[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3079716B2 - Method for producing polylactide containing urethane bond - Google Patents

Method for producing polylactide containing urethane bond

Info

Publication number
JP3079716B2
JP3079716B2 JP03335579A JP33557991A JP3079716B2 JP 3079716 B2 JP3079716 B2 JP 3079716B2 JP 03335579 A JP03335579 A JP 03335579A JP 33557991 A JP33557991 A JP 33557991A JP 3079716 B2 JP3079716 B2 JP 3079716B2
Authority
JP
Japan
Prior art keywords
polylactide
molecular weight
diisocyanate
urethane bond
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03335579A
Other languages
Japanese (ja)
Other versions
JPH05148352A (en
Inventor
幸夫 土井
栄一郎 滝山
Original Assignee
昭和高分子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和高分子株式会社 filed Critical 昭和高分子株式会社
Priority to JP03335579A priority Critical patent/JP3079716B2/en
Publication of JPH05148352A publication Critical patent/JPH05148352A/en
Application granted granted Critical
Publication of JP3079716B2 publication Critical patent/JP3079716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フィルム、繊維、その
他の成形品の成形材料として有用なウレタン結合を含む
ポリラクタイドの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a urethane-bonded polylactide useful as a molding material for films, fibers, and other molded articles.

【0002】[0002]

【従来の技術】ポリラクタイドは、生分解性プラスチッ
クスとして注目されてはいるが、しかし、それから成形
された成形品の強度的な面では必ずしも実用性に富んで
いるとはいえない上、熱安定性も必ずしも十分とは限ら
なかった。
2. Description of the Related Art Polylactide has attracted attention as a biodegradable plastic, but it is not necessarily practically useful in terms of the strength of molded articles formed therefrom, and is not heat-stable. Sex was not always enough.

【0003】乳酸は自然界に広く分布し、動植物および
人畜に対して無害であり、その重合体(ポリラクタイ
ド)は水の存在下で比較的容易に加水分解を受け、また
生体内でも加水分解され吸収されるところから、生分解
する合成高分子材料として注目されている。
[0003] Lactic acid is widely distributed in nature and is harmless to animals, plants and humans, and its polymer (polylactide) is relatively easily hydrolyzed in the presence of water, and is also hydrolyzed and absorbed in vivo. Therefore, it is attracting attention as a biodegradable synthetic polymer material.

【0004】乳酸は分子内に水酸基とカルボキシル基を
有するために重縮合が可能であるが、従来までに行なわ
れた脱水縮合では数平均分子量が4,000未満の低重
合度のオリゴマーしか得られないという欠点を有する
(C.H.Halten著,“Lactic Aci
d”P−226,Verlag Chemie,197
1)。従って、数平均分子量が4,000以上の高分子
量ポリラクタイドを得るには、乳酸を単に脱水縮合させ
るのではなく、乳酸を脱水縮合して乳酸のオリゴマーと
し、これを三酸化アンチモン、三弗化アンチモン、四塩
化スズ等の如き触媒の存在下で解重合して乳酸の環状ジ
エステル(ラクタイド)とし、これにオクチル酸スズ、
ジエチル亜鉛、三弗化ホウ素等の如き触媒を加えて開環
重合する方法が広く一般的に採用されている(例えば特
公昭56−14688)。
Since lactic acid has a hydroxyl group and a carboxyl group in the molecule, polycondensation is possible. However, in the conventional dehydration condensation, only an oligomer having a low number of polymerization having a number average molecular weight of less than 4,000 can be obtained. (CH Halten, "Lactic Aci"
d "P-226, Verlag Chemie, 197
1). Therefore, in order to obtain a high molecular weight polylactide having a number average molecular weight of 4,000 or more, instead of simply dehydrating and condensing lactic acid, lactic acid is dehydrated and condensed to form an oligomer of lactic acid. , Depolymerization in the presence of a catalyst such as tin tetrachloride to form a cyclic diester of lactic acid (lactide), which is then treated with tin octylate,
A method of ring-opening polymerization by adding a catalyst such as diethyl zinc, boron trifluoride or the like is widely and generally employed (for example, Japanese Patent Publication No. 56-14688).

【0005】しかし、この方法は、操作が繁雑である上
に生成物は亜鉛とかスズの如き毒性の懸念される金属を
含んでいることから、医療用材料として適当であるとは
いい難い。従って、ポリラクタイドを簡便容易に、しか
も人体に有害な不純物を含まない状態で製造する方法が
強く要望されている。
However, this method is not suitable as a medical material because the operation is complicated and the product contains a metal of concern about toxicity such as zinc or tin. Therefore, there is a strong demand for a method for producing polylactide simply and easily without containing impurities harmful to the human body.

【0006】本発明者らの一部は、先に高分子量のポリ
ラクタイドを得るべく、乳酸の重縮合反応について種々
検討した結果、反応条件を特定すれば、触媒を全く用い
ずに乳酸を直接脱水縮合せしめるだけで、数平均分子量
が4,000以上のポリラクタイドが得られることを見
出した(特公平2−52930号公報)。
Some of the present inventors have conducted various studies on the polycondensation reaction of lactic acid in order to obtain a high molecular weight polylactide. As a result, if the reaction conditions are specified, lactic acid is directly dehydrated without using any catalyst. It has been found that a polylactide having a number average molecular weight of 4,000 or more can be obtained only by condensation (Japanese Patent Publication No. 52930/1990).

【0007】即ち、この方法によれば乳酸を不活性ガス
雰囲気中、触媒の不存在下に加熱し、圧力を降下させて
重縮合させ、最終的に温度220〜260℃、圧力10
mmHg以下の条件で重縮合を完結させて数平均分子量が少
なくとも4,000のポリラクタイドを得ることが可能
である。また、この方法によれば、ポリラクタイドは触
媒の不存在下で製造されるため、触媒に由来する不純物
を全く含んでいない点で毒性の心配がなく、生分解性合
成高分子材料として各方面での使用に好適であるばかり
でなく、製法が極めて単純で、かつ高分子量のポリラク
タイドが容易に得られるという点でも甚だ好都合であ
る。
That is, according to this method, lactic acid is heated in an inert gas atmosphere in the absence of a catalyst, polycondensed by reducing the pressure, and finally at a temperature of 220 to 260 ° C. and a pressure of 10
It is possible to complete polycondensation under the condition of mmHg or less to obtain a polylactide having a number average molecular weight of at least 4,000. In addition, according to this method, since polylactide is produced in the absence of a catalyst, there is no need to worry about toxicity because it does not contain any impurities derived from the catalyst, and it can be used as a biodegradable synthetic polymer material in various fields. Not only is it suitable for use, but it is also extremely advantageous in that the production method is extremely simple and that high molecular weight polylactide can be easily obtained.

【0008】しかし、残念なことに、このように製造し
たポリラクタイドは、フィルム、繊維、その他の成形
品、といった各用途に適用するには、前記の如く物性、
殊に強度面で不十分であり、より改良が望まれていた。
[0008] Unfortunately, however, the polylactide produced in this manner is not suitable for use in films, fibers, and other molded articles as described above.
Particularly, the strength is insufficient, and further improvement has been desired.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来の
ポリラクタイドに見られるような欠点を克服し、熱安定
性および機械的強度に優れたウレタン結合を含むポリラ
クタイドの製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a polylactide containing a urethane bond, which overcomes the above-mentioned disadvantages of the conventional polylactide and has excellent thermal stability and mechanical strength. Aim.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために検討を重ねた結果、特定の数平均分子
量を有するポリラクタイドに、このポリラクタイドの融
点以上の熔融状態で、特定量のジイソシアナートを添
加、反応させて得られる、1分子中に少なくとも2個の
ウレタン結合を含むポリラクタイドが、熱安定性に優
れ、実用上十分な機械的強度を示し、生分解性プラスチ
ックスとして利用可能であることを知り本発明を完成す
ることができた。
Means for Solving the Problems As a result of repeated studies to solve the above-mentioned problems, the present inventors have found that a polylactide having a specific number average molecular weight is melted at a melting point higher than the melting point of the polylactide and has a specific amount. The polylactide containing at least two urethane bonds in one molecule obtained by adding and reacting the diisocyanate is excellent in thermal stability, shows sufficient mechanical strength for practical use, and is used as a biodegradable plastics. The present invention has been completed by knowing that it can be used.

【0011】即ち、本発明は、数平均分子量が4,00
0以上のポリラクタイドの融点以上の熔融状態で、ポリ
ラクタイド100重量部に対して、0.1〜5重量部の
ジイソシアナートを添加、反応させることを特徴とす
る、ウレタン結合を含むポリラクタイドの製造方法に関
する。
That is, according to the present invention, the number average molecular weight is 4,000.
A method for producing a polylactide containing a urethane bond, wherein 0.1 to 5 parts by weight of diisocyanate is added and reacted with 100 parts by weight of polylactide in a molten state at or above the melting point of 0 or more polylactide. About.

【0012】本発明において、ポリラクタイドを合成す
るために使用される乳酸とは、L−乳酸、D−乳酸、ラ
セミ体であるD,L−乳酸である。乳酸の重縮合反応
は、乳酸を窒素やアルゴンの如き不活性ガス雰囲気中、
触媒の不存在下に連続的あるいは段階的に加熱して昇温
させると共に、圧力を連続的あるいは段階的に降下させ
て縮合水の留出のもとに重縮合させ、最終的に温度22
0〜260℃、圧力10mmHg以下の条件下で重縮合反応
を完結させることにより行なわれる。最終の縮合温度が
220℃未満、または最終圧力が10mmHgより高い場合
には、生成するポリラクタイドの数平均分子量が4,0
00未満にとどまる。一方、最終の縮合温度が260℃
を越えると、生成するポリラクタイドは暗褐色となるば
かりでなく、熱解重合が優勢となって、その数平均分子
量が4,000未満となる。
In the present invention, the lactic acid used for synthesizing polylactide is L-lactic acid, D-lactic acid, or racemic D, L-lactic acid. In the polycondensation reaction of lactic acid, lactic acid is converted into an inert gas atmosphere such as nitrogen or argon.
In the absence of a catalyst, the temperature is increased by heating continuously or stepwise, and the pressure is decreased continuously or stepwise to perform polycondensation under distillation of condensed water.
It is carried out by completing the polycondensation reaction under the conditions of 0 to 260 ° C and a pressure of 10 mmHg or less. When the final condensation temperature is lower than 220 ° C. or the final pressure is higher than 10 mmHg, the number average molecular weight of the resulting polylactide is 4,0
Stay below 00. On the other hand, the final condensation temperature is 260 ° C.
When it exceeds, the polylactide produced not only becomes dark brown, but the thermal depolymerization becomes dominant, and its number average molecular weight becomes less than 4,000.

【0013】本発明は、このようにして得られた数平均
分子量が4,000以上のポリラクタイドに、このポリ
ラクタイドの融点以上の熔融状態で、ポリラクタイド1
00重量部当り、0.1〜5重量部のジイソシアナート
を反応させることにより、その機械的強度を飛躍的に向
上させ、フィルム、繊維、その他の成形品等の成形材料
に有用なウレタン結合を含むポリラクタイドとすること
ができる。数平均分子量が4,000未満のポリラクタ
イドを使用した場合は、機械的強度に優れたウレタン結
合を含むポリラクタイドを得ることができない。
According to the present invention, the polylactide having a number average molecular weight of 4,000 or more obtained as described above is added to the polylactide 1 in a molten state at a melting point of the polylactide or higher.
By reacting 0.1 to 5 parts by weight of diisocyanate per 100 parts by weight, the mechanical strength is dramatically improved, and urethane bonds useful for molding materials such as films, fibers, and other molded products. And polylactide containing When a polylactide having a number average molecular weight of less than 4,000 is used, a polylactide containing a urethane bond having excellent mechanical strength cannot be obtained.

【0014】本発明に利用可能なジイソシアナートは、
特にその種類を限定することはないが、市販のものをそ
のまま用いることができる。それらの例には、例えばヘ
キサメチレンジイソシアナート、2,4−トリレンジイ
ソシアナート、2,4−トリレンジイソシアナートと
2,6−トリレンジイソシアナートとの混合ジイソシア
ナート、ジフェニルメタンジイソシアナート、1,5−
ナフチレンジイソシアナート、水素化ジフェニルメタン
ジイソシアナート、キシリレンジイソシアナート、イソ
ホロンジイソシアナート等があげられる。これらのジイ
ソシアナートのうち、特に、ヘキサメチレンジイソシア
ナート、イソホロンジイソシアナートのように、脂肪族
ジイソシアナート、脂肪族環状ジイソシアナートのよう
な非ベンゼン構造のジイソシアナートが反応後の着色の
ない点で望ましい。
The diisocyanate usable in the present invention is:
The type is not particularly limited, but commercially available ones can be used as they are. Examples thereof include, for example, hexamethylene diisocyanate, 2,4-tolylene diisocyanate, a mixed diisocyanate of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, diphenylmethane diisocyanate , 1,5-
Examples include naphthylene diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, and isophorone diisocyanate. Among these diisocyanates, in particular, diisocyanates having a non-benzene structure such as aliphatic diisocyanate and aliphatic cyclic diisocyanate, such as hexamethylene diisocyanate and isophorone diisocyanate, are obtained after the reaction. It is desirable because there is no coloring.

【0015】ジイソシアナートの使用量は、ポリラクタ
イド100重量部に対して0.1〜5重量部、より望ま
しくは0.5〜3重量部である。ポリラクタイドの使用
量が0.1重量部未満では、添加の効果に乏しく、また
5重量部より多い場合は条件の如何に拘らず、ゲル化の
危険が避けられない。
The amount of diisocyanate used is 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, based on 100 parts by weight of polylactide. If the amount of polylactide is less than 0.1 part by weight, the effect of the addition is poor, and if it is more than 5 parts by weight, the danger of gelation is unavoidable irrespective of the conditions.

【0016】本発明の方法によって得られるウレタン結
合を含むポリラクタイドは、生分解性であり、その実用
化に当っては必要に応じて、フィラー、着色剤、補強
材、ワックス類、ポリマー等を併用できることは勿論で
ある。
The polylactide containing a urethane bond obtained by the method of the present invention is biodegradable. For practical use, a filler, a colorant, a reinforcing material, a wax, a polymer, etc. may be used in combination as necessary. Of course, you can.

【0017】次に本発明の理解を助けるために、以下に
実施例を示す。
Next, in order to facilitate understanding of the present invention, examples are shown below.

【0018】[0018]

【実施例】【Example】

実施例1 冷却器、温度計、撹拌機および窒素ガス導入キャピラリ
ーを備えた500mlの3つ口フラスコに、市販のD,L
−乳酸(85〜92重量%水溶液)500gを仕込み、
窒素ガスを吹き込みながら180℃で4時間脱水反応さ
せた後、真空ポンプにて徐々に20mmHgまで減圧し、更
に2時間脱水反応させた(この状態で反応を終了させた
場合、ゲルパーミエーションクロマトグラフィーによっ
て数平均分子量を測定すると数平均分子量は2,000
であった。また、DSC(示差走査熱量計)によってガ
ラス転移温度を測定すると22℃であった。)。その
後、更に温度を徐々に上げ、かつ圧力を徐々に下げて最
終的に260℃の温度、2mmHgの圧力で8時間反応させ
た。260℃、2mmHgにしてからの反応時間と得られた
ポリラクタイドの数平均分子量、ガラス転移温度の関係
は表1の如くであった。
Example 1 Commercially available D, L was placed in a 500 ml three-necked flask equipped with a condenser, a thermometer, a stirrer, and a nitrogen gas introduction capillary.
-500 g of lactic acid (85-92% by weight aqueous solution) is charged,
After performing a dehydration reaction at 180 ° C. for 4 hours while blowing in nitrogen gas, the pressure was gradually reduced to 20 mmHg by a vacuum pump, and a dehydration reaction was further performed for 2 hours. (If the reaction was terminated in this state, gel permeation chromatography When the number average molecular weight is measured, the number average molecular weight is 2,000.
Met. The glass transition temperature measured by DSC (differential scanning calorimeter) was 22 ° C. ). Thereafter, the temperature was gradually increased, and the pressure was gradually decreased. Finally, the reaction was carried out at a temperature of 260 ° C. and a pressure of 2 mmHg for 8 hours. Table 1 shows the relationship between the reaction time at 260 ° C. and 2 mmHg and the number average molecular weight and glass transition temperature of the obtained polylactide.

【0019】[0019]

【表1】 [Table 1]

【0020】表1において、数平均分子量18,000
のポリラクタイドをポリラクタイド(a)とし、このポ
リラクタイド(a)300gを210〜215℃に加熱
熔融し、窒素ガス気流中で撹拌しながらヘキサメチレン
ジイソシアナート4gを加えた。粘度は急速に増大した
がゲル化はしなかった。得られたウレタン結合を含むポ
リラクタイド(A)のガラス転移温度は44℃、数平均
分子量は39,000であった。
In Table 1, the number average molecular weight is 18,000.
The polylactide (a) was used as a polylactide (a), and 300 g of the polylactide (a) was heated and melted at 210 to 215 ° C., and 4 g of hexamethylene diisocyanate was added while stirring in a nitrogen gas stream. The viscosity increased rapidly but did not gel. The glass transition temperature of the obtained polylactide (A) containing a urethane bond was 44 ° C., and the number average molecular weight was 39,000.

【0021】ポリラクタイド(a)、ウレタン結合を含
むポリラクタイド(A)をそれぞれプレス成形(150
℃,20kg/cm2 )して、厚さ約55μのフィルムを得
た。得られたフィルムを40℃で3倍に一軸延伸して、
その引張り強度を測定した所、ポリラクタイド(A)か
ら成形された一軸延伸フィルムは引張り強度11.4〜
13.9kg/mm2 を示し、頗る強靭なフィルムであっ
た。しかし、ポリラクタイド(a)から成形されたフィ
ルムは延伸途中で切断して所望の延伸フィルムが得られ
なかった。
Each of polylactide (a) and polylactide (A) containing a urethane bond is press-molded (150).
C., 20 kg / cm 2 ) to obtain a film having a thickness of about 55 μm. The obtained film is uniaxially stretched three times at 40 ° C.
When the tensile strength was measured, the uniaxially stretched film formed from polylactide (A) had a tensile strength of 11.4 to
The film showed 13.9 kg / mm 2 and was a very tough film. However, the film formed from polylactide (a) was cut in the middle of stretching, and a desired stretched film could not be obtained.

【0022】実施例2 出発原料として市販のL−乳酸(90%水溶液)を用い
た以外は実施例1と同様の条件で重縮合反応させ、数平
均分子量18,000、ガラス転移温度42℃の淡黄色
のポリラクタイド(b)を得た。
Example 2 A polycondensation reaction was carried out under the same conditions as in Example 1 except that a commercially available L-lactic acid (90% aqueous solution) was used as a starting material, and a number average molecular weight of 18,000 and a glass transition temperature of 42 ° C. A pale yellow polylactide (b) was obtained.

【0023】実施例1と同様に、210〜215℃でポ
リラクタイド(b)300gに、イソホロンジイソシア
ナート5gを加えた。粘度は急速に増大したがゲル化は
しなかった。得られたウレタン結合を含むポリラクタイ
ド(B)の数平均分子量は40,600、ガラス転移温
度は45℃であった。
As in Example 1, 5 g of isophorone diisocyanate was added to 300 g of polylactide (b) at 210 to 215 ° C. The viscosity increased rapidly but did not gel. The obtained polylactide (B) containing a urethane bond had a number average molecular weight of 40,600 and a glass transition temperature of 45 ° C.

【0024】ポリラクタイド(b)、ウレタン結合を含
むポリラクタイド(B)をそれぞれ実施例1と同様にプ
レス成形して、厚さ50μのフィルムを得た。次いで、
このフィルムを実施例1と同様に3倍に一軸延伸して、
延伸フィルムの引張り強度を測定した所、ポリラクタイ
ド(B)から成形された延伸フィルムの引張り強度は1
2.1〜15.4kg/mm2 であり、頗る強靭であった。
しかし、ポリラクタイド(b)から成形されたフィルム
からは延伸フィルムが得られなかった。
The polylactide (b) and the polylactide (B) containing a urethane bond were press-formed in the same manner as in Example 1 to obtain a 50 μm thick film. Then
This film was uniaxially stretched three times in the same manner as in Example 1,
When the tensile strength of the stretched film was measured, the tensile strength of the stretched film formed from polylactide (B) was 1
2.1 to 15.4 kg / mm 2 , which was extremely tough.
However, a stretched film was not obtained from a film formed from polylactide (b).

【0025】[0025]

【発明の効果】本発明の方法によって得られる、ウレタ
ン結合を含むポリラクタイドは、生分解性を有し、熱安
定性および引張り強度に優れており、フィルム、繊維、
その他の成形品等の成形材料として有用である。
The polylactide containing a urethane bond obtained by the method of the present invention has biodegradability, excellent heat stability and tensile strength, and can be used for film, fiber,
It is useful as a molding material for other molded articles.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 数平均分子量が4,000以上のポリラ
クタイドの融点以上の熔融状態で、ポリラクタイド10
0重量部に対して、0.1〜5重量部のジイソシアナー
トを添加、反応させることを特徴とする、ウレタン結合
を含むポリラクタイドの製造方法。
A polylactide having a number average molecular weight of 4,000 or more and a melting point of not less than the melting point of polylactide.
A method for producing a polylactide containing a urethane bond, wherein 0.1 to 5 parts by weight of diisocyanate is added to and reacted with 0 part by weight.
JP03335579A 1991-11-26 1991-11-26 Method for producing polylactide containing urethane bond Expired - Fee Related JP3079716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03335579A JP3079716B2 (en) 1991-11-26 1991-11-26 Method for producing polylactide containing urethane bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03335579A JP3079716B2 (en) 1991-11-26 1991-11-26 Method for producing polylactide containing urethane bond

Publications (2)

Publication Number Publication Date
JPH05148352A JPH05148352A (en) 1993-06-15
JP3079716B2 true JP3079716B2 (en) 2000-08-21

Family

ID=18290161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03335579A Expired - Fee Related JP3079716B2 (en) 1991-11-26 1991-11-26 Method for producing polylactide containing urethane bond

Country Status (1)

Country Link
JP (1) JP3079716B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315611A1 (en) * 1993-05-11 1994-11-17 Basf Ag Functionalized polylactide
FI97726C (en) * 1994-07-07 1997-02-10 Alko Yhtioet Oy Meltable polyester urethane and method for its preparation
US5770683A (en) * 1994-11-02 1998-06-23 Mitsui Toatsu Chemicals, Inc. Preparation process of polyhydroxycarboxylic acid
JP3495830B2 (en) * 1994-11-02 2004-02-09 三井化学株式会社 Method for producing polyhydroxycarboxylic acid
DE19723895C2 (en) * 1997-06-06 1999-06-02 Yoon Jick Dipl Ing Lee Biodegradable polyester urethanes, process for their preparation and their use
US6555645B1 (en) 1999-09-10 2003-04-29 Mitsui Chemicals, Inc. Degradable polyurethane resin
DE102007061506A1 (en) * 2007-12-18 2009-06-25 Henkel Ag & Co. Kgaa Biodegradable adhesive
CN101945914B (en) 2008-03-04 2012-12-26 三井化学株式会社 Polyester resin, a manufacturing method thereof and uses therefor

Also Published As

Publication number Publication date
JPH05148352A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
US4045418A (en) Copolymers of D,L-lactide and epsilon caprolactone
CN101328259B (en) Preparation of biodegradable fermentation organic acid ployester
US7256250B2 (en) Biodegradable coating
JPH0252930B2 (en)
US20030139567A1 (en) Sequentially ordered biodegradable lactide (glycolide or lactide/glycolide)epsilon -caprolactone multi-block copolymer and process for the preparation thereof
KR102164478B1 (en) Glycolic acid polymers and method of producing the same
Kim et al. Direct condensation polymerization of lactic acid
JP3079716B2 (en) Method for producing polylactide containing urethane bond
CN110054775B (en) Continuous production process of polyesteramide
JPH08239461A (en) Aliphatic polyester copolymer and its production
JP5223347B2 (en) Resin composition, method for producing the same, and copolymer
CN110684179A (en) Preparation method of high-molecular-weight polylactic acid
JP3112943B2 (en) Co-condensed polyetherester elastomer having a hard fraction of poly- (1,3-propylene-4,4-diphenyldicarboxylate)
JP3287425B2 (en) Polylactic acid having hydroxyl-terminated ester ester and method for producing the same
JP3796891B2 (en) POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION
JP2591932B2 (en) Biodegradable polymer film and method for preparing the same
JPH05271377A (en) Thermoplastic aliphatic polyester and its modification
JP3248597B2 (en) Method for producing aliphatic polyester
CN100402577C (en) Aliphatic polyester polyether copolymer, process for producing the same and aliphatic polyester composition using the copolymer
JPH0959359A (en) Polyester polymer and its production
JP2676127B2 (en) Method for producing biodegradable polyester
JPS5813624A (en) Preparation of polyglycolic acid
US2378571A (en) Polycondensation products
JP3374530B2 (en) Method for producing aliphatic polyester copolymer
JP3353853B2 (en) Polylactic acid having ester-blocked substantially all terminal hydroxyl groups and process for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees