[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3085831B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3085831B2
JP3085831B2 JP05231531A JP23153193A JP3085831B2 JP 3085831 B2 JP3085831 B2 JP 3085831B2 JP 05231531 A JP05231531 A JP 05231531A JP 23153193 A JP23153193 A JP 23153193A JP 3085831 B2 JP3085831 B2 JP 3085831B2
Authority
JP
Japan
Prior art keywords
film
insulating film
oxide film
storage electrode
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05231531A
Other languages
Japanese (ja)
Other versions
JPH0786433A (en
Inventor
正浩 山手
正志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP05231531A priority Critical patent/JP3085831B2/en
Publication of JPH0786433A publication Critical patent/JPH0786433A/en
Application granted granted Critical
Publication of JP3085831B2 publication Critical patent/JP3085831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置の中でも
特にDRAM(Dynamic Random Acc
ess Memory)のメモリセルなどにおけるキャ
パシタ部のストレージ電極の形状とその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to a DRAM (Dynamic Random Acc.) Among semiconductor devices.
The present invention relates to a shape of a storage electrode of a capacitor part in a memory cell of an ess memory, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】図3に従来のスタックト(積層)型メモ
リセルの製造工程を断面図で示し、以下に説明する。
2. Description of the Related Art FIG. 3 is a sectional view showing a manufacturing process of a conventional stacked memory cell, which will be described below.

【0003】まず、図3(a)に示すように、シリコン
半導体基板(以下単に基板と称す)1上に、公知のLO
COS法(選択酸化法)によりフィールド酸化膜2を形
成して素子分離を行なう。次に素子形成領域にトランジ
スタのゲートのゲート絶縁膜となる薄い酸化膜3aを通
常の酸化法で形成し、その上にゲート電極となるポリシ
リコン3を形成し(一般にこのゲート電極3にはさらに
不純物を導入して導電性を高める)、所定の形状にホト
リソ(ホトリソグラフィ)・エッチング技術でパターニ
ングする。次いで、そのゲート電極3をマスクにして、
基板1の所定部分に不純物をイオン注入(以下インプラ
と称す)して、トランジスタのソース・ドレイン4を形
成する。ここまでは、本発明には直接関係しない工程で
ある。
First, as shown in FIG. 3A, a known LO is placed on a silicon semiconductor substrate (hereinafter simply referred to as a substrate) 1.
A field oxide film 2 is formed by a COS method (selective oxidation method) to perform element isolation. Next, a thin oxide film 3a serving as a gate insulating film of a transistor gate is formed in the element formation region by a normal oxidation method, and polysilicon 3 serving as a gate electrode is formed thereon (generally, the gate electrode 3 is further provided with a polysilicon). Introducing impurities to increase conductivity) and patterning into a predetermined shape by photolithography (photolithography) etching technology. Next, using the gate electrode 3 as a mask,
Impurities are ion-implanted into predetermined portions of the substrate 1 (hereinafter referred to as implants) to form the source / drain 4 of the transistor. The steps so far are not directly related to the present invention.

【0004】次ぎに、図3(b)に示すように、前記で
形成された構造の上全面にシリコン酸化膜(以下、単に
酸化膜と称す)5をCVD法(化学的気相成長法)など
で堆積させ、所定部分にホトリソ・エッチング技術でコ
ンタクトホール(セルコンタクトと称す)5aを形成す
る。次いで、そのセルコンタクト5aの側壁、底面を含
めて表面に導電性膜であるポリシリコン6をCVD法で
形成し、不純物をインプラして導電性を持たせる。次い
で、そのストレージ電極6の上にキャパシタ絶縁膜とな
るシリコン窒化膜(以下、単に窒化膜と称す)7をLP
(低圧)CVD法で形成し、その窒化膜7の上部を酸化
した(図示せず)後、セルプレート電極となるポリシリ
コン8をCVD法で形成し、不純物をインプラして導電
性を持たせる。そして、キャパシタ部としての所定形状
にホトリソ・エッチング技術でパターニングする。
[0004] Next, as shown in FIG. 3 (b), a silicon oxide film (hereinafter simply referred to as an oxide film) 5 is formed on the entire surface of the structure formed above by a CVD method (chemical vapor deposition). Then, a contact hole (referred to as a cell contact) 5a is formed in a predetermined portion by a photolithographic etching technique. Then, polysilicon 6 as a conductive film is formed on the surface including the side wall and the bottom surface of the cell contact 5a by the CVD method, and impurities are implanted to have conductivity. Next, a silicon nitride film (hereinafter, simply referred to as a nitride film) 7 serving as a capacitor insulating film is formed on the storage electrode 6 by LP.
After forming by a (low pressure) CVD method and oxidizing the upper part of the nitride film 7 (not shown), polysilicon 8 serving as a cell plate electrode is formed by a CVD method, and impurities are implanted to have conductivity. . Then, patterning is performed by a photolithography etching technique into a predetermined shape as a capacitor portion.

【0005】次いで、図3(c)に示すように、前記構
造の上に層間絶縁膜9(一般に酸化膜をCVD法などで
形成)、配線(一般にアルミニウムあるいはその合金を
スパッタ法などで形成)10を形成してメモリセル部の
構造を得る。
Then, as shown in FIG. 3C, an interlayer insulating film 9 (generally, an oxide film is formed by a CVD method) and a wiring (generally, aluminum or an alloy thereof is formed by a sputtering method) on the structure. 10 is formed to obtain the structure of the memory cell portion.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た従来の方法では、半導体装置の高集積化、縮小化に伴
いストレージ電極も当然縮小化する場合、十分なセル容
量(キャパシタ容量、Cs)が得られず、ホールドタイ
ム不良やソフトエラーが生じ、デバイス特性の劣化、歩
留まりの低下をきたす。
However, in the above-mentioned conventional method, when the storage electrodes are naturally reduced in size as the semiconductor device becomes more highly integrated and smaller, sufficient cell capacitance (capacitor capacitance, Cs) is obtained. However, a hold time defect and a soft error occur, resulting in deterioration of device characteristics and a decrease in yield.

【0007】本発明は、前記セル容量が十分確保できな
いという問題点を除去するため、ストレージ電極の形状
として孔を設けるようにして、その孔の内壁にもキャパ
シタ絶縁膜を形成するようにし、キャパシタとしての実
効面積を増すことにより、十分なセル容量を得られるよ
うにすることを目的とするものである。
According to the present invention, in order to eliminate the problem that the cell capacity cannot be secured sufficiently, a hole is provided as the shape of the storage electrode, and a capacitor insulating film is formed on the inner wall of the hole. It is an object of the present invention to obtain a sufficient cell capacity by increasing the effective area as described above.

【0008】[0008]

【課題を解決するための手段】この発明は、前述した目
的を達成するため、ストレージ電極の形状として複数の
孔を設け(実施例では、ストレージ電極を断面としてT
字型にし、そのひさし部分に孔が形成された形状として
いる)、その孔の内壁にもキャパシタ絶縁膜を形成する
ようにしたものである。
According to the present invention, in order to achieve the above-mentioned object, a plurality of holes are provided as the shape of the storage electrode (in the embodiment, the storage electrode has a cross section of T
And a hole is formed in the eaves), and a capacitor insulating film is also formed on the inner wall of the hole.

【0009】[0009]

【作用】本発明は、前述したように、ストレージ電極に
孔を設けるようにしたので、ストレージ電極ひいてはキ
ャパシタとしての面積が大きくなり、十分なセル容量が
確保できる。従って、装置が縮小されても良好なデバイ
ス特性の半導体装置を実現できる。
According to the present invention, as described above, since holes are provided in the storage electrode, the area of the storage electrode and thus the capacitor is increased, and a sufficient cell capacity can be secured. Therefore, a semiconductor device having good device characteristics can be realized even if the device is reduced in size.

【0010】[0010]

【実施例】図1ないし図2に本発明の実施例の製造工程
を主要部分の断面図で示し、以下に説明する。なお、従
来例の図3と同じ部分には同じ符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 show a manufacturing process of an embodiment of the present invention in a sectional view of a main part, which will be described below. The same parts as in FIG. 3 of the conventional example are denoted by the same reference numerals.

【0011】図1(a)に示す、基板1上にフィールド
酸化膜2、ゲート酸化膜3a、ゲート電極3、ソース・
ドレイン4を形成するところまでは、従来例の図3
(a)と全く同じであり、また本発明には直接関係する
ところではないので、説明は割愛する。
As shown in FIG. 1A, a field oxide film 2, a gate oxide film 3a, a gate electrode 3, a source
Up to the point where the drain 4 is formed, FIG.
Since this is exactly the same as (a) and is not directly related to the present invention, the description is omitted.

【0012】この後、本実施例では図1(a)に示すよ
うに、前記構造の上に絶縁膜であるシリコン酸化膜(以
下、単に酸化膜と称す)5を300〜500nm、その
上にシリコン窒化膜(以下、単に窒化膜と称す)11を
10〜20nm、さらにその上に酸化膜12を400〜
600nm程度の厚さCVD法により順次形成する。つ
まり積層させる。
Thereafter, in this embodiment, as shown in FIG. 1A, a silicon oxide film (hereinafter simply referred to as an oxide film) 5 serving as an insulating film is formed on the above-mentioned structure in a thickness of 300 to 500 nm, and further thereon. A silicon nitride film (hereinafter simply referred to as a nitride film) 11 is 10 to 20 nm, and an oxide film 12 is further
The layers are sequentially formed by a CVD method with a thickness of about 600 nm. That is, they are stacked.

【0013】次いで、その上にLPCVD法により、シ
ラン(SiH4 )ガスを用いてアモルファス状態からポ
リシリコンに変わる遷移温度(例えば570℃)でシリ
コン膜を30〜50nm厚さ形成すると、図1(a)に
示すように島状に孤立した粒径30〜50nmの半球状
のシリコン膜13が多数形成される。
Next, a silicon film is formed thereon by LPCVD using a silane (SiH 4 ) gas at a transition temperature (for example, 570 ° C.) at which the amorphous state is changed to polysilicon at a thickness of 30 to 50 nm. As shown in a), a large number of hemispherical silicon films 13 having a particle size of 30 to 50 nm isolated in an island shape are formed.

【0014】次いで、図1(b)に示すように、島状の
前記シリコン膜13をマスクにしてRIE(反応性イオ
ンエッチング)法により、前記酸化膜12をエッチング
して溝(トレンチ)12aを形成する。このときのエッ
チングは、前記酸化膜12の下部が100〜300nm
の厚さ残るように行なう。つまり前記溝12aは酸化膜
12の途中まで形成するのである。なお、この溝12a
によりできた凸部を12bとする。
Next, as shown in FIG. 1B, the oxide film 12 is etched by RIE (Reactive Ion Etching) using the island-shaped silicon film 13 as a mask to form a trench (trench) 12a. Form. At this time, the lower portion of the oxide film 12 is formed to have a thickness of 100 to 300 nm.
Is performed so that the thickness remains. That is, the groove 12a is formed halfway through the oxide film 12. The groove 12a
The projection formed by the above is 12b.

【0015】次いで、前記島状のシリコン膜13をフッ
酸(HF)と硝酸(HNO3 )との混合液などで除去し
た後、図1(c)に示すように、ホトリソ・エッチング
技術でセルコンタクト5aを従来同様形成する。続い
て、全面に(勿論セルコンタクト5aも埋まるように)
導電性膜であるポリシリコン膜6をLPCVD法により
400〜600nmの厚さ堆積させる。そして、POC
3 を拡散源として不純物としてリンを注入して導電性
を高める。
Next, after removing the island-shaped silicon film 13 with a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO 3 ), as shown in FIG. The contact 5a is formed as in the conventional case. Subsequently, the entire surface (of course, so that the cell contact 5a is also buried).
A polysilicon film 6, which is a conductive film, is deposited to a thickness of 400 to 600 nm by LPCVD. And POC
Phosphorus is implanted as an impurity using l 3 as a diffusion source to increase conductivity.

【0016】次いで、図2(d)に示すように、RIE
法により前記ポリシリコン膜6を前記溝12aの深さよ
り薄くなるように全面エッチバックする。そして、ホト
リソ・エッチング技術により、ストレージ電極となる所
定形状にパターニングする。つまり、前記セルコンタク
ト5aに埋まっているポリシリコン膜6と、その部分を
中心として前記溝12aの一部を含むポリシリコン膜6
のパターン(いわばストレージ電極として断面が次の図
2(e)で明確なようにT字型)にする。
Next, as shown in FIG.
The entire surface of the polysilicon film 6 is etched back so as to be thinner than the depth of the trench 12a. Then, it is patterned into a predetermined shape to be a storage electrode by a photolithographic etching technique. That is, the polysilicon film 6 buried in the cell contact 5a and the polysilicon film 6 including a part of the trench 12a around the portion.
(A so-called storage electrode having a T-shaped cross section as clearly shown in FIG. 2E).

【0017】次いで、図2(e)に示すように、フッ酸
溶液などによる等方性エッチングにより、前記酸化膜1
2を前記窒化膜11をストッパーとして全部除去する
と、前記溝12aを形成した際の酸化膜12の凸部12
bがあった部分がポリシリコン膜6において空洞(孔)
6aになる。つまり、断面がT字型に形成されたストレ
ージ電極(ポリシリコン)6のひさし部分に多数の孔6
aができた形状となる。この孔6aによりストレージ電
極6の表面積が増加することになる。
Next, as shown in FIG. 2E, the oxide film 1 is subjected to isotropic etching using a hydrofluoric acid solution or the like.
2 is completely removed using the nitride film 11 as a stopper, the protrusions 12 of the oxide film 12 at the time of forming the grooves 12a are removed.
The portion where b was present is a cavity (hole) in the polysilicon film 6.
6a. That is, a large number of holes 6 are formed in the eaves of the storage electrode (polysilicon) 6 having a T-shaped cross section.
a is formed. Due to the holes 6a, the surface area of the storage electrode 6 increases.

【0018】この後、図2(f)に示すように、前記ス
トレージ電極の表面、無論前記孔6a内の側壁の面も含
めて、キャパシタ絶縁膜となる窒化膜7をLPCVD法
により5〜10nmの厚さ形成し、その表面を酸化し
(図示せず)、その上にセルプレートとなるポリシリコ
ン膜8を200〜300nmの厚さ形成し(これも勿
論、前記孔6a内を含む)POCl3 を拡散源としてリ
ンを注入して導電性を持たせ、ホトリソ・エッチング技
術でセルプレート電極8としての所定形状にパターニン
グする。この後は、従来同様、絶縁膜9、配線10を形
成して、図2(f)に示すようなメモリセル部の構造を
得る。
Thereafter, as shown in FIG. 2F, a nitride film 7 serving as a capacitor insulating film including the surface of the storage electrode and, of course, the side wall surface in the hole 6a is formed to a thickness of 5 to 10 nm by LPCVD. Then, the surface thereof is oxidized (not shown), and a polysilicon film 8 serving as a cell plate is formed thereon to a thickness of 200 to 300 nm (this also includes the inside of the hole 6a, of course). Phosphorus is implanted using 3 as a diffusion source to make it conductive, and patterned into a predetermined shape as the cell plate electrode 8 by photolithographic etching technology. Thereafter, as in the conventional case, the insulating film 9 and the wiring 10 are formed to obtain the structure of the memory cell portion as shown in FIG.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
ストレージ電極の構造として複数の孔を設けた形状とし
たので、キャパシタ部としての表面積を狭い範囲におい
ても増加させることができ、装置の高集積化、縮小にも
かかわらず十分なセル容量を確保でき、良好なデバイス
特性の半導体装置を得られる。
As described above, according to the present invention,
Since the storage electrode has a shape with a plurality of holes, the surface area of the capacitor can be increased even in a narrow range, and sufficient cell capacity can be secured despite high integration and reduction of the device. A semiconductor device having good device characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の工程説明図(その1)FIG. 1 is a process explanatory view of an embodiment of the present invention (part 1).

【図2】本発明の実施例の工程説明図(その2)FIG. 2 is a process explanatory view of an embodiment of the present invention (part 2).

【図3】従来例の工程説明図FIG. 3 is a process explanatory view of a conventional example.

【符号の説明】[Explanation of symbols]

1 基板 5、12 シリコン酸化膜 6 ポリシリコン 6a 孔 11 シリコン窒化膜 13 シリコン膜 12a 溝 Reference Signs List 1 substrate 5, 12 silicon oxide film 6 polysilicon 6a hole 11 silicon nitride film 13 silicon film 12a groove

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 27/108 H01L 21/822 H01L 21/8242 H01L 27/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 27/108 H01L 21/822 H01L 21/8242 H01L 27/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (a)半導体基板上に、第1の絶縁膜、
第1の耐酸化性絶縁膜、第2の絶縁膜を順に積層する工
程、 (b)前記第2の絶縁膜に複数の溝を形成し、該溝を埋
め込むように全面に導電性膜を形成する工程、 (c)前記導電性膜を、キャパシタ部のストレージ電極
となる部分のみ残るように選択的に除去する工程、 (d)前記第2の絶縁膜を、前記第1の耐酸化性絶縁膜
をストッパーとして除去し、前記導電性膜に複数の孔を
形成する工程、 以上の工程を順に施すことを特徴とする半導体装置の製
造方法。
(A) a first insulating film on a semiconductor substrate;
A step of sequentially laminating a first oxidation-resistant insulating film and a second insulating film; (b) forming a plurality of grooves in the second insulating film and forming a conductive film on the entire surface so as to fill the grooves; (C) selectively removing the conductive film so that only a portion serving as a storage electrode of a capacitor portion remains; and (d) removing the second insulating film from the first oxidation-resistant insulating film. Removing the film as a stopper and forming a plurality of holes in the conductive film; and performing the above steps in order.
JP05231531A 1993-09-17 1993-09-17 Method for manufacturing semiconductor device Expired - Fee Related JP3085831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05231531A JP3085831B2 (en) 1993-09-17 1993-09-17 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05231531A JP3085831B2 (en) 1993-09-17 1993-09-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0786433A JPH0786433A (en) 1995-03-31
JP3085831B2 true JP3085831B2 (en) 2000-09-11

Family

ID=16924954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05231531A Expired - Fee Related JP3085831B2 (en) 1993-09-17 1993-09-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3085831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321776A (en) * 1996-08-16 1998-08-05 United Microelectronics Corp Method of fabricating a stacked capacitor
US5759890A (en) * 1996-08-16 1998-06-02 United Microelectronics Corporation Method for fabricating a tree-type capacitor structure for a semiconductor memory device
NL1005624C2 (en) * 1997-03-25 2000-02-08 United Microelectronics Corp Poly:silicon CMP processing high density DRAM memory cell structure - includes depositing 1st and 2nd insulating, 1st and 2nd poly:silicon, 3rd insulating, removing redundant 2nd poly:silicon and 3rd insulating, forming dielectric & deposit 3rd poly:silicon

Also Published As

Publication number Publication date
JPH0786433A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
JP2886280B2 (en) Method for manufacturing semiconductor memory device
US5716883A (en) Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
JPH10178162A (en) Soi embedded plate trench capacitor
JPH10321814A (en) Planarization technique for dram cell capacitor electrode
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
US5631185A (en) Method for manufacturing capacitor of semiconductor memory device
JP2751906B2 (en) Method of forming capacitive element
JP2557592B2 (en) Method of manufacturing semiconductor memory cell
JP2865155B2 (en) Semiconductor device and manufacturing method thereof
JPH11168199A (en) Semiconductor memory device and manufacture thereof
JP2809185B2 (en) Semiconductor device and manufacturing method thereof
JP2770789B2 (en) Method for manufacturing semiconductor memory device
JPH05235297A (en) Production of semiconductor memory element
KR0141950B1 (en) Manufacturing method of semiconductor device
JPH1065122A (en) Semiconductor device and manufacture thereof
JP3085831B2 (en) Method for manufacturing semiconductor device
JP2772375B2 (en) Semiconductor storage device
JPH05251658A (en) Manufacture of semiconductor device
JP2627515B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0423467A (en) Manufacture of semiconductor memory
JP2944990B2 (en) Manufacturing method of crown type capacitor
JPH01119053A (en) Semiconductor memory device
JPH07202023A (en) Semiconductor storage device and its manufacture
US6400022B1 (en) Semiconductor device and fabrication process therefor and capacitor structure
JP2753092B2 (en) Method for manufacturing semiconductor memory device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees