒
担持炭素微粉末に対する添加量が約10〜30%の範囲
で極大値を示した。Further, in the manufacturing methods of Examples 1 and 3,
As in the case of Example 2 described above, the maximum value was exhibited when the amount of the ion exchange membrane resin added to the fine carbon powder carrying the catalyst was in the range of about 10 to 30%.
【0022】以上のように、本発明の製造方法による電
極を用いて燃料電池を構成することによって、より高い
放電性能を発揮するイオン交換膜燃料電池を実現するこ
とが可能となった。As described above, by configuring a fuel cell using the electrode according to the manufacturing method of the present invention, it has become possible to realize an ion exchange membrane fuel cell exhibiting higher discharge performance.
【0023】なお、実施例ではイオン交換膜樹脂とし
て、テトラフルオロエチレンとパーフルオロビニルエー
テルとの共重合体からなる高分子電解質の代表例とし
て、米国アルドリッチ・ケミカル社製のイオン交換膜樹
脂粉末の5重量%溶液を用いたが、プロトン交換基をも
つ他の高分子電解質を用いても同様の結果が得られる。
例えば、スチレンとビニルベンゼンとの共重合体からな
る高分子電解質を用いてもよい。In the examples, as an ion exchange membrane resin, a typical example of a polymer electrolyte comprising a copolymer of tetrafluoroethylene and perfluorovinyl ether is an ion exchange membrane resin powder manufactured by Aldrich Chemical Co., USA. Although a weight% solution was used, similar results can be obtained by using another polymer electrolyte having a proton exchange group.
For example, a polymer electrolyte made of a copolymer of styrene and vinylbenzene may be used.
【0024】また、イオン交換膜樹脂の分散媒である、
低級飽和一価アルコールの代表例としてイソプロピルア
ルコールを用いたが、プロピルアルコール、ブチルアル
コール、イソブチルアルコール、sec−ブチルアルコ
ール、tert−ブチルアルコールなどの炭素数4以下
の水溶性のアルコールならば、どのアルコールを用いて
も同様の結果が得られる。Also, a dispersion medium of the ion exchange membrane resin,
Although isopropyl alcohol was used as a representative example of the lower saturated monohydric alcohol, any alcohol having a carbon number of 4 or less such as propyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol, and tert-butyl alcohol can be used. The same result can be obtained by using.
【0025】さらに、本実施例では、イオン交換膜燃料
電池の一例として水素−酸素燃料電池を取り上げたが、
メタノール、天然ガス、ナフサなどを燃料とする改質水
素を用いた燃料電池、また、酸化剤として空気を用いた
燃料電池を適用することも可能である。In this embodiment, a hydrogen-oxygen fuel cell is taken as an example of the ion exchange membrane fuel cell.
A fuel cell using reformed hydrogen using methanol, natural gas, naphtha or the like as a fuel, or a fuel cell using air as an oxidizing agent can be applied.
【0026】[0026]
【発明の効果】以上のように本発明は、電極内部へのイ
オン交換膜樹脂の付与を十分に行うことによって、水素
などの燃料ガスもしくは酸素などの酸化剤ガスの供給路
となる撥水処理炭素微粉末の形成するガスチャネルと、
イオン交換膜樹脂が形成するプロトン導電チャネルと、
炭素微粉末材料の形成する電子伝導チャネルの3つの相
が、同じ触媒層内部の極近傍に形成され、三層界面を増
大させ、水素及び酸素ガスの供給と、プロトン及び電子
の伝達がスムーズかつ広範囲に行われるようになり、反
応速度及び反応面積が増大して、より高い放電性能を発
揮するイオン交換膜燃料電池を実現することが可能とな
る。As described above, the present invention provides a water-repellent treatment for supplying a fuel gas such as hydrogen or an oxidizing gas such as oxygen by sufficiently applying an ion exchange membrane resin to the inside of an electrode. A gas channel formed by carbon fine powder;
A proton conducting channel formed by the ion exchange membrane resin,
The three phases of the electron conduction channel formed by the carbon fine powder material are formed in the immediate vicinity inside the same catalyst layer, increasing the three-layer interface, supplying hydrogen and oxygen gas, and smoothly transferring protons and electrons. The reaction can be performed in a wide range, the reaction rate and the reaction area can be increased, and an ion exchange membrane fuel cell exhibiting higher discharge performance can be realized.
【図1】本発明の実施例1におけるイオン交換膜燃料電
池用電極の製造工程を示す図FIG. 1 is a diagram showing a manufacturing process of an electrode for an ion exchange membrane fuel cell in Example 1 of the present invention.
【図2】本発明の実施例2におけるイオン交換膜燃料電
池用電極の製造工程を示す図FIG. 2 is a view showing a manufacturing process of an electrode for an ion exchange membrane fuel cell in Example 2 of the present invention.
【図3】本発明の実施例3におけるイオン交換膜燃料電
池用電極の製造工程を示す図FIG. 3 is a view showing a manufacturing process of an electrode for an ion exchange membrane fuel cell in Example 3 of the present invention.
【図4】比較例におけるイオン交換膜燃料電池用電極の
製造工程を示す図FIG. 4 is a diagram showing a manufacturing process of an electrode for an ion exchange membrane fuel cell in a comparative example.
【図5】本発明の実施例におけるイオン交換膜燃料電池
の単電池の模式断面図FIG. 5 is a schematic sectional view of a unit cell of an ion exchange membrane fuel cell according to an embodiment of the present invention.
【図6】イオン交換膜燃料電池の電圧一電流特性を示す
図FIG. 6 is a diagram showing voltage-current characteristics of an ion exchange membrane fuel cell.
【図7】イオン交換膜樹脂の添加量と電池電圧の関係を
示す図FIG. 7 is a diagram showing the relationship between the amount of ion exchange membrane resin added and the battery voltage.
10 イオン交換膜 11 負極 12 正極 Reference Signs List 10 ion exchange membrane 11 negative electrode 12 positive electrode
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−305249(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/88 H01M 8/02 H01M 8/10 B01J 31/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-305249 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/88 H01M 8/02 H01M 8 / 10 B01J 31/28
Claims (12)
ン交換膜樹脂と貴金属触媒を担持した炭素微粉末とを添
加してイオン交換膜樹脂と炭素微粉末触媒の分散液を形
成する工程と、この分散液をろ過、乾燥後、粉砕する工
程とから得られた炭素微粉末にイオン交換膜樹脂を付与
した電池用触媒と、フッ素樹脂で撥水処理した炭素粉末
とを混合し、これを導伝性電極基板上に加圧成型し電極
とした後、イオン交換膜と接合することを特徴とするイ
オン交換膜燃料電用電極の製造方法。A step of adding a carbon fine powder carrying a noble metal catalyst and an ion exchange membrane resin to an aqueous solution of a lower saturated monohydric alcohol to form a dispersion of the ion exchange membrane resin and the carbon fine powder catalyst; This dispersion is filtered, dried, and then pulverized. A battery catalyst obtained by applying an ion-exchange membrane resin to fine carbon powder obtained from a step of pulverization is mixed with a carbon powder water-repellent treated with a fluororesin. pressure molding and electrode heat electrode substrate
And then joining the ion-exchange membrane to an ion-exchange membrane fuel electrode.
触媒を担持した炭素微粉末に対する重量比で10〜30
%である請求項1記載のイオン交換膜燃料電用電極の製
造方法。2. The amount of the ion-exchange membrane resin added is 10 to 30 in weight ratio to the carbon fine powder supporting the noble metal catalyst.
The method for producing an electrode for ion exchange membrane fuel cell according to claim 1, wherein
オロエチレンとパーフルオロビニルエーテルの共重合体
からなる高分子電解質を用いたことを特徴とする請求項
1記載のイオン交換膜燃料電用電極の製造方法。3. The production of an electrode for an ion exchange membrane fuel cell according to claim 1, wherein a polymer electrolyte comprising a copolymer of tetrafluoroethylene and perfluorovinyl ether is used as said ion exchange membrane resin. Method.
ピルアルコール、イソプロピルアルコール、ブチルアル
コール、イソブチルアルコール、sec−ブチルアルコ
ール、tert−ブチルアルコールからなる炭素数4以
下のアルコールのうちの少なくとも1つを用いた請求項
1記載のイオン交換膜燃料電用電極の製造方法。4. The lower saturated monohydric alcohol is at least one of alcohols having 4 or less carbon atoms, such as propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol. The method for producing an ion exchange membrane fuel electrode according to claim 1.
ン交換膜樹脂と貴金属触媒を担持した炭素微粉末とフッ
素樹脂で撥水処理した炭素微粉末とを添加して、インオ
交換膜樹脂と炭素微粉末触媒と撥水処理炭素微粉末との
分散液を形成する工程と、この分散液を多孔質導電性電
極基板上に電極基板の下方から吸引した状態で、塗布す
る工程から得られた電極を加圧成型したことを特徴とす
るイオン交換膜燃料電池用電極の製造方法。5. An ion-exchange membrane resin and carbon fine powder, which are added to an aqueous solution of a lower saturated monohydric alcohol, and a carbon fine powder carrying an ion-exchange membrane resin and a noble metal catalyst and a carbon fine powder water-repellent with a fluororesin are added. An electrode obtained from a step of forming a dispersion of a fine powder catalyst and a water-repellent carbon fine powder, and a step of applying the dispersion onto a porous conductive electrode substrate while sucking the dispersion from below the electrode substrate. A method for producing an electrode for an ion-exchange membrane fuel cell, wherein the electrode is molded under pressure.
触媒を担持した炭素微粉末に対する重量比で10〜30
%である請求項5記載のイオン交換膜燃料電池用電極の
製造方法。6. The amount of the ion-exchange membrane resin to be added is 10 to 30 in weight ratio to the fine carbon powder supporting the noble metal catalyst.
The method for producing an electrode for an ion exchange membrane fuel cell according to claim 5, wherein
オロエチレンとパーフルオロビニルエーテルの共重合体
からなる高分子電解質を用いたことを特徴とする請求項
5記載のイオン交換膜燃料電池用電極の製造方法。7. The production of an electrode for an ion exchange membrane fuel cell according to claim 5, wherein a polymer electrolyte comprising a copolymer of tetrafluoroethylene and perfluorovinyl ether is used as said ion exchange membrane resin. Method.
ピルアルコール、イソプロピルアルコール、ブチルアル
コール、イソブチルアルコール、sec−ブチルアルコ
ール、tert−ブチルアルコールからなる炭素数4以
下のアルコールのうちの少なくとも1つを用いた請求項
5記載のイオン交換膜燃料電池用電極の製造方法。8. As the lower saturated monohydric alcohol, at least one of alcohols having 4 or less carbon atoms, such as propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol is used. The method for producing an electrode for an ion exchange membrane fuel cell according to claim 5.
樹脂で撥水処理した炭素微粉末とを混合し、この混合粉
末を多孔質導電性電極基板上に加圧成型した電極成型体
上に、低級飽和一価アルコールの水溶液にイオン交換膜
樹脂を加えた分散液を、電極基板の下方から吸引した状
態で、塗布したことを特徴とするイオン交換膜燃料電池
用電極の製造方法。9. A fine carbon powder supporting a noble metal catalyst and a fine carbon powder treated with water repellency with a fluororesin are mixed, and the mixed powder is formed on a porous conductive electrode substrate by pressure molding on an electrode molded body. A method for producing an electrode for an ion-exchange membrane fuel cell, comprising applying a dispersion obtained by adding an ion-exchange membrane resin to an aqueous solution of a lower saturated monohydric alcohol and sucking the dispersion from below the electrode substrate.
属触媒を担持した炭素微粉末に対する重量比で10〜3
0%である請求項9記載のイオン交換膜燃料電池用電極
の製造方法。10. The addition amount of the ion exchange membrane resin is 10 to 3 in weight ratio to the carbon fine powder supporting the noble metal catalyst.
The method for producing an electrode for an ion exchange membrane fuel cell according to claim 9, which is 0%.
ルオロエチレンとパーフルオロビニルエーテルとの共重
合体からなる高分子電解質を用いたことを特徴とする請
求項9記載のイオン交換膜燃料電池用電極の製造方法。11. The electrode for an ion exchange membrane fuel cell according to claim 9, wherein a polymer electrolyte comprising a copolymer of tetrafluoroethylene and perfluorovinyl ether is used as said ion exchange membrane resin. Production method.
ロピルアルコール、イソプロピルアルコール、ブチルア
ルコール、イソブチルアルコール、sec−ブチルアル
コール、tert−ブチルアルコールからなる炭素数4
以下のアルコールのうちの少なくとも1つを用いた請求
項9記載のイオン交換膜燃料電池用電極の製造方法。12. The lower saturated monohydric alcohol having 4 carbon atoms comprising propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol.
The method for producing an electrode for an ion exchange membrane fuel cell according to claim 9, wherein at least one of the following alcohols is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04000623A JP3097258B2 (en) | 1992-01-07 | 1992-01-07 | Method for producing electrode for ion exchange membrane fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04000623A JP3097258B2 (en) | 1992-01-07 | 1992-01-07 | Method for producing electrode for ion exchange membrane fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05182671A JPH05182671A (en) | 1993-07-23 |
JP3097258B2 true JP3097258B2 (en) | 2000-10-10 |
Family
ID=11478859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04000623A Expired - Fee Related JP3097258B2 (en) | 1992-01-07 | 1992-01-07 | Method for producing electrode for ion exchange membrane fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3097258B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2921725B2 (en) * | 1993-06-30 | 1999-07-19 | 三洋電機株式会社 | Method for manufacturing solid polymer electrolyte fuel cell electrode |
JP3573771B2 (en) * | 1993-11-09 | 2004-10-06 | 株式会社豊田中央研究所 | Fuel cell |
EP1601035A1 (en) * | 1999-09-21 | 2005-11-30 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell and method for producing the same |
EP1569290A4 (en) * | 2002-11-13 | 2008-05-07 | Nat Inst Of Advanced Ind Scien | Catalyst for fuel cell and electrode using the same |
JP2006073467A (en) * | 2004-09-06 | 2006-03-16 | Asahi Glass Co Ltd | Membrane/electrode junction for solid polymer fuel cell |
JP2006260909A (en) * | 2005-03-16 | 2006-09-28 | Nissan Motor Co Ltd | Membrane electrode assembly and polymer electrolyte fuel cell using the same |
CN101689640A (en) | 2007-06-15 | 2010-03-31 | 住友化学株式会社 | Membrane-electrode assembly, method for producing the same and solid polymer fuel cell |
-
1992
- 1992-01-07 JP JP04000623A patent/JP3097258B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05182671A (en) | 1993-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3712768B2 (en) | Production method of polymer electrolyte fuel cell | |
JP4901313B2 (en) | Membrane electrode assembly, method for producing membrane electrode assembly, and fuel cell | |
JP4144686B2 (en) | Method for producing polymer electrolyte fuel cell | |
JP3690651B2 (en) | Fuel cell | |
US8323848B2 (en) | Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same | |
JPH07183035A (en) | Solid polyelectrolyte fuel cell and its manufacture | |
JP2004192950A (en) | Solid polymer fuel cell and its manufacturing method | |
JP2003086190A (en) | Polymer electrolyte fuel cell and method of manufacture | |
JP3097258B2 (en) | Method for producing electrode for ion exchange membrane fuel cell | |
JP2005032681A (en) | Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method | |
JP2001110428A (en) | High molecular electrolysis type fuel cell | |
JP2002063912A (en) | Manufacturing method of polymer electrolyte fuel cell | |
KR100722093B1 (en) | Membrane-electrode assembly for fuel cell, method for manufacturing the same, and fuel cell system comprising the same | |
KR20080105255A (en) | Method for manufacturing 5-layer mea | |
JP3055283B2 (en) | Method for producing electrode for ion exchange membrane fuel cell and ion exchange membrane fuel cell | |
JP2001006699A (en) | Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof | |
JP2005150002A (en) | Fuel cell | |
JP3738723B2 (en) | ELECTRODE FOR FUEL CELL AND FUEL CELL USING THE SAME | |
JP2003178770A (en) | Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same | |
JP2003282074A (en) | Electrode for fuel cell, and manufacturing method of the same | |
JP2003282067A (en) | Composition and manufacturing method of polymerelectrolyte type fuel cell catalyst layer | |
JP2001076734A (en) | Solid polymer fuel cell | |
JP2005228755A (en) | Polymer electrolyte fuel cell | |
JP2002050367A (en) | Polymer electrolyte fuel cell and its manufacturing method | |
JPH1116586A (en) | Manufacture of high polymer electrolyte film-gas diffusion electrode body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |