JP3073057B2 - Manufacturing method of electroluminescence device - Google Patents
Manufacturing method of electroluminescence deviceInfo
- Publication number
- JP3073057B2 JP3073057B2 JP03243263A JP24326391A JP3073057B2 JP 3073057 B2 JP3073057 B2 JP 3073057B2 JP 03243263 A JP03243263 A JP 03243263A JP 24326391 A JP24326391 A JP 24326391A JP 3073057 B2 JP3073057 B2 JP 3073057B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- phosphor
- thin
- layer
- based phosphor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高比誘電率を有する焼
結セラミック基板兼絶縁層上に少なくとも一種の蛍光体
からなる薄膜発光層を持つ交流駆動薄膜エレクトロルミ
ネッセンス素子の製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an AC-driven thin-film electroluminescent device having a thin-film light-emitting layer made of at least one kind of phosphor on a sintered ceramic substrate and insulating layer having a high dielectric constant.
【0002】[0002]
【従来の技術】エレクトロルミネッセンス素子(以下E
L素子と呼ぶ)は、平面形固体発光表示装置への応用に
対し古くから研究され、その実用化に対し根強い期待が
ある。このEL素子は構造上、ガラスまたはプラスチッ
クフィルム基板上に蛍光体の結晶性薄膜を形成させるこ
とを特徴とする薄膜形と、蛍光体粉末を有機系誘電体バ
インダー中に均一に分散混合させることを特徴とする有
機分散形、および蛍光体粉末をガラス等の無機系バイン
ダーで結着させることを特徴とする無機分散形に分けら
れる。無機分散形ELは、しばしばセラミックス形EL
と呼ばれることもあるが、あくまで蛍光体粉末粒子がこ
の無機系バインダー中に分散したものに過ぎない。従
来、ELの発光色に関しては、ZnS:Mn系二重絶縁構造交
流駆動薄膜EL素子における黄橙色発光およびZnS:Cu系
有機分散形交流駆動EL素子における青緑色のものが実
用化されている。2. Description of the Related Art Electroluminescent devices (hereinafter referred to as E)
L element) has been studied for a long time for application to a flat-panel solid-state light-emitting display device, and there is a strong expectation for its practical use. This EL device has a structure in which a crystalline thin film of a phosphor is formed on a glass or plastic film substrate, and a method of uniformly dispersing and mixing phosphor powder in an organic dielectric binder. It is classified into an organic dispersion type characterized by the feature and an inorganic dispersion type characterized by binding the phosphor powder with an inorganic binder such as glass. Inorganic dispersion type EL is often ceramic type EL
However, the phosphor powder particles are merely dispersed in the inorganic binder. Heretofore, with respect to the emission color of EL, yellow-orange emission in a ZnS: Mn-based double insulating structure AC-driven thin-film EL element and bluish green emission in a ZnS: Cu-based organic dispersion type AC-driven EL element have been put to practical use.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
EL素子は発光層として硫化物系蛍光体を使用している
ため、酸化性雰囲気や水分を含む酸化雰囲気中での使用
に対するパッシベーションが必要不可欠であるために高
価となる。又、実用できる蛍光体の種類も限られている
ため、前述したような黄橙色もしくは青緑色発光のもの
しか利用できないという問題や、更に薄膜形の場合で
は、高電圧印加によるカタストロフィックな絶縁破壊を
生じたり、分散形の場合では、実用に耐える十分な輝度
が得られ無い等の問題点があった。このため、従来のE
L素子にあっては、薄膜形は高価なコンピュータ端末デ
ィスプレィ等限られ用途のみに使用され、分散形は輝度
が低いために、これも、夜間の警告表示灯用発光パネル
や室内装飾用の発光パネル等に一部利用される程度であ
った。However, since the conventional EL element uses a sulfide-based phosphor as the light emitting layer, passivation for use in an oxidizing atmosphere or an oxidizing atmosphere containing moisture is indispensable. It is expensive because of it. In addition, since the types of phosphors that can be used are limited, only the above-mentioned yellow-orange or blue-green light-emitting materials can be used. In the case of thin-film type, catastrophic dielectric breakdown due to high voltage application And in the case of the dispersion type, there is a problem that sufficient luminance for practical use cannot be obtained. For this reason, the conventional E
For the L element, the thin-film type is used only for limited applications such as expensive computer terminal displays, and the dispersed type has low luminance. It was only partially used for panels and the like.
【0004】ところで、高輝度、高効率でかつ安定な発
光状態を得るには、特に薄膜形EL素子では、発光層の
結晶性を向上させることが有効となる可能性があるが、
従来使用されている基板は上記したように、ガラスまた
はプラスチック類であるため、600℃以上の温度では処
理することが出来ないという本質的な問題があった。[0004] In order to obtain a stable light emitting state with high luminance, high efficiency, and particularly in the case of a thin film EL device, it may be effective to improve the crystallinity of the light emitting layer.
As described above, the conventionally used substrate is made of glass or plastics, and thus has an essential problem that it cannot be processed at a temperature of 600 ° C. or higher.
【0005】本発明では、EL素子の多色化および実用
化を目的として従来有効でなかった既存の酸素酸塩系蛍
光体、酸化物系蛍光体および硫化物系蛍光体等の各種蛍
光体の少なくとも一種からなる薄膜を該EL素子用発光
層として十分に機能させるための方法を提案し、高輝度
で高効率かつ安定した所望の色彩、フルカラーもしくは
白色発光等の交流駆動薄膜EL素子を安定にかつ容易に
製造する方法を提供するものである。According to the present invention, various phosphors such as existing oxyacid-based phosphors, oxide-based phosphors and sulfide-based phosphors which have not been effective for the purpose of multicoloring and practical use of EL devices have been hitherto used. We propose a method for making a thin film composed of at least one type sufficiently function as a light emitting layer for the EL element, and stably provide an AC-driven thin film EL element with high luminance, high efficiency, and stable desired color, full color or white light emission. And to provide a method for easy production.
【0006】[0006]
【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、比誘電率3000以上、好ましく
は4000以上で厚さが例えば0.04〜0.7mm(この厚さ以外の
値でも可能である)、好ましくは0.1〜0.4mmの焼結セラ
ミック基板兼絶縁層[例えばチタン酸バリウム;BaTiO3
焼結体やニオブ酸マグネシウム鉛;Pb(Mg1/3Nb2/3)O
3等]上に市販の酸素酸塩系蛍光体、即ち、CaWO4系、Mg
WO4系、YVO4:Eu系、Y(PV)04:Eu系、Zn2Si04:Mn系、Zn2S
iO4:Ti系、MgSiO3:Mn系、(Ca,Mg)SiO3:Ti系、CaSiO3:P
b,Mn系、(Sr,Mg)3(PO4)2:Sn系、Ca2MgSi2O7:Ce系、Y2Si
O5:Ce系、Y2SiO5Tb系、Ca2P2O7:Dy系、(Zn,Ca)3(P04)2:
Mn系、Ba2P2O7:Ti系、(Sr,Mg)2P2O7:Eu系、Ca10(PO4)6F
Cl:Sb,Mn系、3Ca3(PO4)2・Ca(F,Cl)2:Sb,Mn系、Sr10(P
O4)6FCl:Sb,Mn系、Sr5(P04)3Cl:Eu系、(Sr,Ca,Ba)5(P
O4)3Cl:Eu系または(Ba,Ca,Mg)5(PO4)3Cl:Eu系蛍光体等
の少なくとも一種からなる薄膜、あるいはZnO:Zn系、Y2
O3:Eu系、La2O2S:Tb系、(Y,Gd)2O2S:Tb系、Y2O2S:Eu
系、Y3Al5O12:Ce系、Y3(Al,Ga)5O12:Ce系、BaMg2Al16O
27:Eu系、MgAl11O19:Ce,Tb,Mn系、3.5Mg0・0.5MgF2・Ge
O2:Mn系等の酸化物系蛍光体の少なくとも一種からなる
薄膜またはZnS:Mn、ZnS:Rare earth系、ZnS:Ag系、ZnS:
Ag,Ni系、ZnS:Ag,Cu系、ZnS:Ag,Al系、ZnS:Ag,Ga,Cl
系、(ZnS,ZnSe):Ag系、ZnS:Cu系、ZnS:Cu,Al系、ZnS:C
u,Pb系、ZnS:Cu,Au系、ZnS:Au,Al系、ZnS:Au,Ag,Al系等
の硫化物系蛍光体の少なくとも一種からなる薄膜、また
はこれら各系統に属する各種蛍光体の混合物からなる薄
膜もしくはこれらの各種薄膜の積層構造を有する薄膜を
電子ビーム蒸着法、活性化反応性蒸着(ARE)法、スパッ
タ法、クラスタイオンビーム(ICB)法、イオンビームス
パッタ(IBS)法、化学気相結晶成長(CVD)法、原子層エピ
タキシャル(ALE)成長法、分子線エピタキシャル成長(MB
E)法、ガスソース(MBEまたはCBE)法、エレクトロンサイ
クロトロン共鳴(ECR)を利用する結晶成長法等既知の結
晶成長技術を用いて真空中や各種の制御雰囲気下で形成
することができる。しかる後、好ましくは、該基板と共
に該薄膜を、この薄膜を構成する少なくとも一種の蛍光
体を構成する成分元素の少なくとも一種を含む蛍光体粉
末中に埋め込み、非酸化性ガス(例えばアルゴン、チッ
ソ、クリプトン、ヘリウム等)または一部酸化性ガス(例
えば酸素、水蒸気、空気等)を含む非酸化性ガスまたは
一部還元性ガス(例えば水素、一酸化炭素、アンモニア
等)を含む非酸化性ガスの雰囲気の中であるいはこれら
の雰囲気と等価な雰囲気中または真空中にて、600℃〜1
200℃、好ましくは、750℃〜1200℃、より好ましくは90
0℃〜1050℃の温度範囲で熱処理することによって、該
薄膜をEL素子用発光層として十分に機能させるように
したものである。この際、薄膜の形成と熱処理とを同時
に行うこともでき、こうすると工程が省略されるという
利点もある。このような同時工程で薄膜を形成した後、
更に熱処理を施してもよい。尚、熱処理は大気圧もしく
は減圧の雰囲気中で行うのが好ましい。According to the present invention, as a means for solving the above-mentioned problems, a relative dielectric constant of 3,000 or more, preferably 4,000 or more, and a thickness of, for example, 0.04 to 0.7 mm (a value other than this thickness is used). possible is), preferably sintered ceramic substrate and the insulating layer of 0.1 to 0.4 mm [for example, barium titanate; BaTiO 3
Sintered and lead magnesium niobate; Pb (Mg 1/3 Nb 2/3) O
3 etc.] and a commercially available oxyacid salt based phosphor, ie, CaWO 4 based, Mg
WO 4 system, YVO 4: Eu system, Y (PV) 0 4: Eu system, Zn 2 Si0 4: Mn system, Zn 2 S
iO 4 : Ti system, MgSiO 3 : Mn system, (Ca, Mg) SiO 3 : Ti system, CaSiO 3 : P
b, Mn system, (Sr, Mg) 3 (PO 4 ) 2 : Sn system, Ca 2 MgSi 2 O 7 : Ce system, Y 2 Si
O 5: Ce system, Y 2 SiO 5 Tb based, Ca 2 P 2 O 7: Dy system, (Zn, Ca) 3 ( P0 4) 2:
Mn-based, Ba 2 P 2 O 7 : Ti-based, (Sr, Mg) 2 P 2 O 7 : Eu-based, Ca 10 (PO 4 ) 6 F
Cl: Sb, Mn, 3Ca 3 (PO 4 ) 2・ Ca (F, Cl) 2 : Sb, Mn, Sr 10 (P
O 4) 6 FCl: Sb, Mn system, Sr 5 (P0 4) 3 Cl: Eu system, (Sr, Ca, Ba) 5 (P
O 4 ) 3 Cl: Eu-based or (Ba, Ca, Mg) 5 (PO 4 ) 3 Cl: Eu-based thin film composed of at least one phosphor, or ZnO: Zn-based, Y 2
O 3 : Eu system, La 2 O 2 S: Tb system, (Y, Gd) 2 O 2 S: Tb system, Y 2 O 2 S: Eu
System, Y 3 Al 5 O 12 : Ce system, Y 3 (Al, Ga) 5 O 12 : Ce system, BaMg 2 Al 16 O
27 : Eu type, MgAl 11 O 19 : Ce, Tb, Mn type, 3.5Mg0 ・ 0.5MgF 2・ Ge
O 2 : Thin film or ZnS: Mn, ZnS: Rare earth system, ZnS: Ag system, ZnS:
Ag, Ni system, ZnS: Ag, Cu system, ZnS: Ag, Al system, ZnS: Ag, Ga, Cl
System, (ZnS, ZnSe): Ag system, ZnS: Cu system, ZnS: Cu, Al system, ZnS: C
u, Pb-based, ZnS: Cu, Au-based, ZnS: Au, Al-based, ZnS: Au, Ag, Al-based thin film composed of at least one sulfide-based phosphor, or various phosphors belonging to each of these systems Electron beam evaporation, activated reactive evaporation (ARE), sputtering, cluster ion beam (ICB), ion beam sputtering (IBS) , Chemical vapor deposition (CVD), atomic layer epitaxy (ALE), molecular beam epitaxy (MB
It can be formed in a vacuum or under various control atmospheres using a known crystal growth technique such as a method E), a gas source (MBE or CBE) method, or a crystal growth method utilizing electron cyclotron resonance (ECR). Thereafter, preferably, the thin film together with the substrate is embedded in a phosphor powder containing at least one component element constituting at least one phosphor constituting the thin film, and a non-oxidizing gas (e.g., argon, nitrogen, Non-oxidizing gas containing krypton, helium, etc. or partially oxidizing gas (e.g., oxygen, water vapor, air, etc.) or non-oxidizing gas containing partially reducing gas (e.g., hydrogen, carbon monoxide, ammonia, etc.) 600 ° C to 1 ° C in an atmosphere or an atmosphere equivalent to these atmospheres or in a vacuum
200 ° C, preferably 750 ° C to 1200 ° C, more preferably 90 ° C
By performing a heat treatment in a temperature range of 0 ° C. to 1050 ° C., the thin film is made to sufficiently function as a light emitting layer for an EL element. At this time, the formation of the thin film and the heat treatment can be performed at the same time, so that there is an advantage that the step is omitted. After forming a thin film in such a simultaneous process,
Further, heat treatment may be performed. Note that the heat treatment is preferably performed in an atmosphere at atmospheric pressure or reduced pressure.
【0007】本発明に係わる典型的なEL素子は、基本
的には図1に示すような透明電極層1、薄膜発光層2、
焼結酸化物セラミック基板兼絶縁層3、背面電極層4か
ら構成されている。必要に応じて薄膜発光層2と基板兼
絶縁層3との間に電荷供給層として、もしくは基板兼絶
縁層3の保護膜として例えば導電性を有し耐環境特性に
優れたZnO薄膜等各種の単層もしくは多層薄膜を挿入す
ることが有効である。更に高コントラスト比を得るため
に黒色薄膜を必要に応じて例えば薄膜発光層2と基板兼
絶縁層3との間等に形成もしくは挿入することもでき
る。又、必要に応じ透明電極層1と薄膜発光層2との間
に絶縁もしくは電荷障壁層を挿入しても一向に差し支え
ない。A typical EL device according to the present invention basically comprises a transparent electrode layer 1, a thin film light emitting layer 2,
It comprises a sintered oxide ceramic substrate / insulating layer 3 and a back electrode layer 4. If necessary, various kinds of materials such as a ZnO thin film having conductivity and excellent environmental resistance are used as a charge supply layer between the thin film light emitting layer 2 and the substrate / insulating layer 3 or as a protective film of the substrate / insulating layer 3. It is effective to insert a single layer or a multilayer thin film. Further, in order to obtain a high contrast ratio, a black thin film can be formed or inserted between the thin film light emitting layer 2 and the substrate / insulating layer 3 as necessary. If necessary, an insulating or charge blocking layer may be inserted between the transparent electrode layer 1 and the thin-film light emitting layer 2 without any problem.
【0008】[0008]
【作用】本発明に係るEL素子製造法において、比誘電
率3000以上、好ましくは4000以上の高比誘電率を有する
焼結酸化物セラミック基板兼絶縁層上へ少なくとも一種
の蛍光体からなる薄膜を形成するという組み合わせを採
用することによって600℃以上、好ましくは750℃以上の
高温加熱処理が可能になった。この方法を採用すること
により、優れた結晶性を有する高品質な発光層からなる
交流駆動薄膜EL素子を容易に製造でき、その結果、よ
り高い発光輝度および高い発光効率を持つEL素子を実
現できるという作用効果が得られた。該薄膜発光層の厚
さとしては、例えば100〜2000nmが適当である。100n
m以下では素子としての信頼性が乏しくなる傾向があ
り、2000nm以上では素子の発光開始電圧が高くなり過
ぎるきらいがあるが、用途によってはこれらの範囲以外
の厚さでも使用可能である。In the method for manufacturing an EL device according to the present invention, a thin film made of at least one kind of phosphor is deposited on a sintered oxide ceramic substrate / insulating layer having a high relative dielectric constant of 3000 or more, preferably 4000 or more. By adopting the combination of forming, a high-temperature heat treatment of 600 ° C. or more, preferably 750 ° C. or more became possible. By employing this method, an AC-driven thin-film EL device comprising a high-quality light-emitting layer having excellent crystallinity can be easily manufactured, and as a result, an EL device having higher light emission luminance and higher light emission efficiency can be realized. The effect was obtained. An appropriate thickness of the thin film light emitting layer is, for example, 100 to 2000 nm. 100n
If it is less than m, the reliability of the device tends to be poor, and if it is more than 2000 nm, the light emission starting voltage of the device tends to be too high, but depending on the application, a thickness outside these ranges can be used.
【0009】本発明に係わるEL素子は、絶縁層とし
て、前述したように、高比誘電率の焼結酸化物セラミッ
ク基板兼絶縁層を使用しているため、耐電圧特性に優れ
ており、従って、カタストロフィックな絶縁破壊の心配
もなく発光層に有効に極めて高い電界を印加でき、発光
中心を効率良く励起できるという作用効果を有する。こ
の際、バルクで高比誘電率の焼結酸化物セラミックを用
いると、一層効果的であるが、このことは特に制限を受
けるものではない。The EL device according to the present invention uses a sintered oxide ceramic substrate having a high relative dielectric constant and an insulating layer as described above as an insulating layer, and therefore has excellent withstand voltage characteristics. In addition, an extremely high electric field can be effectively applied to the light-emitting layer without the fear of catastrophic dielectric breakdown, and the light-emitting center can be efficiently excited. In this case, it is more effective to use a bulk sintered oxide ceramic having a high relative dielectric constant, but this is not particularly limited.
【0010】本発明による最も著しい作用は、従来、E
L素子の発光層として応用されることがなかったCRT
あるいはランプ用蛍光体等にみられる酸素酸塩系蛍光体
や酸化物系蛍光体を中心とした幅広い種類の蛍光体がE
L素子用発光層として十分に活性化できる点にある。単
に従来形EL素子における発光層を前記蛍光体からなる
薄膜に置き換えても、従来から信じられているようなE
L素子用発光層としては有効に機能しないが、前記焼結
酸化物セラミック基板兼絶縁層上に形成した蛍光体薄膜
に本発明による熱処理方法を適用するか、薄膜の形成と
熱処理を同一工程で行うことによって初めてEL素子用
発光層として有効に機能するようになる点である。The most significant effect of the present invention is that
CRT never applied as light emitting layer of L element
Alternatively, a wide variety of phosphors centering on oxyacid-based phosphors and oxide-based phosphors found in phosphors for lamps and the like are used.
The point is that it can be sufficiently activated as a light emitting layer for an L element. Simply replacing the light-emitting layer in the conventional EL device with the thin film made of the above-mentioned phosphor can reduce the E-value as conventionally believed.
Although it does not function effectively as a light emitting layer for an L element, the heat treatment method according to the present invention is applied to the phosphor thin film formed on the sintered oxide ceramic substrate / insulating layer, or the thin film formation and heat treatment are performed in the same step. This is the first point that the layer effectively functions as the EL element light emitting layer.
【0011】これらは次の作用効果から生じるものと考
えられる。 1)蛍光体薄膜の化合物母材の結晶性および組織を最適
化できる。 2)蛍光体薄膜の発光中心の導入状態を前記結晶成長技
術による膜形成過程あるいはその後の600℃以上、好ま
しくは750℃以上という高温加熱処理を通じて最適化で
きる。 3)蛍光体薄膜形成過程で導入された絶縁層の焼結酸化
物セラミックスのダメージを上記熱処理工程で回復でき
る。又、該焼結酸化物セラミックスと蛍光体薄膜発光層
の間に、例えば20nm〜1μm厚(この厚さ以外の値でも
可能である)、好ましくは50nm〜500μm程度の厚さの
各種薄膜層を挿入することは、バッファ層、電荷供給層
もしくは保護層等として有効であり、その結果、低電圧
駆動および高効率で高発光輝度を実現できる。It is considered that these are caused by the following effects. 1) The crystallinity and structure of the compound base material of the phosphor thin film can be optimized. 2) The state of introduction of the luminescent center of the phosphor thin film can be optimized through a film forming process by the crystal growth technique or a subsequent high-temperature heat treatment at 600 ° C. or more, preferably 750 ° C. or more. 3) Damage to the sintered oxide ceramics of the insulating layer introduced during the process of forming the phosphor thin film can be recovered by the heat treatment step. Further, between the sintered oxide ceramic and the phosphor thin film light emitting layer, for example, various thin film layers having a thickness of 20 nm to 1 μm (a value other than this thickness is possible), preferably a thickness of about 50 nm to 500 μm. The insertion is effective as a buffer layer, a charge supply layer, a protection layer, or the like, and as a result, low voltage driving, high efficiency, and high emission luminance can be realized.
【0012】本発明になるEL素子の製造技術によっ
て、これまでEL素子用発光層としてほとんど利用され
なかった多くの蛍光体が有効に機能せられるようになっ
た意義は大きい。このことによって、赤、緑、青色発光
等の多色化を始めとするフルカラー化は勿論、白色発光
のEL素子も容易に実現でき、以て広範な用途が期待で
きる。従来形EL素子における発光層を蛍光体からなる
薄膜に単に置き換えただけでは、従来から信じられてい
るようにEL素子用発光層としては有効でない。以上の
ように本発明は、面発光形照光ランプや面発光形表示パ
ネルあるいは平面光源を有する平面形表示装置等のEL
素子に対して極めて画期的な製造技術を提供するもので
ある。以下、本発明を実施例により説明する。The significance of the fact that many phosphors, which have hardly been used as a light emitting layer for an EL device, can now function effectively by the manufacturing technique of the EL device according to the present invention is significant. This makes it possible to easily realize not only full-color display such as multi-color display of red, green, and blue light emission, but also white light-emitting EL elements, and wide application can be expected. Simply replacing the light emitting layer in the conventional EL element with a thin film made of a phosphor is not effective as a light emitting layer for an EL element as conventionally believed. As described above, the present invention relates to an EL device such as a surface-emitting type illuminating lamp, a surface-emitting type display panel, or a flat-panel display device having a flat light source.
An extremely innovative manufacturing technology is provided for the device. Hereinafter, the present invention will be described with reference to examples.
【0013】[0013]
【実施例】(実施例1)酸素酸塩系のケイ酸塩蛍光体であ
るZn2SiO4:Mn(NO.P-1蛍光体)粉末成形体をターゲットと
し、アルゴンガス雰囲気中で高周波マグネトロンスパッ
タ法によって、比誘電率(εs)6000、厚さ(t)0.2mm、直
径(D)20mmの表面平滑な焼結BaTiO3セラミック基板兼絶
縁層上に厚さ800nmのZn2SiO4:Mn薄膜を作成した。そ
の後、アルミナセラミックボートに仕込んだ酸化物系蛍
光体ZnO:Zn(NO.P-15蛍光体)粉末中に、Zn2SiO4:Mn付きB
aTiO3セラミックスを埋め込み、電気炉内にセットし、10
00℃で5時間、アルゴンガス雰囲気中で熱処理を行い、
薄膜にEL素子用発光層としての機能を付与した。その
後、該発光層上に、マグネトロンスパッタ法によって、
厚さ500nmのアルミニウム(Al)ドープ酸化亜鉛(ZnO:A
l)透明電極層を、又、反対側の面には真空蒸着法により
金属Al背面電極層をそれぞれ形成しEL素子を作製し
た。(Example 1) A high-frequency magnetron in an argon gas atmosphere was used as a target with a powder of a Zn 2 SiO 4 : Mn (NO.P-1 phosphor) powder, which is an oxysilicate silicate phosphor. 800 nm thick Zn 2 SiO 4 : Mn on a sintered BaTiO 3 ceramic substrate / insulating layer with a relative dielectric constant (εs) of 6000, thickness (t) of 0.2 mm and diameter (D) of 20 mm by sputtering. A thin film was formed. Then, in the oxide phosphor ZnO: Zn (NO.P-15 phosphor) powder charged in the alumina ceramic boat, Zn 2 SiO 4 : B with Mn
aTiO 3 ceramics embedded, set in an electric furnace, 10
Heat treatment at 00 ° C. for 5 hours in an argon gas atmosphere,
A function as a light emitting layer for an EL element was imparted to the thin film. Then, on the light emitting layer, by magnetron sputtering method,
500 nm thick aluminum (Al) doped zinc oxide (ZnO: A
l) A transparent electrode layer was formed, and a metal Al back electrode layer was formed on the opposite surface by a vacuum deposition method, to produce an EL device.
【0014】このEL素子を1kHzの正弦波交流電圧
で駆動した結果、発光開始電圧90V、最高発光輝度2200
cd/m2(200V印加)、発光効率1.0 lm/Wで透明電極全
面にわたって均一な緑色発光が得られた。さらに該焼結
酸化物セラミック基板兼絶縁層としてεs=12000、t=
0.15mmの表面平滑なPb(Mg1/3Nb2/3)O3焼結セラミックス
を採用し同様の発光層を形成したEL素子においては、
発光開始電圧60V、最高発光輝度1200cd/m2(120V印
加)、発光効率0.1 lm/Wで、透明電極全面にわたって均
一な緑色発光が得られた。又、BaTi03セラミックス上
に、予めスパッタ法で電荷供給層として50nm〜500n
m厚のZnO系薄膜を形成しておいた後、その上にZn2Si
O4:Mn発光層を形成した素子の場合、発光開始電圧を10
V〜30V低下でき、かつ、同程度以上のEL特性を実現
できた。さらに上記いずれの場合でも発光層を、ZnO:Zn
系、La2O2S:Tb系、(Y,Gd)2O2S:Tb系、Y3Al5O12:Ce系、Y
3(Al,Ga)5O12:Ce系、またはY2SiO5:Tb系等の蛍光体から
なる薄膜に置き換えてもほぼ同様の、肉眼では緑から黄
緑色に見える、発光が得られた。更に発光層をほぼ同様
な成膜条件下で、Zn2SiO4:MnからZn2SiO4:Tiに置き換え
た素子では、発光開始電圧95V、最高発光輝度1500c
d/m2(200V印加)、発光効率0.2 lm/Wで透明電極全面
にわたって均一な青色発光が得られた。又、発光層を(C
a,Mg)SiO3:Tiに置き換えてもほぼ同様の特性が得られ
た。As a result of driving this EL element with a sine wave AC voltage of 1 kHz, a light emission starting voltage of 90 V and a maximum light emission luminance of 2200 were obtained.
Uniform green light emission was obtained over the entire surface of the transparent electrode with cd / m 2 (200 V applied) and luminous efficiency 1.0 lm / W. Further, as the sintered oxide ceramic substrate / insulating layer, εs = 12000, t =
In the surface smooth Pb (Mg 1/3 Nb 2 /3) O 3 sintered ceramics employing EL elements forming the same light-emitting layer of 0.15 mm,
Uniform green light emission was obtained over the entire surface of the transparent electrode at a light emission start voltage of 60 V, a maximum light emission luminance of 1200 cd / m 2 (120 V applied), and a light emission efficiency of 0.1 lm / W. Further, on the BaTi0 3 ceramics, 50Nm~500n as a charge supply layer in advance sputtering
After forming a ZnO-based thin film of m thickness, Zn 2 Si
O 4 : In the case of a device having a Mn light emitting layer, the light emission starting voltage is 10
The voltage can be reduced by V to 30 V, and the same or higher EL characteristics can be realized. Further, in any of the above cases, the light emitting layer is formed of ZnO: Zn
System, La 2 O 2 S: Tb system, (Y, Gd) 2 O 2 S: Tb system, Y 3 Al 5 O 12 : Ce system, Y
3 (Al, Ga) 5 O 12 : Ce-based or Y 2 SiO 5 : Tb-based phosphor, etc. . Further, under substantially the same film-forming conditions, the light-emitting layer was replaced with Zn 2 SiO 4 : Mn by Zn 2 SiO 4 : Ti.
Uniform blue light emission was obtained over the entire surface of the transparent electrode at d / m 2 (200 V applied) and luminous efficiency 0.2 lm / W. In addition, the light-emitting layer
Substantially the same characteristics were obtained by replacing with a, Mg) SiO 3 : Ti.
【0015】(実施例2)外部加熱ヒーターを有する雰囲
気制御横型管状電気炉の石英反応管中750℃の熱部分
に、25mmφ×厚さ0.2mmの表面平滑で、比誘電率6200の
焼結BaTiO3セラミック基板兼絶縁層をセットし、該反応
管の一端であるガス導入ポートから内径4mmφのSiを含
む原料ガス導入用石英管ノズルを該基板近傍へ配置し、
該基板上における導入原料ガスの流れが層流となるよう
該基板を傾けて設置した。Example 2 In a quartz reaction tube of an atmosphere-controlled horizontal tubular electric furnace having an external heater, a heated portion of 750 ° C. was heated to a sintered surface of 25 mmφ × 0.2 mm in thickness and having a relative dielectric constant of 6200. (3) A ceramic substrate / insulating layer is set, and a raw material gas introduction quartz tube nozzle containing Si having an inner diameter of 4 mmφ is placed near the substrate from a gas introduction port which is one end of the reaction tube,
The substrate was placed at an angle so that the flow of the introduced raw material gas on the substrate became laminar.
【0016】他方、亜鉛を含む原料ガス導入用石英管を
前記Si原料導入用石英管とほぼ平行に同じく該基板近傍
まで引き込み配置した。その際、途中350℃の均熱部分
には亜鉛原料として酢酸亜鉛(Zn(CH3COO)2)粉末を予
め装填した。そして、発光中心としてチタン(Ti)ドーパ
ントを含む原料ガス導入用石英管を上記原料導入用石英
管とほぼ平行に同じく前記基板近傍まで引き込み配置し
た。尚、反応管内のガス分圧および反応を制御するため
に、空気導入管を前記原料ガス導入口付近に配置し、他
方、該反応管の反対側に真空排気系をセットした。On the other hand, a quartz tube for introducing a raw material gas containing zinc was drawn in parallel to the quartz tube for introducing a Si raw material to the vicinity of the substrate. At that time, zinc acetate (Zn (CH 3 COO) 2 ) powder was previously loaded as a zinc raw material in the 350 ° C. soaking part. Then, a quartz tube for introducing a raw material gas containing a titanium (Ti) dopant as an emission center was drawn almost in parallel to the above-described quartz tube for introducing a raw material and similarly to the vicinity of the substrate. In order to control the gas partial pressure and the reaction in the reaction tube, an air introduction tube was disposed near the raw material gas introduction port, and a vacuum exhaust system was set on the opposite side of the reaction tube.
【0017】Si原料は炉外に設置されたテトラエチル
オルソシリケート(通称テトラエトキシシラン;TEOS)の
入ったバブラに窒素キャリアガスを流すことによって導
入管に送られた。この際、空気と窒素ガスが酸化性ガス
(空気)を一部含む非酸化性ガス(窒素ガス)の雰囲気とし
て作用した。一方、亜鉛原料の輸送には、アルゴンキャ
リアガスを、Tiドーパントは炉外に設置されたテトライ
ソプロピルチタネート(Ti(OC3H7)4)の入ったバブラに
同じくアルゴンキャリアガスによりそれぞれのガス導入
管に導いた。The Si raw material was sent to the introduction pipe by flowing a nitrogen carrier gas through a bubbler placed outside the furnace and containing tetraethylorthosilicate (commonly called tetraethoxysilane; TEOS). At this time, air and nitrogen gas are oxidizing gas
It acted as a non-oxidizing gas (nitrogen gas) atmosphere partially containing (air). On the other hand, an argon carrier gas was used to transport the zinc raw material, and a Ti dopant was introduced into a bubbler containing tetraisopropyl titanate (Ti (OC 3 H 7 ) 4 ) outside the furnace using the argon carrier gas. Led to the tube.
【0018】この装置を用いた圧力1Torr下で減圧MOCV
D法により、該基板上に厚さ約450nmのTiドープケイ酸
亜鉛(Zn2SiO4:Ti)薄膜を作製した。その後、発光層上
に、マグネトロンスパッタ法によって、厚さ500nmの
アルミニウム(Al)ドープ酸化亜鉛(ZnO:Al)透明電極層
を、また反対側の面には真空蒸着法により金属Al背面電
極層をそれぞれ形成しEL素子を作製した。このEL素
子を1kHzの正弦波交流電圧で駆動した結果、発光開
始電圧120V、最高発光輝度1200cd/m2(200V印加)、
発光効率0.2 lm/Wで透明電極全面にわたって均一な青
色発光が得られた。尚、Zn2SiO4:Ti薄膜形成後、実施例
1と同じ条件(温度のみ800℃)で熱処理を行ったものも
結果は極めて良好であった。Using this apparatus, a reduced pressure MOCV under a pressure of 1 Torr was used.
By method D, a Ti-doped zinc silicate (Zn 2 SiO 4 : Ti) thin film having a thickness of about 450 nm was formed on the substrate. Then, a 500 nm-thick aluminum (Al) -doped zinc oxide (ZnO: Al) transparent electrode layer was formed on the light-emitting layer by magnetron sputtering, and a metal Al back electrode layer was formed on the opposite surface by vacuum evaporation. Each was formed to produce an EL element. As a result of driving this EL element with a sine wave AC voltage of 1 kHz, a light emission starting voltage of 120 V, a maximum light emission luminance of 1200 cd / m 2 (200 V applied),
Uniform blue light emission was obtained over the entire surface of the transparent electrode at a luminous efficiency of 0.2 lm / W. In addition, the heat treatment performed under the same conditions as in Example 1 (800 ° C. only at the temperature) after the formation of the Zn 2 SiO 4 : Ti thin film also showed extremely good results.
【0019】(実施例3)εs=4600、t=0.3mm、D=20
mmの表面平滑な焼結BaTi03セラミック基板兼絶縁層上
に、酸化物系蛍光体であるY2O3:Eu系(NO.P-56蛍光体)粉
末成形体ペレットを電子ビーム蒸着法によって、厚さ6
00nmのY203:Eu薄膜を形成したものをアルミナセラ
ミックボートに仕込んだP-56蛍光体粉末中に埋め込み電
気炉内にセットし、1000℃で2時間、アルゴンガス雰囲
気中で熱処理を行い、該薄膜にEL素子用発光層として
の機能を付与した。その後、該発光層上に実施例1と同
じ透明電極を、又、反対側の面には真空蒸着法により金
属Al背面電極をそれぞれ形成しEL素子を作製した。(Embodiment 3) εs = 4600, t = 0.3 mm, D = 20
mm in surface smoothness sintered BaTi0 3 ceramic substrate and an insulating layer of an oxide-based phosphor Y 2 O 3: Eu system of (NO.P-56 phosphor) powder compact pellet by electron beam evaporation , Thickness 6
A thin film of Y 2 O 3 : Eu having a thickness of 00 nm was embedded in P-56 phosphor powder charged in an alumina ceramic boat, set in an electric furnace, and heat-treated at 1000 ° C. for 2 hours in an argon gas atmosphere. The thin film was given a function as a light emitting layer for an EL element. Thereafter, the same transparent electrode as in Example 1 was formed on the light-emitting layer, and a metal Al back electrode was formed on the opposite surface by a vacuum evaporation method, to produce an EL device.
【0020】このEL素子を1kHzの正弦波交流電圧
で駆動した結果、発光開始電圧60V、発光輝度2500cd/
m2(200V印加)、発光効率1.1 lm/Wで透明電極全面に
わたって均一な赤色発光が得られた。又、上記の発光層
を、MgSiO3:Mn系、CaSiO3:Pb,Mn系、(Zn,Ca)3(PO4)2:Mn
系、YVO4:Eu系等の蛍光体からなる薄膜に置き換えても
ほぼ同様の、肉眼では赤色に見える、発光が得られた。As a result of driving this EL element with a sine wave AC voltage of 1 kHz, a light emission start voltage of 60 V and a light emission luminance of 2500 cd /
Uniform red light emission was obtained over the entire surface of the transparent electrode at m 2 (200 V applied) and luminous efficiency 1.1 lm / W. Further, the above light emitting layer, MgSiO 3 : Mn system, CaSiO 3 : Pb, Mn system, (Zn, Ca) 3 (PO 4 ) 2 : Mn
Even if it was replaced with a thin film made of a phosphor such as a YVO 4 : Eu-based phosphor, almost the same color, which appeared red with the naked eye, was obtained.
【0021】(実施例4)εs=4600、t=0.3mm、D=20
mmの表面平滑な焼結BaTiO3セラミック基板兼絶縁層上
に、酸化物系蛍光体であるY2O3:Eu系(NO.P-56蛍光体)粉
末成形体をターゲットとし、アルゴンガス雰囲気中にて
高周波マグネトロンスパッタ法によって、厚さ400nm
のY2O3:Eu蛍光体からなる薄膜を、その上に酸素酸塩系の
Zn2SiO4:Mn薄膜を実施例1と同じく高周波マグネトロン
スパッタ法によって、厚さ500nmのZn2SiO4:Mn薄膜を
積層し形成したものをアルミナセラミックボートに仕込
んだP-56と同量のP-1蛍光体混合粉末中に埋め込み電気
炉内にセットし、1000℃で5時間、アルゴンガス雰囲気
中、もしくは窒素ガス希釈アンモニアガス雰囲気中で熱
処理を行い、該薄膜にEL素子用発光層としての機能を
付与した。その後、該発光層上に実施例1と同じ透明電
極層を、又、反対側の面には真空蒸着法により金属Al背
面電極をそれぞれ形成しEL素子を作製した。(Embodiment 4) εs = 4600, t = 0.3 mm, D = 20
An oxide-based phosphor Y 2 O 3 : Eu-based (NO.P-56 phosphor) powder compact was used as a target on a sintered BaTiO 3 ceramic substrate / insulating layer with a smooth surface of 400nm in thickness by high frequency magnetron sputtering method
Y 2 O 3 : Eu phosphor thin film on which oxylate-based
A Zn 2 SiO 4 : Mn thin film was formed by laminating a 500 nm thick Zn 2 SiO 4 : Mn thin film by high-frequency magnetron sputtering in the same manner as in Example 1, and the same amount as P-56 charged in an alumina ceramic boat was used. It is embedded in the P-1 phosphor mixed powder, set in an electric furnace, and heat-treated at 1000 ° C. for 5 hours in an argon gas atmosphere or a nitrogen gas-diluted ammonia gas atmosphere. Function was added. Thereafter, the same transparent electrode layer as in Example 1 was formed on the light emitting layer, and a metal Al back electrode was formed on the opposite surface by a vacuum deposition method, respectively, to produce an EL device.
【0022】このEL素子を1kHzの正弦波交流電圧
で駆動した結果、発光開始電圧90V、発光輝度1500cd/
m2(200V印加)、発光効率0.3 lm/Wで透明電極全面に
わたって均一な赤色と緑色の混色による黄色発光が得ら
れた。As a result of driving this EL device with a sine wave AC voltage of 1 kHz, a light emission starting voltage of 90 V and a light emission luminance of 1500 cd /
m 2 (200 V applied) and luminous efficiency of 0.3 lm / W, uniform yellow light emission was obtained by mixing red and green over the entire surface of the transparent electrode.
【0023】(実施例5)εs=5000、t=0.25mm、D=2
0mmの表面平滑な焼結BaTiO3セラミック基板兼絶縁層上
に、硫化物系蛍光体であるZnS:Mn系粉末成形体をターゲ
ットとする高周波マグネトロンスパッタ法(タイプA法
とする)、および有機金属化学気相成長(MOCVD)法(タイ
プB法とする)によって、いずれも厚さ約420nmのZnS:
Mn蛍光体からなる薄膜を形成したペレットをアルミナセ
ラミックボートに仕込んだZnS:Mn蛍光体粉末中に埋め込
み電気炉内にセットし、スパッタ膜は900℃で5時間、M
OCVD膜は800℃で5時間ルゴンガス雰囲気中で熱処理を
行い、該薄膜にEL素子用発光層としての機能を付与し
た。その後、該発光層上に実施例1と同じ透明電極層
を、又、反対側の面には真空蒸着法により金属Al背面電
極をそれぞれ形成しEL素子を作製した。(Embodiment 5) εs = 5000, t = 0.25 mm, D = 2
A high-frequency magnetron sputtering method (type A method) targeting a sulfide-based phosphor, ZnS: Mn-based powder compact, on a 0 mm surface smooth sintered BaTiO 3 ceramic substrate / insulating layer, and an organic metal By a chemical vapor deposition (MOCVD) method (referred to as a type B method), ZnS having a thickness of about 420 nm
The pellet formed with the thin film composed of the Mn phosphor was embedded in ZnS: Mn phosphor powder charged in an alumina ceramic boat and set in an electric furnace, and the sputtered film was heated at 900 ° C. for 5 hours.
The OCVD film was subjected to a heat treatment at 800 ° C. for 5 hours in an atmosphere of argon gas to give the thin film a function as a light emitting layer for an EL element. Thereafter, the same transparent electrode layer as in Example 1 was formed on the light emitting layer, and a metal Al back electrode was formed on the opposite surface by a vacuum deposition method, respectively, to produce an EL device.
【0024】タイプA法およびタイプB法による薄膜か
ら作製されたそれぞれのEL素子を1kHzの正弦波交
流電圧で駆動した結果、いずれも発光開始電圧30V、タ
イプA法による素子では発光輝度5000cd/m2(200V印
加)、発光効率4.0 lm/W、タイプB法による素子では発
光輝度9000cd/m2(200V印加)、発光効率6.0 lm/W
で、いずれも透明電極全面にわたって均一な黄橙発光が
得られ、経時安定性が大幅に改善できた。又、上記の発
光層を、(ZnS,ZnSe):Mn蛍光体からなる薄膜に置き換え
てもほぼ同様の、肉眼では黄橙色に見える、発光が得ら
れた。Each of the EL devices prepared from the thin films obtained by the type A method and the type B method was driven by a sinusoidal AC voltage of 1 kHz. As a result, the light emission starting voltage was 30 V, and the light emission luminance was 5000 cd / m. 2 (200V applied), luminous efficiency 4.0 lm / W, luminous luminance 9000 cd / m 2 (200V applied), luminous efficiency 6.0 lm / W for the device by the type B method
In each case, uniform yellow-orange emission was obtained over the entire surface of the transparent electrode, and the temporal stability was significantly improved. Further, even when the above-mentioned light emitting layer was replaced with a thin film composed of a (ZnS, ZnSe): Mn phosphor, substantially the same light emission as that of yellowish orange was obtained with the naked eye.
【0025】(実施例6)εs=5600、t=0.15mm、D=2
0mmの表面平滑な焼結BaTiO3セラミック基板兼絶縁層上
に、酸化物系蛍光体であるY2O2S:Eu(NO.P-22)蛍光体粉
末成形体をターゲットとし、アルゴン/酸素混合ガス雰囲
気中にて高周波マグネトロンスパッタ法によって、厚さ
600nmのY2O2S:Eu蛍光体からなる薄膜を、さらにその
上に硫化物系蛍光体であるZnS:Ag(NO.P-55)蛍光体粉末
成形体をターゲットし、アルゴンガス雰囲気中にてマグ
ネトロンスパッタ法によって、厚さ400nmのZnS:Ag蛍
光体からなる薄膜を形成したものをアルミナセラミック
ボートに仕込んだP-55蛍光体粉末と同量のP-22蛍光体混
合粉末中に埋め込み電気炉内にセットし、900℃で5時
間、アルゴンガス雰囲気中で熱処理を行い、該薄膜にE
L素子用発光層としての機能を付与した。その後、該発
光層上に高周波マグネトロンスパッタ法によって厚さ25
0nmのZnO:Al透明電極層を、又、反対側の面には真空
蒸着法により金属Al背面電極をそれぞれ形成しEL素子
を作製した。(Embodiment 6) εs = 5600, t = 0.15 mm, D = 2
On a sintered BaTiO 3 ceramic substrate / insulating layer with a surface smoothness of 0 mm, an oxide-based phosphor Y 2 O 2 S: Eu (NO.P-22) Thickness in a mixed gas atmosphere by high-frequency magnetron sputtering
600nm of Y 2 O 2 S: a thin film made of Eu phosphor, a further sulphide phosphor thereon ZnS: Ag and target (NO.P-55) phosphor powder compact, an argon gas atmosphere A 400 nm thick ZnS: Ag phosphor thin film formed by magnetron sputtering at was embedded in the same amount of P-22 phosphor mixed powder as the P-55 phosphor powder charged into the alumina ceramic boat It was set in an electric furnace and heat-treated at 900 ° C for 5 hours in an argon gas atmosphere.
A function as a light emitting layer for an L element was provided. Thereafter, the thickness of the light emitting layer was reduced to 25 mm by a high-frequency magnetron sputtering method.
An EL element was manufactured by forming a ZnO: Al transparent electrode layer of 0 nm and a metal Al back electrode on the opposite surface by a vacuum evaporation method.
【0026】このEL素子を1kHzの正弦波交流電圧
で駆動した結果、発光開始電圧70V、発光輝度1000cd/
m2(120V印加)、発光効率0.1 lm/Wで透明電極全面に
わたって均一な青白色発光が得られた。As a result of driving this EL element with a sine wave AC voltage of 1 kHz, a light emission starting voltage of 70 V and a light emission luminance of 1000 cd /
Uniform blue-white light emission was obtained over the entire surface of the transparent electrode with m 2 (120 V applied) and luminous efficiency of 0.1 lm / W.
【0027】(実施例7)εs=6500、t=0.25mm、D=2
0mmの表面平滑な焼結BaTiO3セラミック基板兼絶縁層上
に、硫化物系蛍光体であるZnS:Ag+ZnS:Au,Al+Y2O2S:Eu
系(NO.P-4蛍光体)粉末成形体をターゲットとする高周波
マグネトロンスパッタ法によって、厚さ440nmのZnS:A
g+ZnS:Au,Al+Y2O2S:Eu蛍光体からなる薄膜を形成したも
のをアルミナセラミックボートに仕込んだP-4蛍光体粉
末中に埋め込み電気炉内にセットし、900℃で5時間、
アルゴンガス雰囲気中で熱処理を行い、該薄膜にEL素
子用発光層としての機能を付与した。その後、該発光層
上に実施例1と同じ透明電極層を、又、反対側の面には
真空蒸着法により金属Al背面電極をそれぞれ形成しEL
素子を作製した。(Embodiment 7) εs = 6500, t = 0.25 mm, D = 2
A sulfide-based phosphor, ZnS: Ag + ZnS: Au, Al + Y 2 O 2 S: Eu, is formed on a 0 mm surface smooth sintered BaTiO 3 ceramic substrate / insulating layer.
440 nm thick ZnS: A by high-frequency magnetron sputtering with a target (NO.P-4 phosphor) powder compact
g + ZnS: Au, Al + Y 2 O 2 S: Eu formed a thin film consisting of the phosphor was embedded in a P-4 phosphor powder charged in an alumina ceramic boat, set in an electric furnace, at 900 ℃ 5 hours,
Heat treatment was performed in an argon gas atmosphere to give the thin film a function as a light emitting layer for an EL element. Thereafter, the same transparent electrode layer as in Example 1 was formed on the light-emitting layer, and a metal Al back electrode was formed on the opposite surface by a vacuum evaporation method.
An element was manufactured.
【0028】このEL素子を1kHzの正弦波交流電圧
で駆動した結果、発光開始電圧75V、発光輝度1700cd
/m2(160V印加)、発光効率0.2 lm/Wで透明電極全面に
わたって均一な白色発光が得られた。又、上記の発光層
を、ZnS:Au+ZnS:Ag,Al(NO.P-4蛍光体)系、Y2O2S:Tb(NO.
P-45蛍光体)系等の蛍光体からなる薄膜に置き換えても
ほぼ同様の、肉眼では白色に見える、発光が得られた。As a result of driving this EL element with a sine wave AC voltage of 1 kHz, a light emission starting voltage of 75 V and a light emission luminance of 1700 cd
/ m 2 (applied to 160 V) and a luminous efficiency of 0.2 lm / W, uniform white light emission was obtained over the entire surface of the transparent electrode. Further, the light-emitting layer, ZnS: Au + ZnS: Ag , Al (NO.P-4 phosphor) system, Y 2 O 2 S: Tb (NO.
Even when replaced with a thin film made of a phosphor such as a (P-45 phosphor) system, almost the same, light emission that appeared white to the naked eye was obtained.
【0029】(実施例8)εs=5500、t=0.25mm、D=2
0mmの表面平滑な焼結BaTiO3セラミック基板兼絶縁層上
に、硫化物系蛍光体であるZnS:Ag+ZnS:Au,Al+Y2O2S:Eu
系(NO.P-4蛍光体)粉末成形体をターゲットとし、イオウ
(S)ガスを導入しながらその分圧比を20%に保ちつつ高
周波マグネトロンスパッタ法によって、厚さ440nmのZ
nS:Ag+ZnS:Au,Al+Y2O2S:Eu蛍光体からなる薄膜を形成し
た。その後、850℃で5時間、アルゴンガス雰囲気中で
熱処理を行い、該薄膜にEL素子用発光層としての機能
を付与した。その後、該発光層上に高周波マグネトロン
スパッタ法によって厚さ25nmのZnO:Al透明電極層を、
又、反対側の面には真空蒸着法により金属Al背面電極を
それぞれ形成しEL素子を作製した。Example 8 εs = 5500, t = 0.25 mm, D = 2
A sulfide-based phosphor, ZnS: Ag + ZnS: Au, Al + Y 2 O 2 S: Eu, is formed on a 0 mm surface smooth sintered BaTiO 3 ceramic substrate / insulating layer.
(NO.P-4 phosphor) powder compact
(S) While introducing a gas and maintaining the partial pressure ratio at 20%, a 440 nm thick Z
nS: Ag + ZnS: Au, Al + Y 2 O 2 S: forming a thin film made of Eu phosphor. Thereafter, heat treatment was performed at 850 ° C. for 5 hours in an argon gas atmosphere to give the thin film a function as a light emitting layer for an EL element. Thereafter, a ZnO: Al transparent electrode layer having a thickness of 25 nm was formed on the light emitting layer by a high-frequency magnetron sputtering method,
On the other side, a metal Al back electrode was formed by a vacuum evaporation method to produce an EL element.
【0030】このEL素子を1kHzの正弦波交流電圧
で駆動した結果、発光開始電圧95V、発光輝度2300cd/
m2(150V印加)、発光効率0.4 lm/Wで透明電極全面に
わたって均一な白色発光が得られた。又、上記の発光層
を、ZnS:Au+ZnS:Ag,Al系、Y2O2S:Tb系等の蛍光体から
なる薄膜に置き換えてもほぼ同様の、肉眼では白色に見
える、発光が得られた。As a result of driving this EL element with a 1 kHz sinusoidal AC voltage, a light emission starting voltage of 95 V and a light emission luminance of 2300 cd /
Uniform white light emission was obtained over the entire surface of the transparent electrode with m 2 (150 V applied) and luminous efficiency of 0.4 lm / W. Even if the above-mentioned light emitting layer is replaced with a thin film made of a phosphor of ZnS: Au + ZnS: Ag, Al system, Y 2 O 2 S: Tb system, etc. Obtained.
【0031】(実施例9)εs=6200、t=0.15mm、D=2
0mmの表面平滑な焼結BaTiO3セラミック基板兼絶縁層上
の片面のみ(タイプAとする)および両面(タイプBとす
る)に、酸素酸塩系でハロ燐酸蛍光体であるCa10(PO4)6F
Cl:Sb,Mn系粉末成形体をターゲットとし、アルゴンガス
雰囲気中で高周波マグネトロンスパッタ法によって、厚
さ450nmのCa10(PO4)6FCl:Sb,Mn薄膜を形成したペレッ
トをそれぞれ作製した。その後、アルミナセラミックボ
ートに仕込んだ該蛍光体粉末中にそれらのペレットを埋
め込み電気炉内にセットし、900℃で5時間、酸素/ア
ルゴン混合ガス雰囲気中で熱処理を行い、該薄膜にEL
素子用発光層としての機能を付与した。その後、タイプ
Aの該発光層および基板兼絶縁層側の表面上に、又、タ
イプBの両発光層表面に高周波マグネトロンスパッタ法
によって、それぞれ厚さ750nmのZnO:Al透明電極層を
形成し、すべて酸化物からなるEL素子を作製した。(Embodiment 9) εs = 6200, t = 0.15 mm, D = 2
On one side (referred to as type A) and both sides (referred to as type B) on a sintered BaTiO 3 ceramic substrate / insulating layer having a surface smoothness of 0 mm, an oxygenate-based halophosphate phosphor, Ca 10 (PO 4 ) 6 F
Pellets on which a Ca 10 (PO 4 ) 6 FCl: Sb, Mn thin film having a thickness of 450 nm was formed by a high-frequency magnetron sputtering method in an argon gas atmosphere using a Cl: Sb, Mn-based powder compact as a target. Thereafter, the pellets were buried in the phosphor powder charged in an alumina ceramic boat, set in an electric furnace, heat-treated at 900 ° C. for 5 hours in an oxygen / argon mixed gas atmosphere, and EL was applied to the thin film.
A function as a light emitting layer for an element was provided. Thereafter, a 750 nm thick ZnO: Al transparent electrode layer is formed on the surface of the type A light emitting layer and the substrate / insulating layer side, and on both surfaces of the type B light emitting layer by a high-frequency magnetron sputtering method, An EL device made entirely of oxide was produced.
【0032】このEL素子を1kHzの正弦波交流電圧
で駆動した結果、タイプAによるEL素子では、発光開
始電圧70V、タイプBによるEL素子では、発光開始電
圧120V、発光輝度1500cd/m2(220V印加)、発光効率
0.2 lm/Wで透明電極全面にわたって均一な白色発光が
得られた。又、上記の発光層を、(Sr,Mg)2P2O7:Eu系、S
r5(PO4)3Cl:Eu系、(Sr,Ca,Ba)5(PO4)3Cl:Eu系、CaWO
4系、CaWO4:Pb系、MgWO4系等の蛍光体からなる薄膜に置
き換えると、肉眼では青色に見える、ほぼ同等の発光特
性が、Ba2P2O7:Ti系、Zn2SiO4:Mn系、MgAl11O19:Ce,Tb,
Mn系等の蛍光体からなる薄膜に置き換えると、肉眼では
緑色に見える、ほぼ同等の発光特性が、又、Y(PV)O4:Eu
系、3.5MgO・0.5MgF2・GeO2:Mn系、あるいはY2O3:Eu系等
の蛍光体からなる薄膜に置き換えると、肉眼では赤色に
見える、ほぼ同等の発光がそれぞれ得られた。As a result of driving this EL element with a sine wave AC voltage of 1 kHz, the EL element of type A emits light at 70 V, and the EL element of type B emits light at 120 V and emits light at 1500 cd / m 2 (220 V). Applied), luminous efficiency
At 0.2 lm / W, uniform white light emission was obtained over the entire surface of the transparent electrode. Further, the above light emitting layer is made of (Sr, Mg) 2 P 2 O 7 : Eu based, S
r 5 (PO 4 ) 3 Cl: Eu, (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu, CaWO
4 system, CaWO 4 : Pb system, when replaced with a thin film composed of a phosphor such as MgWO 4 system, it looks blue to the naked eye, almost the same emission characteristics, Ba 2 P 2 O 7 : Ti system, Zn 2 SiO 4 : Mn-based, MgAl 11 O 19 : Ce, Tb,
When replaced with a thin film made of a phosphor such as Mn-based material, it looks green to the naked eye and has almost the same emission characteristics, and Y (PV) O 4 : Eu
When replaced with a thin film composed of a phosphor such as a 3.5MgO.0.5MgF 2 .GeO 2 : Mn-based or Y 2 O 3 : Eu-based phosphor, almost the same luminescence was obtained which appeared red to the naked eye.
【0033】以上の実施例においては、薄膜発光層を高
周波マグネトロンスパッタ法、電子ビーム蒸着法もしく
はMOCVD法によって形成したが、さらにハロゲン化物を
使用するCVD法あるいはMBE法等既存の結晶成長技術が利
用できる。さらに上記実施例で例示したZnO:Al透明電極
以外に酸化錫(SnO2)系やインジウム・錫酸化物(ITO)
系、その他各種の透明導電膜を使用することは一向に差
し支えない。又、MOCVD法により発光層を作製する場合
には該焼結セラミック基板兼絶縁層の上にZnO:Alのよう
な耐水素特性に優れた導電膜を該基板の保護膜として形
成することは有効である。In the above embodiment, the thin film light emitting layer is formed by a high frequency magnetron sputtering method, an electron beam evaporation method or an MOCVD method, but an existing crystal growth technique such as a CVD method using a halide or an MBE method is used. it can. Furthermore, in addition to the ZnO: Al transparent electrode exemplified in the above embodiment, tin oxide (SnO 2 ) and indium tin oxide (ITO)
Use of a system or other various transparent conductive films is not a problem. When the light emitting layer is manufactured by the MOCVD method, it is effective to form a conductive film having excellent hydrogen resistance such as ZnO: Al on the sintered ceramic substrate / insulating layer as a protective film of the substrate. It is.
【0034】[0034]
【発明の効果】本発明によれば、従来、EL素子の発光
層材料として利用できなかったり、また、特性的に発光
層材料として利用できなかったり、又、特性的に不十分
であった各種蛍光体、特に酸化物系蛍光体も利用できる
道を提供することができ、その効果は絶大である。即
ち、既存の電子管やランプ用蛍光体として知られている
酸素酸塩系蛍光体や酸化物系蛍光体あるいは硫化物系蛍
光体等の各種蛍光体の少なくとも一種をEL素子用発光
層として機能させる製造法を確立した結果、これまでの
蛍光体の種類にとらわれず例えば赤、緑、青色等の各色
の発光やフルカラー発光は勿論、白色発光等の所望色の
発光をも実現することができる。これによって発光形平
面ディスプレィ用EL素子として、あるいは面発光体で
ある特徴を活かす照光ランプや各種パターン表示もしく
は平面光源を必要とする例えば液晶表示装置を用いた各
種の応用機器および商用電源駆動形発光素子に対して大
いに威力が発揮される等あらゆる方面に利用可能で従来
にない幅広い用途が生み出されるという効果がある。According to the present invention, various types of materials which have not heretofore been usable as a light emitting layer material of an EL device, or were not characteristically usable as a light emitting layer material, or were insufficient in characteristics. It can provide a way to use phosphors, especially oxide-based phosphors, and the effect is enormous. That is, at least one of various phosphors such as oxyphosphate-based phosphors, oxide-based phosphors, and sulfide-based phosphors known as existing phosphors for electron tubes and lamps functions as a light-emitting layer for an EL element. As a result of establishing the manufacturing method, it is possible to realize light emission of desired colors such as white light emission as well as light emission of each color such as red, green, and blue, and full color light emission irrespective of the kind of the fluorescent substance so far. As a result, it can be used as an EL element for a light emitting type flat display, or an illuminating lamp utilizing a feature of a surface light emitting element, various application devices using a liquid crystal display device which requires various pattern displays or a flat light source, and a commercial power supply type light emitting device. It can be used in various fields, such as exerting a great deal of power on the element, and has the effect of creating a wide range of unprecedented applications.
【図面の簡単な説明】[Brief description of the drawings]
【図1】 本発明に係わるEL素子の構造例を示す断面
図FIG. 1 is a cross-sectional view illustrating a structural example of an EL element according to the present invention.
1 透明電極層 2 薄膜発光層 3 焼結酸化物セラミック基板兼絶縁層 4 背面電極層 DESCRIPTION OF SYMBOLS 1 Transparent electrode layer 2 Thin film light emitting layer 3 Sintered oxide ceramic substrate and insulating layer 4 Back electrode layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H05B 33/10 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H05B 33/10
Claims (10)
有する焼結酸化物セラミック板上に、少なくとも一種の
蛍光体からなる薄膜を片面のみもしくは両面に形成し、
該薄膜形成後に適当な雰囲気中にて600℃〜1200℃の温
度範囲で熱処理を施すことにより、該薄膜にエレクトロ
ルミネッセンス素子用発光層としての十分な機能を付与
し、そして該薄膜の上に光取り出し用透明電極層を形成
してなる交流駆動薄膜エレクトロルミネッセンス素子の
製造法において、 前記蛍光体からなる薄膜が、少なくとも一種の酸素酸塩
系蛍光体と少なくとも一種の酸化物系蛍光体の混合体単
層薄膜、あるいは前記酸素酸塩系蛍光体および前記酸化
物系蛍光体のそれぞれの薄膜を重ねてなる多層薄膜から
なることを特徴とする交流駆動薄膜エレクトロルミネッ
センス素子の製造法。1. A thin film made of at least one kind of phosphor is formed on one side or both sides on a sintered oxide ceramic plate having a relative dielectric constant of 3000 or more, which is a substrate / insulating layer,
After the thin film is formed, a sufficient heat treatment is performed in an appropriate atmosphere at a temperature of 600 ° C. to 1200 ° C. to give the thin film a sufficient function as a light emitting layer for an electroluminescence element. In the method for producing an AC-driven thin-film electroluminescent element formed with a take-out transparent electrode layer, the thin film made of the phosphor is a mixture of at least one kind of oxyacid-based phosphor and at least one kind of oxide-based phosphor. A method for producing an AC-driven thin-film electroluminescent device, comprising a single-layer thin film or a multilayer thin film obtained by laminating respective thin films of the oxyacid-based phosphor and the oxide-based phosphor.
わりに真空中で施す請求項1記載の交流駆動薄膜エレク
トロルミネッセンス素子の製造法。2. The method of manufacturing an AC-driven thin-film electroluminescent device according to claim 1, wherein said heat treatment is performed in a vacuum instead of in an appropriate atmosphere.
化性ガスを含む非酸化性ガス、あるいは一部還元性ガス
を含む非酸化性ガスの雰囲気中で施される請求項1記載
の交流駆動薄膜エレクトロルミネッセンス素子の製造
法。3. The alternating current according to claim 1, wherein the heat treatment is performed in an atmosphere of a non-oxidizing gas containing a non-oxidizing gas or a partially oxidizing gas, or a non-oxidizing gas containing a partially reducing gas. A method for manufacturing a driving thin-film electroluminescence device.
に、上記セラミックス板上に20nm〜1μmの各種薄膜
層を挿入する請求項1〜3のいずれかに記載の交流駆動
薄膜エレクトロルミネッセンス素子の製造法。4. The AC-driven thin film electroluminescent device according to claim 1, wherein various thin film layers of 20 nm to 1 μm are inserted on the ceramic plate before forming the thin film made of the phosphor. Manufacturing method.
有する焼結酸化物セラミック板上に、少なくとも一種の
蛍光体からなる薄膜を片面のみもしくは両面に形成し、
該薄膜形成後に適当な雰囲気中にて600℃〜1200℃の温
度範囲で熱処理を施すことにより、該薄膜にエレクトロ
ルミネッセンス素子用発光層としての十分な機能を付与
し、そして該薄膜の上に光取り出し用透明電極層を形成
してなる交流駆動薄膜エレクトロルミネッセンス素子の
製造法において、 前記蛍光体からなる薄膜が、少なくとも一種の酸素酸塩
系蛍光体または酸化物系蛍光体と、硫化物系蛍光体との
二層構造もしくはサンドイッチ状の三層構造を有する
か、あるいは両者を交互に積層する多層構造を有するこ
とを特徴とする交流駆動薄膜エレクトロルミネッセンス
素子の製造法。5. A thin film made of at least one kind of phosphor is formed on one side or both sides on a sintered oxide ceramic plate having a relative dielectric constant of 3000 or more, which is a substrate / insulating layer,
After the thin film is formed, a sufficient heat treatment is performed in an appropriate atmosphere at a temperature of 600 ° C. to 1200 ° C. to give the thin film a sufficient function as a light emitting layer for an electroluminescence element. In the method for producing an AC-driven thin-film electroluminescence device having a take-out transparent electrode layer, the thin film made of the phosphor may be at least one kind of an oxyacid-based phosphor or an oxide-based phosphor and a sulfide-based phosphor. A method for producing an AC-driven thin-film electroluminescent device, which has a two-layer structure with a body or a three-layer structure in a sandwich shape, or has a multilayer structure in which both are alternately laminated.
わりに真空中で施す請求項5記載の交流駆動薄膜エレク
トロルミネッセンス素子の製造法。6. The method according to claim 5, wherein the heat treatment is performed in a vacuum instead of in an appropriate atmosphere.
化性ガスを含む非酸化性ガス、あるいは一部還元性ガス
を含む非酸化性ガスの雰囲気中で施される請求項5記載
の交流駆動薄膜エレクトロルミネッセンス素子の製造
法。7. The alternating current according to claim 5, wherein the heat treatment is performed in an atmosphere of a non-oxidizing gas containing a non-oxidizing gas or a partially oxidizing gas, or a non-oxidizing gas containing a partially reducing gas. A method for manufacturing a driving thin-film electroluminescence device.
に、上記セラミックス板上に20nm〜1μmの各種薄膜
層を挿入する請求項5〜7のいずれかに記載の交流駆動
薄膜エレクトロルミネッセンス素子の製造法。8. The AC-driven thin-film electroluminescent device according to claim 5, wherein various thin-film layers of 20 nm to 1 μm are inserted on the ceramic plate before forming the thin film made of the phosphor. Manufacturing method.
度範囲で基板兼絶縁層である比誘電率3000以上を有する
焼結酸化物セラミック板上に、少なくとも一種の蛍光体
からなる薄膜を片面のみもしくは両面に形成することに
より、該薄膜にエレクトロルミネッセンス素子用発光層
としての十分な機能を付与し、そして該薄膜の上に光取
り出し用透明電極層を形成してなる交流駆動薄膜エレク
トロルミネッセンス素子の製造法において、 前記蛍光体からなる薄膜が、少なくとも一種の酸素酸塩
系蛍光体と少なくとも一種の酸化物系蛍光体の混合体単
層薄膜、あるいは前記酸素酸塩系蛍光体および前記酸化
物系蛍光体のそれぞれの薄膜を重ねてなる多層薄膜から
なることを特徴とする交流駆動薄膜エレクトロルミネッ
センス素子の製造法。9. A thin film made of at least one kind of phosphor on a sintered oxide ceramic plate having a relative dielectric constant of 3000 or more, which is both a substrate and an insulating layer, in a temperature range of 600 ° C. to 1200 ° C. in an appropriate atmosphere. Is formed on only one side or both sides, thereby imparting the thin film with a sufficient function as a light emitting layer for an electroluminescent element, and an AC-driven thin film electro-electrode comprising a light extraction transparent electrode layer formed on the thin film. In the method for manufacturing a luminescence element, the thin film made of the phosphor is a single-layer thin film of a mixture of at least one kind of oxyacid-based phosphor and at least one kind of oxide-based phosphor, or the oxyacid-based phosphor and A method for manufacturing an AC-driven thin-film electroluminescent device, comprising a multilayer thin film formed by stacking respective thin films of an oxide-based phosphor.
温度範囲で基板兼絶縁層である比誘電率3000以上を有す
る焼結酸化物セラミック板上に、少なくとも一種の蛍光
体からなる薄膜を片面のみもしくは両面に形成すること
により、該薄膜にエレクトロルミネッセンス素子用発光
層としての十分な機能を付与し、そして該薄膜の上に光
取り出し用透明電極層を形成してなる交流駆動薄膜エレ
クトロルミネッセンス素子の製造法において、 前記蛍光体からなる薄膜が、少なくとも一種の酸素酸塩
系蛍光体または酸化物系蛍光体と、硫化物系蛍光体との
二層構造もしくはサンドイッチ状の三層構造を有する
か、あるいは両者を交互に積層する多層構造を有するこ
とを特徴とする交流駆動薄膜エレクトロルミネッセンス
素子の製造法。10. A thin film made of at least one kind of phosphor on a sintered oxide ceramic plate having a relative dielectric constant of 3000 or more, which is both a substrate and an insulating layer, in a temperature range of 600 ° C. to 1200 ° C. in an appropriate atmosphere. Is formed on only one side or both sides, thereby imparting the thin film with a sufficient function as a light emitting layer for an electroluminescent element, and an AC-driven thin film electro-electrode comprising a light extraction transparent electrode layer formed on the thin film. In the method for manufacturing a luminescence element, the phosphor thin film has a two-layer structure or a sandwich-like three-layer structure of at least one kind of oxyacid-based phosphor or oxide-based phosphor and a sulfide-based phosphor. A method for manufacturing an AC-driven thin-film electroluminescent device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03243263A JP3073057B2 (en) | 1990-09-25 | 1991-09-24 | Manufacturing method of electroluminescence device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-254649 | 1990-09-25 | ||
JP25464990 | 1990-09-25 | ||
JP03243263A JP3073057B2 (en) | 1990-09-25 | 1991-09-24 | Manufacturing method of electroluminescence device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0582258A JPH0582258A (en) | 1993-04-02 |
JP3073057B2 true JP3073057B2 (en) | 2000-08-07 |
Family
ID=26536180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03243263A Expired - Fee Related JP3073057B2 (en) | 1990-09-25 | 1991-09-24 | Manufacturing method of electroluminescence device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3073057B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4953879B2 (en) * | 2007-03-29 | 2012-06-13 | スタンレー電気株式会社 | Semiconductor device, manufacturing method thereof, and template substrate |
-
1991
- 1991-09-24 JP JP03243263A patent/JP3073057B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0582258A (en) | 1993-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60182692A (en) | Thin film el element and method of producing same | |
JP2795194B2 (en) | Electroluminescence device and method of manufacturing the same | |
JP4230363B2 (en) | Phosphor thin film, manufacturing method thereof, and EL panel | |
EP1537763B1 (en) | Silicon oxynitride passivated rare earth activated thioaluminate phosphors for electroluminescent displays | |
WO2004077887A1 (en) | El function film and el device | |
US20020125821A1 (en) | Electroluminescent display formed on glass with a thick film dielectric layer | |
JP3073057B2 (en) | Manufacturing method of electroluminescence device | |
JP4042895B2 (en) | Oxide phosphor for PL, CL or EL, electroluminescence element, and method for producing the same | |
JPH0935869A (en) | Manufacture of electroluminescence element | |
JP2985096B2 (en) | Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer | |
JPWO2003081958A1 (en) | EL phosphor laminated thin film and EL element | |
JPH0883686A (en) | Thin film luminous element | |
JP3016323B2 (en) | Electroluminescence element | |
US6707249B2 (en) | Electroluminescent device and oxide phosphor for use therein | |
JPH1092580A (en) | Thin film electroluminescent element and manufacture thereof | |
JPS6329489A (en) | Thin film el device | |
JP5192854B2 (en) | Phosphor and display panel using the same | |
JP3590986B2 (en) | Electroluminescence element | |
WO2002073708A2 (en) | Electroluminescent display device | |
JPH07263147A (en) | Thin film light emitting element | |
JP2828019B2 (en) | ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD | |
JPH09260060A (en) | Electro-luminescence element and manufacture thereof | |
JP3349221B2 (en) | Electroluminescent device and method for manufacturing the same | |
JPH01130495A (en) | Film type electroluminescence element | |
JP2005076024A (en) | Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080602 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090602 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |