[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3089772B2 - Method for producing diol compound having cyclohexane ring - Google Patents

Method for producing diol compound having cyclohexane ring

Info

Publication number
JP3089772B2
JP3089772B2 JP03328757A JP32875791A JP3089772B2 JP 3089772 B2 JP3089772 B2 JP 3089772B2 JP 03328757 A JP03328757 A JP 03328757A JP 32875791 A JP32875791 A JP 32875791A JP 3089772 B2 JP3089772 B2 JP 3089772B2
Authority
JP
Japan
Prior art keywords
reaction
general formula
cyclohexane
diol compound
propyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03328757A
Other languages
Japanese (ja)
Other versions
JPH05163184A (en
Inventor
洋 真木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP03328757A priority Critical patent/JP3089772B2/en
Publication of JPH05163184A publication Critical patent/JPH05163184A/en
Application granted granted Critical
Publication of JP3089772B2 publication Critical patent/JP3089772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、下記一般式(1)で表
わされるベンゼン環を有するジオール化合物を水素還元
して下記一般式(2)で表わされるシクロヘキサン環を
有するジオール化合物とするシクロヘキサン環を有する
ジオール化合物の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cyclohexane ring having a benzene ring having a benzene ring represented by the following general formula (1), which is reduced to hydrogen to form a diol compound having a cyclohexane ring represented by the following general formula (2). The present invention relates to a method for producing a diol compound having:

【0002】 [0002]

【0003】(ただし、R1 、R2 は、H及びCH3
のうちから選ばれる同一又は異なる基である。)
(However, R 1 and R 2 are the same or different groups selected from H and CH 3 groups.)

【0004】本発明で得られる前記一般式(2)で表わ
されるシクロヘキサン環を有するジオール化合物は、ポ
リマー、ポリマーの改質剤、界面活性剤、各種安定剤、
過酸化物などの製造用原料として有用である。
The diol compound having a cyclohexane ring represented by the general formula (2) obtained in the present invention includes a polymer, a polymer modifier, a surfactant, various stabilizers,
It is useful as a raw material for manufacturing peroxides and the like.

【0005】[0005]

【従来の技術】前記一般式(2)で表わされるシクロヘ
キサン環を有するジオール化合物は、上記のとおり有用
な化合物であるにもかかわらず、工業的にも実施可能な
方法であって、かつ水酸基の水素化反応、すなわち水素
化分解反応をはじめとする好ましくない副反応を伴わ
ず、高収率が得られるという優れた製造方法は見い出さ
れていない。
2. Description of the Related Art A diol compound having a cyclohexane ring represented by the general formula (2) is a method which can be carried out industrially, though it is a useful compound as described above, and has a hydroxyl group. No excellent production method has been found in which a high yield can be obtained without undesirable side reactions such as a hydrogenation reaction, that is, a hydrocracking reaction.

【0006】[0006]

【発明が解決しようとする課題】かかる現状に鑑み、本
発明の目的は、前記一般式(2)で表わされるシクロヘ
キサン環を有するジオール化合物の製造方法であって、
工業的にも実施可能で、かつ好ましくない副反応を伴わ
ず、高収率が得られるという優れた製造方法を提供する
ことにある。
In view of such circumstances, an object of the present invention is to provide a method for producing a diol compound having a cyclohexane ring represented by the general formula (2),
It is an object of the present invention to provide an excellent production method which can be carried out industrially and can obtain a high yield without an undesirable side reaction.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく、鋭意検討の結果、本発明に到達したも
のである。すなわち、本発明は、下記一般式(1)で表
わされるベンゼン環を有するジオール化合物を水素還元
して下記一般式(2)で表わされるシクロヘキサン環を
有するジオール化合物とするシクロヘキサン環を有する
ジオール化合物の製造方法であって、有機溶媒、還元用
触媒であるロジウム触媒及びアルカリ金属の水酸化物の
存在下に水素還元するシクロヘキサン環を有するジオー
ル化合物の製造方法に係るものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to achieve the above object, and have reached the present invention. That is, the present invention provides a diol compound having a cyclohexane ring having a cyclohexane ring represented by the following general formula (2) by hydrogen-reducing a diol compound having a benzene ring represented by the following general formula (1). The present invention relates to a method for producing a diol compound having a cyclohexane ring, which is hydrogen-reduced in the presence of an organic solvent, a rhodium catalyst as a reducing catalyst , and an alkali metal hydroxide.

【0008】 [0008]

【0009】(ただし、R1 、R2 は、H及びCH3
のうちから選ばれる同一又は異なる基である。)
(However, R 1 and R 2 are the same or different groups selected from H and CH 3 groups.)

【0010】以下、詳細に説明する。本発明の一般式
(1)で表わされる化合物は、具体的には、1,2−ジ
(1−ヒドロキシエチル)ベンゼン、1,2−ジ(2−
ヒドロキシ−2−プロピル)ベンゼン、1−(1−ヒド
ロキシエチル)−2−(2−ヒドロキシ−2−プロピ
ル)ベンゼン、1,3−ジ(1−ヒドロキシエチル)ベ
ンゼン、1,3−ジ(2−ヒドロキシ−2−プロピル)
ベンゼン、1−(1−ヒドロキシエチル)−3−(2−
ヒドロキシ−2−プロピル)ベンゼン、1,4−ジ(1
−ヒドロキシエチル)ベンゼン、1,4−ジ(2−ヒド
ロキシ−2−プロピル)ベンゼン、又は1−(1−ヒド
ロキシエチル)−4−(2−ヒドロキシ−2−プロピ
ル)ベンゼンである。
The details will be described below. The compound represented by the general formula (1) of the present invention is, specifically, 1,2-di (1-hydroxyethyl) benzene, 1,2-di (2-
(Hydroxy-2-propyl) benzene, 1- (1-hydroxyethyl) -2- (2-hydroxy-2-propyl) benzene, 1,3-di (1-hydroxyethyl) benzene, 1,3-di (2 -Hydroxy-2-propyl)
Benzene, 1- (1-hydroxyethyl) -3- (2-
(Hydroxy-2-propyl) benzene, 1,4-di (1
-Hydroxyethyl) benzene, 1,4-di (2-hydroxy-2-propyl) benzene, or 1- (1-hydroxyethyl) -4- (2-hydroxy-2-propyl) benzene.

【0011】一般式(1)で表わされる化合物の製法
は、特に限定されないが、下記一般式(3)で表わされ
る化合物を空気酸化して得ることができ、又は下記一般
式(4)又は(5)で表わされる化合物を、亜硫酸ソー
ダ、触媒存在下の水素等による還元反応に付すことによ
り得ることができる。
The method for producing the compound represented by the general formula (1) is not particularly limited, but can be obtained by subjecting the compound represented by the following general formula (3) to air oxidation, or obtained by the following general formula (4) or ( The compound represented by 5) can be obtained by subjecting it to a reduction reaction with sodium sulfite, hydrogen or the like in the presence of a catalyst.

【0012】 [0012]

【0013】(ただし、R1 、R2 は、H及びCH3
のうちから選ばれる同一又は異なる基である。)
(However, R 1 and R 2 are the same or different groups selected from H and CH 3 groups.)

【0014】本発明の一般式(2)で表わされる化合物
は、具体的には、1,2−ジ(1−ヒドロキシエチル)
シクロヘキサン、1,2−ジ(2−ヒドロキシ−2−プ
ロピル)シクロヘキサン、1−(1−ヒドロキシエチ
ル)−2−(2−ヒドロキシ−2−プロピル)シクロヘ
キサン、1,3−ジ(1−ヒドロキシエチル)シクロヘ
キサン、1,3−ジ(2−ヒドロキシ−2−プロピル)
シクロヘキサン、1−(1−ヒドロキシエチル)−3−
(2−ヒドロキシ−2−プロピル)シクロヘキサン、
1,4−ジ(1−ヒドロキシエチル)シクロヘキサン、
1,4−ジ(2−ヒドロキシ−2−プロピル)シクロヘ
キサン、又は1−(1−ヒドロキシエチル)−4−(2
−ヒドロキシ−2−プロピル)シクロヘキサンである。
The compound represented by the general formula (2) of the present invention is, specifically, 1,2-di (1-hydroxyethyl)
Cyclohexane, 1,2-di (2-hydroxy-2-propyl) cyclohexane, 1- (1-hydroxyethyl) -2- (2-hydroxy-2-propyl) cyclohexane, 1,3-di (1-hydroxyethyl ) Cyclohexane, 1,3-di (2-hydroxy-2-propyl)
Cyclohexane, 1- (1-hydroxyethyl) -3-
(2-hydroxy-2-propyl) cyclohexane,
1,4-di (1-hydroxyethyl) cyclohexane,
1,4-di (2-hydroxy-2-propyl) cyclohexane or 1- (1-hydroxyethyl) -4- (2
-Hydroxy-2-propyl) cyclohexane.

【0015】本発明における有機溶媒としては、一般式
(1)の化合物を溶解し、かつ水素還元反応に不活性な
溶媒であれば特に限定されないが、具体的には、エチレ
ングリコールモノメチルエーテル、エチレングリコール
モノエチルエーテル、エチレングリコールジメチルエー
テル、ジエチレングリコールモノメチルエーテル、ジオ
キサン、ジプロピルエーテル、ジフェニルエーテルなど
のエーテル類、メタノール、エタノール、イソプロパノ
ール、シクロヘキサノール、エチレングリコール、ジエ
チレングリコールなどのアルコール類などを例示するこ
とができ、中でも、メタノール、エタノール、イソプロ
パノール、シクロヘキサノールが好ましい。有機溶媒の
使用量は、通常、一般式(1)の化合物1重量部あた
り、0.5〜20重量部である。
The organic solvent in the present invention is not particularly limited as long as it dissolves the compound of the general formula (1) and is inert to the hydrogen reduction reaction. Specific examples include ethylene glycol monomethyl ether and ethylene glycol. Glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, dioxane, dipropyl ether, ethers such as diphenyl ether, methanol, ethanol, isopropanol, cyclohexanol, ethylene glycol, alcohols such as diethylene glycol can be exemplified, Among them, methanol, ethanol, isopropanol and cyclohexanol are preferred. The amount of the organic solvent to be used is generally 0.5 to 20 parts by weight per 1 part by weight of the compound of the general formula (1).

【0016】本発明の方法において使用される還元用触
媒としては、酸化ロジウム、ロジウム/活性炭、ロジウ
ム/アルミナなどのロジウム触媒が用いられ、特に活性
炭又はアルミナに担持したロジウム触媒が好ましい。
れらの触媒は、各々単独で、又は二種類以上の多元系の
触媒として用いることができ、更にこれらの触媒に他の
金属類を少量加えて変性させたものを使用してもよい
[0016] The reduction catalyst used in the method of the present invention includes rhodium oxide, rhodium / activated carbon, rhodium.
Rhodium catalyst such as aluminum / alumina is used, especially active
Rhodium catalysts supported on charcoal or alumina are preferred. Each of these catalysts can be used alone or as a multi-component catalyst of two or more types, and those obtained by adding a small amount of other metals to these catalysts may be used.

【0017】還元用触媒の使用量は、一般式(1)で表
わされる化合物1重量部あたり、触媒全重量として、
0.005〜0.2重量部が好ましい。
The amount of the reducing catalyst used is as follows: 1 part by weight of the compound represented by the general formula (1),
0.005 to 0.2 parts by weight is preferred.

【0018】本発明の水素還元の反応温度は、30〜2
50℃、好ましくは50〜200℃の範囲であり、反応
圧力は1〜50kg/cm2 G、好ましくは5〜30k
g/cm2 Gである。
The reaction temperature of the hydrogen reduction of the present invention is 30 to 2
The reaction temperature is 50 ° C., preferably 50 to 200 ° C., and the reaction pressure is 1 to 50 kg / cm 2 G, preferably 5 to 30 k.
g / cm 2 G.

【0019】上記のとおり、触媒量、反応温度及び反応
圧力に対する好ましい範囲を定めた理由は、次のとおり
である。すなわち、触媒量が多すぎる、反応温度が高過
ぎる、又は反応圧力が高すぎる場合には、目的の反応以
外の副反応、例えば水素化分解反応等を生じ、副生物が
増加することがある。一方、触媒量が少なすぎる、反応
温度が低すぎる、又は反応圧力が低すぎる場合には、目
的の反応の反応速度が遅くなることがある。なお、有機
溶媒の量が少なすぎる場合は除熱の制御の点で、また、
多すぎる場合はエネルギー消費の点で好ましくない。
As described above, the reasons for determining the preferable ranges for the amount of the catalyst, the reaction temperature and the reaction pressure are as follows. That is, when the amount of the catalyst is too large, the reaction temperature is too high, or the reaction pressure is too high, a side reaction other than the target reaction, for example, a hydrocracking reaction or the like may occur, and the by-products may increase. On the other hand, if the amount of the catalyst is too small, the reaction temperature is too low, or the reaction pressure is too low, the reaction rate of the target reaction may be reduced. If the amount of the organic solvent is too small, in terms of controlling heat removal,
If it is too large, it is not preferable in terms of energy consumption.

【0020】本発明においてはアルカリ金属の水酸化物
が用いられる。アルカリ金属の水酸化物としては、たと
えば水酸化リチウム、水酸化ナトリウム、水酸化カルシ
ウムなどがあげられるが、なかでも水酸化リチウムが好
ましい。
In the present invention, an alkali metal hydroxide is used. Examples of the alkali metal hydroxide include, for example, lithium hydroxide, sodium hydroxide, calcium hydroxide and the like, with lithium hydroxide being preferred.

【0021】アルカリ金属の水酸化物の使用量は、一般
式(1)で表わされる化合物1重量部あたり0.000
05重量部以上、好ましくは0.0001〜0.005
重量部である。アルカリ金属の水酸化物の使用量が過少
な場合は、水素化副分解などの好ましくない副反応が発
生し、目的物である一般式(2)で表わされる化合物の
収率が低下する。なお、アルカリ金属の水酸化物を使用
するにあたっては、固体状または溶液状で反応系に添加
すればよい。反応は、通常、オートクレーブによるスラ
リー反応、固定床の流通反応の方式がとられる。
The amount of the alkali metal hydroxide used is 0.000 per part by weight of the compound represented by the general formula (1).
05 parts by weight or more, preferably 0.0001 to 0.005
Parts by weight. If the amount of the alkali metal hydroxide used is too small, undesirable side reactions such as hydrogenation side decomposition occur, and the yield of the target compound represented by the general formula (2) decreases. When using an alkali metal hydroxide, it may be added to the reaction system in a solid state or a solution state. The reaction is usually carried out by a slurry reaction in an autoclave or a flow reaction in a fixed bed.

【0022】かくして得られる反応混合物から、目的の
化合物(2)を分離、回収する好ましい方法は次のとお
りである。すなわち、反応終了後、触媒をろ過分離し、
次いで蒸留により有機溶媒を除去し、引き続いて生成物
を蒸留で留出させ、固化させて目的の化合物(2)を取
得するか、又は蒸留で有機溶媒を除いた後の缶出液、又
は缶出液から蒸留によって得た留出液をヘキサン、トル
エン、クロルベンゼン、水等を単独又は混合した溶媒で
晶析して、目的の化合物(2)を取得することができ
る。
A preferred method for separating and recovering the desired compound (2) from the reaction mixture thus obtained is as follows. That is, after completion of the reaction, the catalyst is separated by filtration,
Subsequently, the organic solvent is removed by distillation, and subsequently, the product is distilled off and solidified to obtain the desired compound (2), or the bottom liquid or the bottom after removing the organic solvent by distillation The target compound (2) can be obtained by crystallizing the distillate obtained by distillation from the distillate with a solvent containing hexane, toluene, chlorobenzene, water or the like alone or as a mixture.

【0023】[0023]

【実施例】次に、実施例をあげて、本発明を更に詳細に
説明するが、本発明は、これに限定されるものではな
い。 実施例1 かくはん機付SUS製200ccオートクレーブに、
1,3−ジ(2−ヒドロキシ−2−プロピル)ベンゼン
48.6g(0.25モル)、エタノール48.6g、
5%ロジウム−カーボン触媒(エヌ・イー・ケム・キャ
ット社製)2.43g及び5wt%水酸化リチウム水溶
液0.5gを仕込み、水素圧力15kg/cm2 Gの一
定圧力下、75℃で還元反応を実施した。2時間の反応
後、所定量の水素の吸収が認められたので、反応を停止
し、触媒を瀘過した後、反応液を取得した。ガスクロマ
トグラフィー分析の結果、1,3−ジ(2−ヒドロキシ
−2−プロピル)ベンゼンの反応転化率は100%であ
り、1,3−ジ(2−ヒドロキシ−2−プロピル)シク
ロヘキサンの選択率は96.5%であった。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 In a SUS 200 cc autoclave with a stirring machine,
48.6 g (0.25 mol) of 1,3-di (2-hydroxy-2-propyl) benzene, 48.6 g of ethanol,
2.43 g of a 5% rhodium-carbon catalyst (manufactured by NE Chem Cat Co.) and 0.5 g of a 5 wt% lithium hydroxide aqueous solution were charged, and a reduction reaction was performed at 75 ° C. under a constant hydrogen pressure of 15 kg / cm 2 G. Was carried out. After the reaction for 2 hours, absorption of a predetermined amount of hydrogen was recognized. The reaction was stopped, and the catalyst was filtered off to obtain a reaction solution. As a result of gas chromatography analysis, the conversion of 1,3-di (2-hydroxy-2-propyl) benzene was 100%, and the selectivity of 1,3-di (2-hydroxy-2-propyl) cyclohexane was 100%. Was 96.5%.

【0024】比較例1 水酸化リチウム水溶液を用いなかったこと以外は、実施
例1と同様に行った。1,3−ジ(2−ヒドロキシ−2
−プロピル)ベンゼンの反応転化率は99.6%であ
り、1,3−ジ(2−ヒドロキシ−2−プロピル)シク
ロヘキサンの選択率は85.3%であった。 実施例2〜6及び比較例2 表1〜2の条件としたこと以外は実施例1と同様に行っ
た。結果を表1〜2に示した。
Comparative Example 1 The same procedure as in Example 1 was carried out except that no aqueous lithium hydroxide solution was used. 1,3-di (2-hydroxy-2
The conversion of (-propyl) benzene was 99.6%, and the selectivity for 1,3-di (2-hydroxy-2-propyl) cyclohexane was 85.3%. Examples 2 to 6 and Comparative Example 2 The same procedure was performed as in Example 1 except that the conditions in Tables 1 and 2 were used. The results are shown in Tables 1 and 2.

【0025】[0025]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実 施 例 比較例 1 2 3 原料化合物 *1 m-DKA ← ← ← 還元用触媒 *2 5%Rh/C ← ← 5%Ru/C 還元用触媒/原料化合物 重量比 0.05/1 ← ← ← アルカリ金属の水酸化物 種類 *3 5%LiOH ← 10%LiOH 5%LiOH 使用量g 0.5 0.2 0.5 ← アルカリ金属の水酸化物/原料化合物 重量比 0.0005/1 0.0002/1 0.001/1 0.0005/1 反応温度℃ 75 ← ← 80 反応圧力 kg/cm2 15 ← ← 20 原料転化率% 100 100 99.3 99.6 選択率% *4 96.5 95.8 95.1 93.4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− TABLE 1 --------------------------------- implementation Example Comparative Example 1 2 3 2 starting compound * 1 m-DKA ← ← ← Reduction catalyst * 2 5% Rh / C ← ← 5% Ru / C Reduction catalyst / raw compound Weight ratio 0.05 / 1 ← ← ← Alkali metal hydroxide type * 3 5% LiOH ← 10% LiOH 5% LiOH Usage g 0.5 0.2 0.5 ← Alkali metal hydroxide / raw compound weight ratio 0.0005 / 1 0.0002 / 1 0.001 / 1 0.0005 / 1 Reaction temperature ℃ 75 ← ← 80 Reaction pressure kg / cm 2 15 ← ← 20 Raw material conversion rate 100 100 99.3 99.6 Selectivity% * 4 96.5 95.8 95.1 93.4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−

【0026】[0026]

【表2】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実 施 例 比較例 1 原料化合物 m-DKA p-DKA m-DHEB m-DKA 還元用触媒 5%Rh/C ← ← 5%Rh/C 還元用触媒/原料化合物 重量比 0.05/1 ← ← ← アルカリ金属の水酸化物 種類 5%NaOH 5%LiOH ← - 使用量g 0.5 ← ← - アルカリ金属の水酸化物/原料化合物 重量比 0.0005/1 ← 0.0006/1 - 反応温度℃ 80 ← ← 75 反応圧力 kg/cm2 20 ← ← 15 原料転化率% 99.0 100 100 99.6 選択率% 92.6 94.2 95.4 85.3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− TABLE 2 --------------------------------- implementation Example Comparative Example 4 5 6 1 starting compound m- DKA p-DKA m-DHEB m-DKA Reduction catalyst 5% Rh / C ← ← 5% Rh / C Reduction catalyst / raw compound Weight ratio 0.05 / 1 ← ← ← Alkali metal hydroxide Type 5% NaOH 5 % LiOH ←-Amount used g 0.5 ← ←-Alkali metal hydroxide / raw material weight ratio 0.0005 / 1 ← 0.0006 / 1-Reaction temperature ℃ 80 ← ← 75 Reaction pressure kg / cm 2 20 ← ← 15 Raw material conversion % 99.0 100 100 99.6 Selectivity% 92.6 94.2 95.4 85.3 -----------------------------

【0027】 *1 m−DKA:1,3−ジ(2−ヒドロキシ−2−プ
ロピル)ベンゼン p−DKA:1,4−ジ(2−ヒドロキシ−2−プロピ
ル)ベンゼン m−DHEB:1,3−ジ(1−ヒドロキシエチル)ベ
ンゼン *2 %はwt%を示す。 *3 %はwt%を示し、水溶液を用いた。 *4 選択率は反応した原料中の目的化合物への転換割合
(モル基準)を示す。なお、目的化合物は以下のとおり
である。 実施例1〜及び比較例1〜2:1,3−ジ(2−ヒド
ロキシ−2−プロピル)シクロヘキサン 実施例:1,4−ジ(2−ヒドロキシ−2−プロピ
ル)シクロヘキサン 実施例:1,3−ジ(1−ヒドロキシエチル)シクロ
ヘキサン
* 1 m-DKA: 1,3-di (2-hydroxy-2-propyl) benzene p-DKA: 1,4-di (2-hydroxy-2-propyl) benzene m-DHEB: 1,3 -Di (1-hydroxyethyl) benzene * 2% indicates wt%. * 3% indicates wt%, and an aqueous solution was used. * 4 Selectivity indicates the conversion ratio (on a molar basis) of the reacted starting material to the target compound. The target compounds are as follows. Examples 1-4 and Comparative Examples 1-2 : 1,3-di (2-hydroxy-2-propyl) cyclohexane Example 5 : 1,4-di (2-hydroxy-2-propyl) cyclohexane Example 6 : 1,3-di (1-hydroxyethyl) cyclohexane

【0028】[0028]

【発明の効果】以上、説明したとおり、本発明により、
前記一般式(2)で表わされるシクロヘキサン環を有す
るジオール化合物の製造方法であって、工業的にも実施
可能で、かつ好ましくない副反応を伴わず、高収率が得
られるという優れた製造方法を提供することにあるがで
きた。
As described above, according to the present invention,
A method for producing a diol compound having a cyclohexane ring represented by the general formula (2), which is industrially feasible, and is excellent in that a high yield is obtained without undesirable side reactions. To be able to provide.

フロントページの続き (56)参考文献 特開 昭53−149950(JP,A) 特開 平1−85939(JP,A) 特公 昭45−35300(JP,B2) Wolinsky,Joseph.e t al.”Reaction of methylmagnesium io dide and diethyl 1,2−cyclohexanedic arboxylates.”J.Or g.Chem.,1968,Vol.33 (10),pp.3950−3953. Marshall,James A. et al.”Synthesis a nd stereochemistry of 5−substituted 2−methylcyclo−hept anones.”J.Org.Che m.,1968,Vol.33(11),pp. 4090−4097. Liberman,A.L.et a l.”Sequence of mel ting points of ste reoisomeric 1,4−di substituted cycloh exanes(new regular ity).”Dokl.Akad.Na uk SSSR,1971,Vol.201 (1),pp.115−116. (58)調査した分野(Int.Cl.7,DB名) C07C 31/27 B01J 23/46 C07C 29/19 - 29/20 CA(STN) REGISTRY(STN)Continuation of the front page (56) References JP-A-53-149950 (JP, A) JP-A-1-85939 (JP, A) JP-B-45-35300 (JP, B2) Wolinsky, Joseph. et al. "Reaction of methylmagnesium iodide and diethyl 1,2-cyclohexanedic arboxylates." Or g. Chem. , 1968, Vol. 33 (10), p. 3950-3953. Marshall, James A. et al. "Synthesis and stereochemistry of 5-substituted 2-methylcyclo-hept anones." Org. Chem. , 1968, Vol. 33 (11), pp. 4090-4097. Liberman, A .; L. et al. "Sequence of melting points of steoisomeric 1,4-disubstituted cycloh xanes (new regularity)." Dokl. Akad. Nauk SSSR, 1971, Vol. 201 (1), p. 115-116. (58) Field surveyed (Int. Cl. 7 , DB name) C07C 31/27 B01J 23/46 C07C 29/19-29/20 CA (STN) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式(1)で表わされるベンゼン環
を有するジオール化合物を水素還元して下記一般式
(2)で表わされるシクロヘキサン環を有するジオール
化合物とするシクロヘキサン環を有するジオール化合物
の製造方法であって、有機溶媒、還元用触媒であるロジ
ウム触媒及びアルカリ金属の水酸化物の存在下に水素還
元するシクロヘキサン環を有するジオール化合物の製造
方法。 (ただし、R1 、R2 は、H及びCH3 基のうちから選
ばれる同一又は異なる基である。)
1. Production of a diol compound having a cyclohexane ring having a benzene ring represented by the following general formula (1) by hydrogen reduction to obtain a diol compound having a cyclohexane ring represented by the following general formula (2): A method comprising the steps of:
A method for producing a diol compound having a cyclohexane ring, which is hydrogen-reduced in the presence of a platinum catalyst and an alkali metal hydroxide. (However, R 1 and R 2 are the same or different groups selected from H and CH 3 groups.)
【請求項2】アルカリ金属の水酸化物が水酸化リチウム
である請求項1記載の方法。
2. The method according to claim 1, wherein the alkali metal hydroxide is lithium hydroxide.
JP03328757A 1991-12-12 1991-12-12 Method for producing diol compound having cyclohexane ring Expired - Fee Related JP3089772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03328757A JP3089772B2 (en) 1991-12-12 1991-12-12 Method for producing diol compound having cyclohexane ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03328757A JP3089772B2 (en) 1991-12-12 1991-12-12 Method for producing diol compound having cyclohexane ring

Publications (2)

Publication Number Publication Date
JPH05163184A JPH05163184A (en) 1993-06-29
JP3089772B2 true JP3089772B2 (en) 2000-09-18

Family

ID=18213817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03328757A Expired - Fee Related JP3089772B2 (en) 1991-12-12 1991-12-12 Method for producing diol compound having cyclohexane ring

Country Status (1)

Country Link
JP (1) JP3089772B2 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Liberman,A.L.et al."Sequence of melting points of stereoisomeric 1,4−disubstituted cyclohexanes(new regularity)."Dokl.Akad.Nauk SSSR,1971,Vol.201(1),pp.115−116.
Marshall,James A.et al."Synthesis and stereochemistry of 5−substituted 2−methylcyclo−heptanones."J.Org.Chem.,1968,Vol.33(11),pp.4090−4097.
Wolinsky,Joseph.et al."Reaction of methylmagnesium iodide and diethyl 1,2−cyclohexanedicarboxylates."J.Org.Chem.,1968,Vol.33(10),pp.3950−3953.

Also Published As

Publication number Publication date
JPH05163184A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JPH06263677A (en) Production of ether alcohol
JP2008074754A (en) METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE
JPS61109782A (en) Manufacture of 1-alkyl- or 1-cycloalkyl- piperazine
EP0348223B1 (en) Novel process for the preparation of serinol
JP4349227B2 (en) Method for producing 1,3-cyclohexanediol
JP3089772B2 (en) Method for producing diol compound having cyclohexane ring
JP3089672B2 (en) Diol compound having cyclohexane ring and method for producing diol compound having cyclohexane ring
JPH0250088B2 (en)
EP0075952A1 (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
KR100193156B1 (en) Method for producing diphenylamine or its nuclear-substituted derivatives
JPS6113461B2 (en)
WO1998052893A1 (en) Process for producing 1,2-propanediol
JP2514002B2 (en) Method for producing alkyl aryl carbinol
JPH062702B2 (en) Method for producing methyl isobutyl ketone
JP3971875B2 (en) Process for producing trans-4- (4'-oxocyclohexyl) cyclohexanols
JP2013082637A (en) Selective debenzylation method and selective hydrogenation catalyst used therein
US4661643A (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
WO2009128347A1 (en) Process for producing a 2-alkyl-2-cycloalkene-1-one
JP3218102B2 (en) Method for producing indole or indole derivative
JP5564088B2 (en) Process for producing trans-1,4-diaminocyclohexane
JP7140347B2 (en) Method for producing 4-(piperidin-4-yl)morpholine
JP3234655B2 (en) Process for producing diphenylamine or its nuclear substituted product
JP3177350B2 (en) Method for producing dinonyldiphenylamine
JPWO2003016251A1 (en) Method for producing cyclododecanone
KR100730460B1 (en) Method for preparing 2-amino-2-methyl-1,3-propanediol continuously using heterogeneous catalysts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees