[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3079249B2 - Optical signal transmission method - Google Patents

Optical signal transmission method

Info

Publication number
JP3079249B2
JP3079249B2 JP08204275A JP20427596A JP3079249B2 JP 3079249 B2 JP3079249 B2 JP 3079249B2 JP 08204275 A JP08204275 A JP 08204275A JP 20427596 A JP20427596 A JP 20427596A JP 3079249 B2 JP3079249 B2 JP 3079249B2
Authority
JP
Japan
Prior art keywords
light
optical signal
polarization
laser
tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08204275A
Other languages
Japanese (ja)
Other versions
JPH1032542A (en
Inventor
雅宏 豊田
賢一 荒木
Original Assignee
郵政省通信総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郵政省通信総合研究所長 filed Critical 郵政省通信総合研究所長
Priority to JP08204275A priority Critical patent/JP3079249B2/en
Publication of JPH1032542A publication Critical patent/JPH1032542A/en
Application granted granted Critical
Publication of JP3079249B2 publication Critical patent/JP3079249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空間レーザー通
信において、送信レーザーのパワーを有効に利用し、光
信号検出と追尾の精度を高める光信号伝送方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical signal transmission method for effectively utilizing the power of a transmission laser in spatial laser communication and improving the accuracy of optical signal detection and tracking.

【0002】[0002]

【従来の技術】空間でのレーザー通信においては、送信
レーザーの強度や伝送距離、および受信側の信号検出性
能によって、拡がり角を狭くしたレーザービームの伝送
が必要となる場合がある。また、光の送受信器が搭載さ
れている構体が航空機や人工衛星のような移動する構造
物の場合には、構造物の姿勢の変動によってレーザービ
ームの伝送方向や、受光器の視野方向の変動が生じる。
これらの変動角が、ビーム幅と比べて大きい場合に、継
続してレーザービームの送受信をするために、レーザー
の指向方向と光検出器の視野方向を制御する必要があ
る。その一つの方法として、通信の相手側から伝搬して
くる光を受光し、その光の受光望遠鏡への入射方向の変
動を検出して、それを基に送信するレーザーの方向と受
光器の視野方向を可変して追尾することが行なわれる。
この場合に、通信用のレーザービームと波長の異なる追
尾用のレーザービームを別に組み込んで追尾を行なう場
合と、光通信用のレーザービームを受光した後に、その
一部を分岐して追尾に用いる場合がある。後者の方法で
は、送受信光学系の構成が単純で軽量となる点で有利で
ある。また、現在のところ、空間レーザー通信での光変
調方式は、強度変調した光信号を受信において直接検出
する方式で、強度変調の方法は、光の有無によってデジ
タル信号を光の強度に変調するオンオフキーイング方式
や、光パルスの位置によってデジタル信号を変調するパ
ルス位置変調などの方式が取られている。
2. Description of the Related Art In laser communication in space, it may be necessary to transmit a laser beam having a narrow divergence angle depending on the intensity and transmission distance of a transmission laser and the signal detection performance on the receiving side. In addition, when the structure on which the optical transmitter / receiver is mounted is a moving structure such as an aircraft or an artificial satellite, a change in the attitude of the structure causes a change in the transmission direction of the laser beam or a change in the viewing direction of the light receiver. Occurs.
When these fluctuation angles are larger than the beam width, it is necessary to control the direction of the laser and the direction of the field of view of the photodetector in order to continuously transmit and receive the laser beam. One method is to receive light propagating from the other side of communication, detect fluctuations in the direction of incidence of the light on the light receiving telescope, and based on this, the direction of the laser to transmit and the field of view of the receiver. Tracking is performed by changing the direction.
In this case, tracking is performed by separately incorporating a tracking laser beam having a different wavelength from the communication laser beam, or when a part of the laser beam for optical communication is branched and used for tracking after receiving the laser beam for optical communication. There is. The latter method is advantageous in that the configuration of the transmission / reception optical system is simple and lightweight. At present, the light modulation method in spatial laser communication is a method in which an intensity-modulated optical signal is directly detected in reception, and the intensity modulation method is an on / off method that modulates a digital signal into light intensity according to the presence or absence of light. Methods such as a keying method and a pulse position modulation method for modulating a digital signal according to the position of an optical pulse are employed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述したよう
な従来の技術では、例えば人工衛星の間でのレーザー通
信のように送受信地点間の距離が長い場合には、伝搬に
よる拡がりや減衰によって、受信側での受光量が微弱に
なり、また、空間レーザー通信に特有な背景光の影響に
よって、追尾の誤差や、光信号復調時のエラーが多くな
る問題点があった。解決しようとする課題は、空間レー
ザー通信において、追尾および信号検出の精度を上げる
という点にある。 そこで、本発明は、空間光通信にお
いて光検出の精度を上げた光信号伝送方法の提供を目的
とするものである。
However, in the above-mentioned conventional technique, when the distance between the transmitting and receiving points is long, for example, in the case of laser communication between artificial satellites, the spread or attenuation due to propagation causes There has been a problem that the amount of light received on the receiving side becomes weak, and errors in tracking and errors in demodulating optical signals increase due to the influence of background light peculiar to spatial laser communication. The problem to be solved is to improve tracking and signal detection accuracy in spatial laser communication. Therefore, an object of the present invention is to provide an optical signal transmission method with improved light detection accuracy in spatial optical communication.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る光信号伝送方法は、送信側におい
て、送信する2値のデジタル信号のレベルに応じて、
線偏光の偏光方向が互いに直交している2種の偏光に偏
光変調したレーザー光を伝送し、受信側において、受光
したレーザー光を偏光子に入射させて、2種の偏光を直
線偏光の偏光方向に応じて各々分離し、一方の偏光を光
信号として受信するとともに、他方の偏光を追尾用の検
出光として用いるものとした。
In order to solve the above problems SUMMARY OF THE INVENTION The optical signal transmission method according to claim 1, the transmitting side, depending on the level of the binary digital signal to be transmitted, the polarization direction of the linearly polarized light Transmits laser light that has been polarization-modulated into two types of polarized light that are orthogonal to each other, and on the receiving side, makes the received laser light incident on a polarizer, and converts the two types of polarized light according to the polarization direction of linearly polarized light. Separated, one polarized light was received as an optical signal, and the other polarized light was used as tracking detection light.

【0005】[0005]

【発明の実施形態】次に、本発明に係る光信号伝送方法
の一実施形態を、添付図面に基づいて説明する。図1
(a)は、本発明に係わる光信号伝送方法を適用した空
間光通信装置の送信側装置の概略構成を示すもので、レ
ーザー発振器1、電気光学変調器2、送信用望遠鏡3を
組み合わせて構成される。
Next, an embodiment of an optical signal transmission method according to the present invention will be described with reference to the accompanying drawings. FIG.
(A) shows a schematic configuration of a transmitting side device of a spatial optical communication device to which an optical signal transmission method according to the present invention is applied, and is configured by combining a laser oscillator 1, an electro-optic modulator 2, and a transmission telescope 3. Is done.

【0006】レーザー発振器1から出射したレーザー光
4は直線偏光5に偏光されており、電気光学光変調器2
を用いて、直線偏光の方向が直交している2種類の偏光
に偏光変調された光6を生成することで、送信信号の変
調を行なう。図1(a)に示した偏光変調は、例とし
て、NRZ符号の信号の場合を示している。偏光変調後に
送信レーザービーム7が送信用望遠鏡3から受信側へ向
けて出射される。
A laser beam 4 emitted from a laser oscillator 1 is polarized into a linearly polarized light 5,
Is used to generate a light 6 that is polarization-modulated into two types of polarizations in which the directions of linear polarization are orthogonal to each other, thereby performing modulation of a transmission signal. The polarization modulation shown in FIG. 1A shows a case of an NRZ code signal as an example. After the polarization modulation, the transmission laser beam 7 is emitted from the transmission telescope 3 toward the reception side.

【0007】図1(b)は、本発明に係わる光信号伝送
方法を適用した空間光通信装置の受信側装置の概略構成
を示すもので、受信用望遠鏡8、偏光ビームスプリッタ
ー9、光信号受信器10、追尾用2次元光センサー11
を組み合わせて構成される。
FIG. 1 (b) shows a schematic configuration of a receiving side device of a spatial optical communication apparatus to which an optical signal transmitting method according to the present invention is applied. A receiving telescope 8, a polarizing beam splitter 9, an optical signal receiving device. Device 10, two-dimensional optical sensor 11 for tracking
Are configured in combination.

【0008】受信側では、受信レーザービーム12を受
信用望遠鏡8で受光し、偏光ビームスプリッター9に入
射させる。偏光ビームスプリッターの透過光13は、偏
光ビームスプリッター9に対して、入射光と反射光を面
内に含む入射の面と平行な偏光方向の光で、偏光ビーム
スプリッター反射光14は入射の面に垂直な方向の光と
なる。光信号受信器10では、送信側で偏光変調された
信号を検出することができる。信号の変調度は、送信側
で作られた偏光変調された光6の2種の偏光方向のうち
のどちらかと偏光ビームスプリッター9への入射の面の
方向が一致しているときには、100%の変調度が得られ
る。
On the receiving side, the receiving laser beam 12 is received by the receiving telescope 8 and is incident on the polarizing beam splitter 9. The transmitted light 13 of the polarization beam splitter is a light having a polarization direction parallel to the plane of incidence including the incident light and the reflected light in the plane with respect to the polarization beam splitter 9, and the reflected light 14 of the polarization beam splitter is reflected on the plane of incidence. It becomes light in the vertical direction. The optical signal receiver 10 can detect a signal that is polarization-modulated on the transmission side. The degree of modulation of the signal is 100% when one of the two polarization directions of the polarization-modulated light 6 generated on the transmission side coincides with the direction of the plane of incidence on the polarization beam splitter 9. The degree of modulation is obtained.

【0009】偏光ビームスプリッター反射光14は、追
尾用2次元光センサー11に入射して追尾に用いられ
。本発明は、偏子を受信側に置いて、光信号の受信
を行なうとともに、光信号の送受信に用いられていなか
った片方向の偏光方向の光を追尾用に利用するものであ
る。
The reflected light 14 of the polarization beam splitter enters the tracking two-dimensional optical sensor 11 and is used for tracking . The present invention is to position it receiving side polarization child, performs a reception of an optical signal, is used for transmission and reception of optical signals countryside
The light in the one-way polarization direction is used for tracking.

【0010】送信側と受信側において、受信レーザービ
ーム12を軸とした回転方向の姿勢のずれがある場合に
は、光信号受信での変調度が低下する。この場合には、
図2に示すように、受信用望遠鏡8と偏光ビームスプリ
ッター9の間に半波長板15を挿入し、偏光ビームスプ
リッター9に入射する光の偏光方向を、偏光ビームスプ
リッター9の入射の面に対して平行または垂直になるよ
うに半波長板15の光軸方向を調整することによって、
光信号受信において100%の変調度を得ることができる。
[0010] When there is a shift in the rotation direction about the reception laser beam 12 between the transmission side and the reception side, the modulation degree in receiving the optical signal decreases. In this case,
As shown in FIG. 2, a half-wave plate 15 is inserted between the receiving telescope 8 and the polarization beam splitter 9, and the polarization direction of the light incident on the polarization beam splitter 9 is changed with respect to the plane of incidence of the polarization beam splitter 9. By adjusting the optical axis direction of the half-wave plate 15 so as to be parallel or vertical,
A 100% modulation degree can be obtained in receiving an optical signal.

【0011】受信レーザービーム12を軸とした回転方
向の姿勢の変動がある場合には、図3に示すように、送
信側と受信側に四分の一波長板16を設置して光信号検
出の変調度の低下が起きないようにすることができる。
送信側の四分の一波長板16は光軸が入射偏光方向に対
して45度の角度になるように合わせて、送信される光
が右旋回あるいは左旋回の円偏光の光17になるように
する。受信側では、四分の一波長板16を偏光ビームス
プリッター9の入射面に対して45度の角度になるよう
に合わせて、受光した円偏波の光17を直線偏光の光に
直す。これによって、受信レーザービーム12を軸とし
た回転方向の姿勢の変動による変調度の低下が起きない
ようにすることができる。
When there is a change in the attitude in the rotation direction about the reception laser beam 12, as shown in FIG. 3, a quarter-wave plate 16 is installed on the transmission side and the reception side to detect an optical signal. Can be prevented from lowering.
The transmitting quarter-wave plate 16 is adjusted so that the optical axis is at an angle of 45 degrees with respect to the incident polarization direction, so that the transmitted light becomes right-handed or left-handed circularly polarized light 17. To do. On the receiving side, the quarter-wave plate 16 is aligned at an angle of 45 degrees with respect to the incident surface of the polarizing beam splitter 9 to convert the received circularly polarized light 17 into linearly polarized light. As a result, it is possible to prevent a decrease in the degree of modulation due to a change in attitude in the rotation direction about the reception laser beam 12.

【0012】偏光方向を変える装置として、電気光学変
調器2を示してきたが、直交した2つの直線偏波の光を
作り出せばよいわけであるから、電気光学変調器2の代
わりに半波長板を送信信号に応じて回転させるような装
置を用いても光の偏光変調を加えることができ、変調の
速度や、レーザービーム径などの条件によっては適用す
ることができる。
Although the electro-optic modulator 2 has been described as a device for changing the polarization direction, a half-wave plate can be used instead of the electro-optic modulator 2 because it is only necessary to generate two orthogonal linearly polarized lights. The polarization modulation of light can be applied even by using a device that rotates the light according to a transmission signal, and the modulation can be applied depending on conditions such as the modulation speed and the laser beam diameter.

【0013】[0013]

【発明の効果】以上説明したように、本発明に係る光信
号伝送方法を用いれば、強度変調された単独のレーザー
光を追尾とデータ受信に共用する方法と比較すると、受
信側で受光する光量は2倍になることから、追尾のため
の光検出時の誤差が小さくなり、光信号受信においても
分岐によるロスがなくなるために信号検出の誤り率を低
下させることができる。 この方式は、送信側と受信側
で姿勢のずれや変動がある場合にも適用できるため応用
性に富んだものである。
As described above, when the optical signal transmission method according to the present invention is used, the amount of light received on the receiving side is compared with the method in which a single intensity-modulated laser beam is shared for tracking and data reception. Is doubled, the error at the time of light detection for tracking is reduced, and the loss due to branching is also eliminated in optical signal reception, so that the error rate of signal detection can be reduced. This method is rich in applicability because it can be applied to the case where the attitude is shifted or fluctuated between the transmitting side and the receiving side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a),(b)は何れも本発明に係る光信号伝送方法
を適用した空間光通信装置の送信側と受信側の概略構成
図である。
FIGS. 1 (a) and 1 (b) are schematic structural diagrams of a transmitting side and a receiving side of a spatial optical communication apparatus to which an optical signal transmission method according to the present invention is applied.

【図2】送信側と受信側の伝送レーザー光軸を軸とした
回転方向の姿勢のずれがある場合に受信側に半波長板を
挿入する説明図である。
FIG. 2 is an explanatory diagram of inserting a half-wave plate on the receiving side when there is a shift in the rotation direction about the transmission laser optical axis between the transmitting side and the receiving side.

【図3】送信側と受信側の伝送レーザー光軸を軸とした
回転方向の姿勢変動がある場合に四分の一波長板を用い
る説明図である。
FIG. 3 is an explanatory diagram using a quarter-wave plate when there is a posture change in the rotation direction about the transmission laser optical axis on the transmission side and the reception side.

【符号の説明】[Explanation of symbols]

1 レーザー発振器 2 電気光学変調器 3 送信用望遠鏡 4 レーザー光 5 直線偏光 6 偏光変調された光 7 送信レーザービーム 8 受信用望遠鏡 9 偏光ビームスプリッター 10 光信号受信器 11 追尾用2次元光センサー 12 受信レーザービーム 13 偏光ビームスプリッター透過光 14 偏光ビームスプリッター反射光 15 半波長板 16 四分の一波長板 17 右旋回あるいは左旋回の円偏光の光 REFERENCE SIGNS LIST 1 laser oscillator 2 electro-optic modulator 3 transmission telescope 4 laser light 5 linearly polarized light 6 polarization-modulated light 7 transmission laser beam 8 reception telescope 9 polarization beam splitter 10 optical signal receiver 11 tracking two-dimensional optical sensor 12 reception Laser beam 13 Transmitted light from polarizing beam splitter 14 Reflected light from polarizing beam splitter 15 Half-wave plate 16 Quarter-wave plate 17 Circularly polarized light turning right or left

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 G02B 27/00 H04B 7/14 - 7/22 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H04B 10/00-10/28 G02B 27/00 H04B 7/ 14-7/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 送信側において、送信する2値のデジタ
ル信号のレベルに応じて、直線偏光の偏光方向が互いに
直交している2種の偏光に偏光変調したレーザー光を伝
送し、 受信側において、受光したレーザー光を偏光子に入射さ
せて、2種の偏光を直線偏光の偏光方向に応じて各々分
離し、一方の偏光を光信号として受信するとともに、他
方の偏光を追尾用の検出光として用いることを特徴とし
た光信号伝送方法。
1. A transmitting side transmits a laser beam that has been polarized and modulated into two types of polarizations in which the polarization directions of linearly polarized light are orthogonal to each other in accordance with the level of a binary digital signal to be transmitted. The received laser light is incident on a polarizer, and the two kinds of polarized light are separated according to the polarization direction of the linearly polarized light. One of the polarized lights is received as an optical signal, and the other polarized light is detected as tracking light for tracking. An optical signal transmission method characterized by using as an optical signal.
JP08204275A 1996-07-15 1996-07-15 Optical signal transmission method Expired - Lifetime JP3079249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08204275A JP3079249B2 (en) 1996-07-15 1996-07-15 Optical signal transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08204275A JP3079249B2 (en) 1996-07-15 1996-07-15 Optical signal transmission method

Publications (2)

Publication Number Publication Date
JPH1032542A JPH1032542A (en) 1998-02-03
JP3079249B2 true JP3079249B2 (en) 2000-08-21

Family

ID=16487790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08204275A Expired - Lifetime JP3079249B2 (en) 1996-07-15 1996-07-15 Optical signal transmission method

Country Status (1)

Country Link
JP (1) JP3079249B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2394848B (en) * 2002-11-02 2006-04-12 Bookham Technology Plc Optical communications apparatus
JP2005277828A (en) * 2004-03-25 2005-10-06 Kddi Corp Illumination light communication system
FR2878041B1 (en) * 2004-11-18 2007-10-26 Eads Astrium Sas Soc Par Actio OPTICAL SEPARATION DEVICE AND OPTICAL COMMUNICATION TERMINAL COMPRISING SUCH A DEVICE
JP5599365B2 (en) * 2011-05-11 2014-10-01 三菱電機株式会社 Acquisition and tracking device

Also Published As

Publication number Publication date
JPH1032542A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
CN100498419C (en) Light intensity self-adaptive control system based on LCD for atmospheric laser communication system
CN100576791C (en) Phase difference quantum key delivering method and system
CA2073087C (en) Frequency modulation coherent optical communications system with continuous polarization scrambling
US6559991B1 (en) Polarization mode dispersion compensation
US20020131121A1 (en) Transceiver, system, and method for free-space optical communication and tracking
US6778779B1 (en) Full-duplex optical communication system
US5127066A (en) Coherent optical-fiber communication system using polarization diversity transmission
CN108574533A (en) A kind of Shared aperture laser communication optical transmitter and receiver based on optical phased array
US9236940B2 (en) High bandwidth demodulator system and method
US20140079404A1 (en) Method and system for free space optical communication utilizing a modulated electro-optical polymer retro-reflector
JPS63500069A (en) Digital information transmission method and device
US5978121A (en) Method and device for the optical transmission of data over distances in space
US20010043626A1 (en) Optical free-space communication apparatus
CN105162522B (en) Phase-locked local cross-polarization free space coherent light communication device
CN107919912B (en) Same-frequency-band polarization multiplexing spatial laser communication optical transmitter and receiver
JP3079249B2 (en) Optical signal transmission method
US6970651B1 (en) High-sensitivity tracking in free-space optical communication systems
GB2196809A (en) Optical communication system
JPH10107736A (en) Method and device for alignment control for two optical waves during coherent superimposing reception
WO2002011298A2 (en) Method and apparatus for polarization tracking in wireless optical communication systems
CN115437160B (en) Polarization insensitive space optical mixer
US11929785B2 (en) Tunable and polarization insensitive optical communication system
CN212231467U (en) Underwater time synchronization system based on bidirectional time comparison
CN114826399A (en) Circular polarization shift keying optical communication system based on partially coherent light
US20230085835A1 (en) Dual-polarization rotationally-insensitive monostatic transceiver with dual cladding fiber

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term