JP3072851B2 - Permanent magnet rotor of ultra high-speed rotating machine - Google Patents
Permanent magnet rotor of ultra high-speed rotating machineInfo
- Publication number
- JP3072851B2 JP3072851B2 JP02311408A JP31140890A JP3072851B2 JP 3072851 B2 JP3072851 B2 JP 3072851B2 JP 02311408 A JP02311408 A JP 02311408A JP 31140890 A JP31140890 A JP 31140890A JP 3072851 B2 JP3072851 B2 JP 3072851B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- outer cylinder
- rotor
- press
- rotating machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は回転機の永久磁石回転子に係り、特にターボ
チャージャに直結される超高速同期機等に好適な構造を
有する超高速回転機の永久磁石回転子に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet rotor of a rotating machine, and more particularly to an ultra-high-speed rotating machine having a structure suitable for an ultra-high-speed synchronous machine directly connected to a turbocharger. It relates to a permanent magnet rotor.
[従来の技術] 従来の回転機の永久磁石回転子が組み込まれるターボ
チャージャ直結回転機の一例の断面図を第7図に示す。
この回転機の構成は、内燃機関より排出される排気ガス
を引き込むタービン6に直結される回転軸6aに同期機8
の永久磁石回転子8aと、カラー9と、内燃機関へ過給を
行うコンプレッサ7とが嵌合されてナット12で締め付け
られており、回転軸6aはタービン6と永久磁石回転子8a
の中間に設けた軸受10(10a,10b)によりハウジング11
に支持される。[Prior Art] FIG. 7 shows a cross-sectional view of an example of a turbocharger direct-coupled rotating machine in which a permanent magnet rotor of a conventional rotating machine is incorporated.
The configuration of this rotating machine is such that a synchronous machine 8 is attached to a rotating shaft 6a that is directly connected to a turbine 6 that draws exhaust gas discharged from the internal combustion engine.
The permanent magnet rotor 8a, the collar 9, and the compressor 7 for supercharging the internal combustion engine are fitted and fastened with a nut 12, and the rotating shaft 6a is connected to the turbine 6 and the permanent magnet rotor 8a.
Of housing 11 by bearing 10 (10a, 10b)
Supported by
この同期機8の動作は、同期機8を同期モータとして
使用する場合には、回転子8aと同軸に構成されるコンプ
レッサ7を回転させることができるため、同期モータの
制御により内燃機関への過給を任意に行うことが可能と
なり、内燃機関の低回転時の出力向上や完全燃焼による
黒煙防止ができる。また制御により発電機として使用す
る場合には、排気ガスのエネルギーを電力として回収で
きる。The operation of the synchronous machine 8 is such that when the synchronous machine 8 is used as a synchronous motor, the compressor 7 coaxial with the rotor 8a can be rotated. Supply can be performed arbitrarily, and the output can be improved when the internal combustion engine is running at a low speed, and black smoke can be prevented by complete combustion. When used as a generator by control, energy of exhaust gas can be recovered as electric power.
上記のターボチャージャ直結回転機は、例えば特開昭
62−48931号公報に記載されているものであるが、従来
の同期機8用の永久磁石回転子8aは例えば特公昭63−38
947号公報に記載のように、永久磁石の外周に強度部材
を設けて永久磁石の飛散を防止したものや、永久磁石を
回転軸上に接着剤で貼り付けて固定したものがあり、ま
た特開昭62−254649号公報に記載のように回転軸および
側面板との間に断熱板および断熱円筒をはさんだ状態で
永久磁石を外筒へ組み込んだ構造のものなどがあった。The above-described turbocharger direct-coupled rotating machine is disclosed in, for example,
As described in Japanese Patent Application Laid-Open No. 62-48931, a conventional permanent magnet rotor 8a for a synchronous machine 8 is disclosed, for example, in JP-B-63-38.
As described in Japanese Patent Publication No. 947, there are a permanent magnet provided with a strength member on the outer periphery thereof to prevent the scattering of the permanent magnet, a permanent magnet fixed on an axis of rotation with an adhesive and fixed. As described in Japanese Unexamined Patent Publication No. Sho 62-254649, there has been a structure in which a permanent magnet is incorporated in an outer cylinder with a heat insulating plate and a heat insulating cylinder sandwiched between a rotating shaft and a side plate.
[発明が解決しようとする課題] 上記従来技術は例えば50000〜60000γ/min程度の中・
低速回転における耐破壊性や耐飛散性が十分であった
が、しかしターボチャージャに組み込まれるような100,
000γ/min以上の超高速回転する永久磁石回転子では過
大な遠心力を発生するため、外筒が遠心力により永久歪
を生じたり外筒の拡がりによる永久磁石の割れや欠けを
生じてしまい、またこうした状態になった場合には回転
子自体の曲げ剛性が低いために軸全体の曲げ剛性も低く
なってしまい、これらが軸系のアンバランス量の経時変
化に大きな影響を与えるようになり、さらに軸受のアン
バランス量が増大すると回転軸の曲げ力が大きくなって
最終的には軸が破断してしまう可能性があるなどの問題
があった。[Problem to be Solved by the Invention] The above-mentioned conventional technology is, for example, a medium having a medium speed of about 50,000 to 60,000
Destruction resistance and splash resistance at low speed rotation were sufficient, but 100, 100, such as built in turbocharger
In a permanent magnet rotor that rotates at an ultra-high speed of 000 γ / min or more, an excessive centrifugal force is generated, so the outer cylinder causes permanent distortion due to centrifugal force or cracks or chipping of the permanent magnet due to expansion of the outer cylinder, In such a state, the bending rigidity of the rotor itself is low, so that the bending rigidity of the entire shaft also becomes low, and these greatly affect the change over time of the unbalance amount of the shaft system, Further, when the unbalance amount of the bearing is increased, there is a problem that the bending force of the rotating shaft is increased and the shaft may be eventually broken.
本発明の目的は回転軸系のアンバランス量の経時変化
の原因となるような回転子に組み込まれる永久磁石の割
れを防止し、かつ回転子の曲げの剛性を向上させること
により、軸系の信頼性を向上させうる超高速回転機の永
久磁石回転子を提供することにある。An object of the present invention is to prevent a permanent magnet incorporated in a rotor from cracking, which causes a change in the amount of unbalance of the rotating shaft system with time, and to improve the bending rigidity of the rotor, thereby improving the rigidity of the rotating shaft system. An object of the present invention is to provide a permanent magnet rotor of an ultra high-speed rotating machine capable of improving reliability.
[課題を解決するための手段] 上記の目的を達成するために、本発明の超高速回転機
の永久磁石回転子は外筒全長を永久磁石全長より短くし
て永久磁石端面を側面板で抑え、外筒を側面板により外
周部のみ抑えられる構造とし、永久磁石の割れを防止す
るには永久磁石を外筒へ圧入し、その圧入には外筒を加
熱膨張させて常温の永久磁石を挿入するなどの温度差に
よる圧入方法を用い、また外筒の材質には非磁性で高張
力を有して線膨張係数の高いものを使用し、かつ回転子
の曲げ剛性を向上させるには外筒両端開口部の外周へ側
面板の内周を印ろう嵌合させ、永久磁石外周を構成する
外筒と永久磁石側面を構成する側面板の一体構造に近い
状態とし、また印ろう嵌合部では溶接や接着や圧入など
により固定させた構造としたものである。Means for Solving the Problems In order to achieve the above-mentioned object, in the permanent magnet rotor of the ultrahigh-speed rotating machine of the present invention, the total length of the outer cylinder is shorter than the total length of the permanent magnet, and the end face of the permanent magnet is suppressed by a side plate. In order to prevent the permanent magnet from cracking, the permanent magnet is pressed into the outer cylinder to prevent cracking of the permanent magnet, and the outer cylinder is heated and expanded to insert the normal magnet at room temperature. Use a non-magnetic, high tension, high linear expansion coefficient material for the outer cylinder, and use the outer cylinder to improve the bending rigidity of the rotor. The inner periphery of the side plate is soldered and fitted to the outer periphery of the opening at both ends, so that the outer cylinder constituting the outer periphery of the permanent magnet and the side plate constituting the side surface of the permanent magnet are in a state close to an integrated structure. The structure is fixed by welding, bonding, press-fitting, or the like.
[作用] 上記の超高速回転機の永久磁石回転子は永久磁石が外
筒へ温度差圧入等により圧入され、加熱された外筒に永
久磁石を挿入することによって永久磁石が外筒への挿入
途中で止まるような不具合がなく、外筒と永久磁石は温
度差によって圧入作業が良好にでき、良好な圧入嵌合す
る永久磁石回転子が容易に構成できる。このようにして
永久磁石が外筒へ圧入されているので、回転軸静止時に
は永久磁石が外筒より圧縮力を受けている状態にあり、
回転軸回転時には永久磁石にかかる応力は外筒圧入によ
る圧縮力と遠心力による引張応力がかかっている状態と
なり、回転速度が上昇して引張応力が圧縮応力より大き
くなり永久磁石引張り強度を越えた時点で永久磁石に割
れを発生することになるから、したがって永久磁石単体
で回転させた場合よりも予備的圧縮応力分だけ永久磁石
割れ発生回転速度を上昇させることが可能となり、また
外筒が初期的に圧入による応力を受けていて回転時に遠
心力による応力も受けるが、これには外筒の材質に非磁
性で高張力を有して線膨張係数の高いものを使用するこ
とで対応しており、かつ永久磁石外筒の両端開口部外周
を側面板で押える印ろう嵌合構造としているので、外筒
が外側に拡がろうとする力を側面板が押えて側面板自体
も強度部材の一部として使用することができ、また印ろ
う嵌合部を溶接や接着や圧入すれば永久磁石外筒と側面
板を一体構造に近い状態にすることができ、また外筒の
全長を永久磁石全長より短くすることにより、側面板で
永久磁石の軸方向への動きを抑えることができるから、
これらにより永久磁石回転子の曲げ剛性を向上させるこ
とができ、ターボチャージャ直結回転機等の超高速回転
機の永久磁石回転子として軸系の信頼性を向上できる。[Operation] In the permanent magnet rotor of the above-described ultrahigh-speed rotating machine, the permanent magnet is press-fitted into the outer cylinder by temperature difference press-fitting, and the permanent magnet is inserted into the heated outer cylinder by inserting the permanent magnet into the outer cylinder. There is no problem that the outer cylinder and the permanent magnet are stopped halfway, and the outer cylinder and the permanent magnet can be press-fitted satisfactorily due to the temperature difference. Since the permanent magnet is pressed into the outer cylinder in this manner, the permanent magnet is in a state of receiving a compressive force from the outer cylinder when the rotating shaft is stationary,
At the time of rotation of the rotating shaft, the stress applied to the permanent magnet was in a state where compressive force due to press-fitting of the outer cylinder and tensile stress due to centrifugal force were applied, and the rotation speed increased and the tensile stress exceeded the compressive stress and exceeded the permanent magnet tensile strength At this point, the permanent magnet will be cracked, so it is possible to increase the permanent magnet cracking rotation speed by the amount of preliminary compressive stress as compared to rotating the permanent magnet alone, and the outer cylinder Although it is subjected to stress due to press-fitting and also to stress due to centrifugal force during rotation, it is possible to respond to this by using a non-magnetic, high-tension material with a high linear expansion coefficient for the outer cylinder. The permanent magnet outer cylinder has a seal-fitting structure in which the outer periphery of both ends of the opening of the permanent magnet is pressed by the side plate. Department By welding, bonding, or press-fitting the soldering fitting, the permanent magnet outer cylinder and the side plate can be made into a state close to an integral structure. By making it shorter, the side plate can suppress the movement of the permanent magnet in the axial direction,
As a result, the bending rigidity of the permanent magnet rotor can be improved, and the reliability of the shaft system can be improved as a permanent magnet rotor of an ultra-high-speed rotating machine such as a turbocharger direct-coupled rotating machine.
[実施例] 以下本発明の実施例を第1図から第6図により説明す
る。Embodiment An embodiment of the present invention will be described below with reference to FIGS.
第1図は本発明による超高速回転機の永久磁石回転子
の一実施例を示す断面図である。第1図において本永久
磁石回転子は円筒状永久磁石3と、該永久磁石3の外周
に設けられる外筒1と、該永久磁石3の側面に設けられ
る側面板2a,2bとから成り、永久磁石を外筒へ圧入し、
かつ外筒の両端開口部の外周を側面板2a,2bの内周印ろ
う嵌合とした構成である。FIG. 1 is a sectional view showing an embodiment of a permanent magnet rotor of an ultrahigh-speed rotating machine according to the present invention. In FIG. 1, the present permanent magnet rotor comprises a cylindrical permanent magnet 3, an outer cylinder 1 provided on the outer periphery of the permanent magnet 3, and side plates 2a, 2b provided on the side surfaces of the permanent magnet 3. Press the magnet into the outer cylinder,
In addition, the outer periphery of the opening at both ends of the outer cylinder is formed by fitting the inner periphery of the side plates 2a and 2b.
上記の円筒状永久磁石3は例えばSm−Co系やNd−Fe−
B系の高磁力の永久磁石を用いるが、これらの永久磁石
は一般鋼材に比べて引張強度がかなり弱くSm−Co系永久
磁石においては7〜8kg/mm2程度、Nd−Fe−B系永久磁
石においては15〜20kg/mm2程度しかないため、第7図の
ようなターボチャージャの回転軸6a上の軸受10aとカラ
ー9の間に組み込まれる超高速回転機8の回転子8aとし
て使用する場合には、永久磁石3単体では破損してしま
うし、また従来技術における永久磁石飛散防止のための
外筒を設けた構造では過大遠心力がかかた場合には外筒
内部で永久磁石が不等割れしてしまい、これに起因して
回転子のバランスがくずれ延いては軸系全体のバランス
がくずれて最終的には軸の破断に至たるので、本発明に
おいては永久磁石3を外筒1へ温度差圧入し、かつ外筒
1両端開口部の外周へ側面板2a,2bの内周を印ろう嵌合
させる構造にして、外筒1内部での永久磁石3の割れ発
生を防止し、かつ永久磁石回転子8aとしての曲げの剛性
を向上させている。The cylindrical permanent magnet 3 is made of, for example, Sm-Co or Nd-Fe-
It uses a high magnetic force of the permanent magnet of the B system, 7~8kg / mm 2 approximately in considerably weaker Sm-Co based permanent magnet tensile strength compared to these permanent magnets general steel, Nd-Fe-B based permanent Since the magnet has only about 15 to 20 kg / mm 2 , it is used as a rotor 8a of an ultra high-speed rotating machine 8 incorporated between a collar 10 and a bearing 10a on a rotating shaft 6a of a turbocharger as shown in FIG. In this case, the permanent magnet 3 alone will be damaged, and in the structure of the related art provided with an outer cylinder for preventing the scattering of the permanent magnet, the permanent magnet will be built inside the outer cylinder when an excessive centrifugal force is applied. In the present invention, the permanent magnet 3 is detached because the rotor is unbalanced and the balance of the rotor is disturbed and the balance of the entire shaft system is disturbed and eventually the shaft is broken. The temperature difference is press-fitted into the cylinder 1 and the side plates 2a, The inner periphery of 2b has a structure in which the inner periphery of the permanent magnet 3 is fitted to prevent the occurrence of cracking of the permanent magnet 3 inside the outer cylinder 1 and the bending rigidity of the permanent magnet rotor 8a is improved.
第2図は第1図の回転子の永久磁石3および外筒1の
回転速度−応力曲線を例示する説明図、第3図は第1図
の回転子静止時の回転子応力状況を例示する説明図であ
る。第2図において横軸に回転子回転速度を取り、縦軸
に引張・圧縮応力を取って、各回転速度における永久磁
石3と外筒1にかかる各応力をプロットした応力曲線を
示し、また参考として永久磁石3単体での応力曲線をも
示したが、永久磁石3は外筒1へ圧入されているため第
3図に示すように初期的に圧入力による圧縮応力を受
け、また外筒1は初期的に圧入力による引張応力を受け
ており、回転速度が上昇してゆくと外筒1および永久磁
石3の遠心力による引張応力が増大し、このとき永久磁
石1にかかる応力は遠心力による引張応力を圧入による
圧縮力が打ち消す形となっていて、永久磁石引張強度に
対応する永久磁石3の割れ発生回転速度を永久磁石単体
で回転させた場合よりも上昇させることが可能となる。FIG. 2 is an explanatory view exemplifying a rotation speed-stress curve of the permanent magnet 3 and the outer cylinder 1 of the rotor of FIG. 1, and FIG. 3 exemplifies a rotor stress state when the rotor is stationary in FIG. FIG. In FIG. 2, the horizontal axis indicates the rotor rotation speed, and the vertical axis indicates the tensile / compression stress, and the stress curves plotting the stress applied to the permanent magnet 3 and the outer cylinder 1 at each rotation speed are shown. FIG. 3 also shows a stress curve of the permanent magnet 3 alone. However, since the permanent magnet 3 is press-fitted into the outer cylinder 1, the permanent magnet 3 initially receives a compressive stress due to press-in as shown in FIG. Is initially subjected to a tensile stress due to press-in, and as the rotational speed increases, the tensile stress due to the centrifugal force of the outer cylinder 1 and the permanent magnet 3 increases. The compression force due to the press-fitting cancels the tensile stress caused by the press-fitting, and the rotation speed at which the cracks of the permanent magnet 3 corresponding to the tensile strength of the permanent magnet 3 occur can be increased as compared with the case where the permanent magnet is rotated alone.
上記の外筒1へ永久磁石3を圧入するためには外筒1
を加熱膨張させて永久磁石3を圧入する方法などがよ
く、外筒1を膨張させずに圧入した場合には永久磁石3
の材質が非常にもろいため圧入時に欠けを生じてしまい
十分な圧入が得られない。また初期圧入寸法は初期圧入
力により外筒1の引張耐力を越えないようにし、かつ使
用温度時に圧入力がなくならないようにすることが前提
条件となり、あとは目標の回転速度時の遠心力を受けた
ときに永久磁石3および外筒が破壊しないように決定す
る。In order to press-fit the permanent magnet 3 into the outer cylinder 1, the outer cylinder 1
In this case, the permanent magnet 3 is press-fitted without expanding the outer cylinder 1, and the permanent magnet 3 is press-fitted without expanding the outer cylinder 1.
Since the material is very brittle, chipping occurs at the time of press-fitting, and sufficient press-fit cannot be obtained. In addition, the initial press-fit dimension must be such that the initial press-fit does not exceed the tensile strength of the outer cylinder 1 and that the press-fit does not disappear at the operating temperature. It is determined so that the permanent magnet 3 and the outer cylinder do not break when received.
また上記の外筒1の材質は永久磁石3外周に設けられ
るため非磁性でなければならないが、また加熱による圧
入を行うため線膨張係数の高いものを使用する必要があ
り、これには例えばオーステナイト系耐熱鋼やNi基合金
などがよく、これらの材料は高張力であって線膨張係数
が高いうえ耐用温度も高く、耐用温度時の線膨張率がオ
ーステナイト系耐熱鋼で0.0125およびNi基合金で0.0091
となっているが、もしこの耐用温度時の膨張率が0.007
程度以下になった場合には十分な熱膨張が得られないか
ら加熱圧入方式には不向きと言える。The material of the outer cylinder 1 must be non-magnetic because it is provided on the outer periphery of the permanent magnet 3, but it is necessary to use a material having a high linear expansion coefficient for press-fitting by heating. system heat-resistant steel and N i based alloys such as well, these materials are high tensile at a by the linear expansion coefficient is high upon tolerable temperature is high, the linear expansion coefficient at temperature capacity is 0.0125 and N i groups of austenitic heat-resistant steels 0.0091 with alloy
However, if the expansion rate at this service temperature is 0.007
If the temperature falls below the level, sufficient thermal expansion cannot be obtained, so that it can be said that it is not suitable for the heating press-fitting method.
第4図は第1図の回転子の組立時における永久磁石3
の外筒1への圧入方法を例示する説明図である。第4図
において、上記のような外筒1を圧入雇4に組み付け、
その組付部は外筒1の一端面開口部の外周の印ろう嵌合
部を圧入雇4で受けるようにする。つぎに圧入雇4ごと
加熱炉へ入れて加熱するが、この加熱温度は外筒1の素
材耐用温度を越えてはならず、また組立性および生産設
備を考慮すると加熱温度の限界は約800℃程度であろ
う。この加熱した外筒1を圧入雇4ごと加熱炉から取り
出し、圧入雇4の中心にある永久磁石ガイドピンに永久
磁石3の内径部を合わせて落し込む。このようにすれば
永久磁石3が外筒1へ挿入途中で止まるという不具合が
なくなり、外筒1と永久磁石3の温度差による圧入作業
が良好に実施できる。FIG. 4 shows a permanent magnet 3 in assembling the rotor of FIG.
It is explanatory drawing which illustrates the press-fitting method to the outer cylinder 1 of FIG. In FIG. 4, the outer cylinder 1 as described above is assembled to the press-fitting employment 4,
The assembling portion receives the stamping fitting portion on the outer periphery of the opening at one end surface of the outer cylinder 1 by press-fitting 4. Next, the whole of the press-fit 4 is put into a heating furnace and heated. The heating temperature must not exceed the material service temperature of the outer cylinder 1, and the limit of the heating temperature is about 800 ° C. in consideration of assemblability and production equipment. Will be about. The heated outer cylinder 1 is taken out of the heating furnace together with the press-fit 4 and dropped into the permanent magnet guide pin at the center of the press-fit 4 with the inner diameter of the permanent magnet 3. This eliminates the problem that the permanent magnet 3 stops during insertion into the outer cylinder 1, and the press-fitting operation due to the temperature difference between the outer cylinder 1 and the permanent magnet 3 can be performed satisfactorily.
つぎに第1図の回転子の外筒1と側面板2a,2bの印ろ
う嵌合部の接合方法は、側面板2a,2bの外周部には段が
付けてあり、この段付部で外筒1の両端開口部の段が付
いた外周部へ組付けた場合には外筒1の両端開口部の外
周より抑えることができる構造となっていて、側面板2
a,2bが外筒1の両端開口部を閉じるように形成される。
外筒1は上記のように永久磁石1を温度差圧入するため
円筒状の構造にした方がよいが、仮に外筒1をコの字形
にした場合には外筒入口と底部の熱膨張に差が出てしま
い、永久磁石3を底部まで挿入できなくなってしまう。
このような外筒1の両端開口部の外周の印ろう嵌合部を
溶接や接着や圧入などの方法を用いて接合力を高めるこ
とができる。このようにして外筒1の外側へ広がろうと
する力を側面板2a,2bで抑えることが可能となり、また
永久磁石3の外周部材が一体に近い構造となるため回転
子全体の曲げ剛性が向上する。Next, a method of joining the outer cylinder 1 of the rotor and the soldering fitting portions of the side plates 2a and 2b in FIG. 1 is such that a step is provided on the outer peripheral portion of the side plates 2a and 2b. When the outer cylinder 1 is assembled to the stepped outer periphery of both ends of the outer cylinder 1, the outer cylinder 1 has a structure that can be suppressed from the outer periphery of the both ends of the outer cylinder 1.
a, 2b are formed so as to close the openings at both ends of the outer cylinder 1.
It is preferable that the outer cylinder 1 has a cylindrical structure in order to press-fit the permanent magnet 1 with a temperature difference as described above. However, if the outer cylinder 1 is formed in a U-shape, thermal expansion of the outer cylinder inlet and the bottom is required. A difference is generated, and the permanent magnet 3 cannot be inserted to the bottom.
The joining strength of the soldering fitting portions on the outer periphery of the opening at both ends of the outer cylinder 1 can be increased by using a method such as welding, adhesion, or press-fitting. In this way, the force that tends to spread to the outside of the outer cylinder 1 can be suppressed by the side plates 2a and 2b, and since the outer peripheral member of the permanent magnet 3 has a structure that is almost integral, the bending rigidity of the entire rotor is reduced. improves.
第5図(a),(b),(c)はそれぞれ本発明によ
る超高速回転機の永久磁石回転子の他の実施例を示す部
分断面図である。第5図(a),(b),(c)におい
て、それぞれ第1図の回転子の外筒1と側面板2a,2bの
印ろう嵌合部構造の変形例を示し、第5図(a)は外筒
1の両端面開口部の外周には段のない円筒状のもので、
この両端面開口部の外径部を側面板2a,2bの外周段付部
で抑える構造であり、第5図(b),(c)は外筒1の
両端面開口部と側面板2a,2bの周辺部に相互に凸凹を設
け、この凸凹部で外筒1が外側に広がるのを側面板2a,2
bにより抑える構造である。これらの印ろう嵌合部構造
の場合にも、この印ろう嵌合部を溶接や接着や圧入など
の方法で接合力を高めることができる。また永久磁石3
の外周部材が一体に近い構造となるため、回転子全体の
曲げ剛性が向上する。5 (a), 5 (b) and 5 (c) are partial sectional views showing another embodiment of the permanent magnet rotor of the ultrahigh-speed rotating machine according to the present invention. 5 (a), 5 (b) and 5 (c) show modified examples of the stamping fitting structure of the outer cylinder 1 and the side plates 2a and 2b of the rotor shown in FIG. 1, respectively. a) is a cylindrical shape having no step on the outer periphery of the opening at both end surfaces of the outer cylinder 1,
FIGS. 5B and 5C show a structure in which the outer diameters of the openings at both end surfaces are suppressed by the outer peripheral step portions of the side plates 2a and 2b. 2b are provided on the periphery of each other.
The structure is suppressed by b. Also in the case of these stamping fitting parts, the joining strength of the stamping fitting part can be increased by a method such as welding, adhesion or press fitting. Also permanent magnet 3
The outer peripheral member has a structure that is almost integral, so that the bending rigidity of the entire rotor is improved.
第6図は本発明による超高速回転機の永久磁石回転子
の印ろう嵌合部拡大断面図である。第6図において、第
1図の回転子の永久磁石3と外筒と側面板の組立状態を
示し、外筒1の軸方向長さは永久磁石3の軸方向長さよ
りも短くすることにより、外筒1と側面板2a,2bの印ろ
う嵌合部は円周方向の面のみの接合となり、また永久磁
石3との接合は側面板2a,2bの側面のみとなる構造であ
るため、永久磁石3が外筒1および側面板2a,2bの内部
でずれや動きを生じることがない。また本回転子の超高
速回転機への取付け時に回転子の軸方向の歪を生じない
構造にできる。FIG. 6 is an enlarged cross-sectional view of a stamping fitting portion of the permanent magnet rotor of the ultrahigh-speed rotating machine according to the present invention. FIG. 6 shows an assembled state of the permanent magnet 3, the outer cylinder, and the side plate of the rotor shown in FIG. 1. By making the axial length of the outer cylinder 1 shorter than the axial length of the permanent magnet 3, The soldering fitting portion between the outer cylinder 1 and the side plates 2a, 2b is joined only on the surface in the circumferential direction, and the joint with the permanent magnet 3 is a structure consisting only on the side surfaces of the side plates 2a, 2b. The magnet 3 does not shift or move inside the outer cylinder 1 and the side plates 2a and 2b. Further, it is possible to provide a structure that does not cause axial distortion of the rotor when the rotor is attached to an ultrahigh-speed rotating machine.
上記実施例の回転子は第7図のターボチャージャの永
久磁石回転子8aとして組付けられる場合には、回転子8a
は回転軸6aへ3〜5μm程度ですき間ばめされており、
カラー9およびコンプレッサインペラ7を介してナット
12により締め付けられている状態にあり、ここで回転子
8aの回転軸6aへの嵌合部は側面板2a,2bの内径部のみで
あって、したがって本永久磁石回転子8aの軸方向寸法の
不変性も重要なポイントであり、本実施例の回転子がこ
れに対応できることがわかる。When the rotor of the above embodiment is assembled as the permanent magnet rotor 8a of the turbocharger of FIG. 7, the rotor 8a
Is fitted to the rotating shaft 6a by about 3 to 5 μm,
Nut via collar 9 and compressor impeller 7
12 is tightened, where the rotor
The fitting portion of the rotating shaft 6a of the permanent magnet rotor 8a is only the inner diameter portion of the side plates 2a and 2b.Therefore, the invariance of the axial dimension of the permanent magnet rotor 8a is also an important point. It turns out that the child can respond to this.
[発明の効果] 本発明によれば、超高速回転機の永久磁石回転子の永
久磁石を外筒へ温度差等により圧入し、かつ外筒両端開
口部の外周へ側面板の内周を印ろう嵌合させる構成とし
ているので、磁石割れ発生回転速度を上昇させることが
でき、例えば外径20mm程度の永久磁石を用いた場合に
は、永久磁石単体では80000γ/min程度で割れを生じて
いたものを130000γ/min程度まで上昇させることが可能
であり、また外筒の材質によっては割れ発生回転速度を
さらに上昇させることができ、かつ外筒にかかる外周方
向へ拡がろうとする力を外筒両端の側面板で抑えること
が可能となり、回転子の曲げの剛性を向上させることが
できる効果がある。[Effects of the Invention] According to the present invention, the permanent magnet of the permanent magnet rotor of the ultrahigh-speed rotating machine is pressed into the outer cylinder by a temperature difference or the like, and the inner periphery of the side plate is marked on the outer periphery of the opening at both ends of the outer cylinder. Since it is configured to be brazed, it is possible to increase the rotation speed of magnet crack generation, for example, when using a permanent magnet with an outer diameter of about 20 mm, the permanent magnet alone cracked at about 80000 γ / min Can be increased up to about 130,000 γ / min, and depending on the material of the outer cylinder, the rotation speed at which cracks occur can be further increased, and the force applied to the outer cylinder in the outer circumferential direction is applied to the outer cylinder. This can be suppressed by the side plates at both ends, and there is an effect that the bending rigidity of the rotor can be improved.
さらに永久磁石軸長を外筒軸長より長くすることによ
り、回転子組立時の各部品間の不要間隙をなくして、回
転機本体への組入時の歪を防止できるうえ、回転子自体
の曲げ剛性を向上でき、また外筒と側面板の印ろう嵌合
部を溶接や接着や圧入することにより、さらに接合力を
高め回転子をより一体構造に近いものにして曲げ剛性を
より高めることができる効果が得られ、これらにより回
転子のアンバランスの経時変化を少なくして回転子自体
の曲げ剛性が向上できるため、これをターボチャージャ
直結回転機等に用いれば軸径全体の剛性が向上すること
となり、軸破断回転速度を上昇させて信頼の向上が期待
できる効果がある。In addition, by making the permanent magnet shaft length longer than the outer cylinder shaft length, unnecessary gaps between components during rotor assembly can be eliminated, preventing distortion during assembly into the rotating machine body, and reducing the rotor itself. Bending stiffness can be improved, and by welding, bonding or press-fitting the soldering joint between the outer cylinder and the side plate, the joining force is further increased, and the rotor is made closer to an integral structure to increase the bending stiffness. These effects reduce the unbalance of the rotor over time and improve the bending rigidity of the rotor itself.If this is used for a turbocharger direct-coupled rotating machine, etc., the rigidity of the entire shaft diameter is improved. Therefore, there is an effect that the reliability can be expected to be improved by increasing the shaft breaking rotation speed.
第1図は本発明による超高速回転機の永久磁石回転子の
一実施例を示す断面図、第2図は第1図の永久磁石およ
び外筒の回転速度−応力曲線の説明図、第3図第4図は
第1図の組立圧入方法の一例の説明図、第5図(a),
(b),(c)は本発明による他の実施例を示す部分断
面図、第6図は本発明によるさらに他の実施例を示す部
分断面図、第7図は従来のターボチャージャ直結回転機
の一例を示す断面図である。 1……外筒、2a,2b……側面板、3……永久磁石、6a…
…回転軸、8a……回転子。FIG. 1 is a sectional view showing an embodiment of a permanent magnet rotor of an ultrahigh-speed rotating machine according to the present invention, FIG. 2 is an explanatory view of a rotation speed-stress curve of the permanent magnet and the outer cylinder of FIG. FIG. 4 is an explanatory view of an example of the assembly press-fitting method of FIG. 1, and FIG.
(B) and (c) are partial sectional views showing another embodiment according to the present invention, FIG. 6 is a partial sectional view showing still another embodiment according to the present invention, and FIG. 7 is a conventional turbocharger direct-coupled rotating machine. FIG. 3 is a cross-sectional view showing one example. 1 ... outer cylinder, 2a, 2b ... side plate, 3 ... permanent magnet, 6a ...
… Rotary shaft, 8a …… rotor.
フロントページの続き (56)参考文献 特開 平3−11950(JP,A) 特開 平3−11948(JP,A) 特開 平2−241339(JP,A) 特開 平2−123939(JP,A) 特開 昭62−254649(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02K 1/27 501 Continuation of the front page (56) References JP-A-3-11950 (JP, A) JP-A-3-11948 (JP, A) JP-A-2-241339 (JP, A) JP-A-2-123939 (JP) , A) JP-A-62-254649 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02K 1/27 501
Claims (3)
外筒と、該永久磁石側面を覆う側面板とから成る永久磁
石回転子において、前記外筒の全長は前記永久磁石の全
長より短く構成されたものであり、前記永久磁石は前記
外筒に圧入されたものであり、かつ該外筒の両端面開口
部の外周は前記側面板の内周で印ろう嵌合されたもので
あることを特徴とする超高速回転機の永久磁石回転子。1. A permanent magnet rotor comprising a cylindrical permanent magnet, an outer cylinder that covers the outer periphery of the permanent magnet, and a side plate that covers the side surface of the permanent magnet, wherein the total length of the outer cylinder is greater than the total length of the permanent magnet. The permanent magnet is press-fitted into the outer cylinder, and the outer peripheries of the openings at both end surfaces of the outer cylinder are stamped and fitted with the inner perimeter of the side plate. A permanent magnet rotor for an ultra-high-speed rotating machine.
鋼もしくはNi基合金であることを特徴とする請求項1記
載の超高速回転機の永久磁石回転子。2. The permanent magnet rotor according to claim 1, wherein the outer cylinder is made of heat-resistant austenitic steel or a Ni-based alloy.
は圧入が施されてなることを特徴とする請求項1記載の
超高速回転機の永久磁石回転子。3. The permanent magnet rotor for an ultra-high speed rotating machine according to claim 1, wherein said soldering fitting portion is welded, bonded or press-fitted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02311408A JP3072851B2 (en) | 1990-11-19 | 1990-11-19 | Permanent magnet rotor of ultra high-speed rotating machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02311408A JP3072851B2 (en) | 1990-11-19 | 1990-11-19 | Permanent magnet rotor of ultra high-speed rotating machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04183238A JPH04183238A (en) | 1992-06-30 |
JP3072851B2 true JP3072851B2 (en) | 2000-08-07 |
Family
ID=18016843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02311408A Expired - Lifetime JP3072851B2 (en) | 1990-11-19 | 1990-11-19 | Permanent magnet rotor of ultra high-speed rotating machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3072851B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3850579B2 (en) * | 1999-03-24 | 2006-11-29 | 株式会社東芝 | Permanent magnet type rotating electric machine |
JP4400425B2 (en) | 2004-11-15 | 2010-01-20 | トヨタ自動車株式会社 | Surface magnet type electric motor, method of manufacturing surface magnet type electric motor, and internal combustion engine equipped with surface magnet type electric motor |
JP2007202371A (en) * | 2006-01-30 | 2007-08-09 | Toyota Motor Corp | Rotor, its manufacturing method, rotary electric machine, and internal combustion engine |
GB201014073D0 (en) * | 2010-08-24 | 2010-10-06 | Dyson Technology Ltd | Rotor core assembly |
GB201014074D0 (en) | 2010-08-24 | 2010-10-06 | Dyson Technology Ltd | Rotor for an electrical machine |
WO2018216257A1 (en) * | 2017-05-22 | 2018-11-29 | 三菱電機株式会社 | Spm motor rotor and method for manufacturing same |
JP2019208320A (en) * | 2018-05-30 | 2019-12-05 | 三菱電機株式会社 | Rotor for rotary electric machine |
US12051946B2 (en) | 2019-01-31 | 2024-07-30 | Nidec Sankyo Corporation | Rotor, motor, and rotor manufacturing method |
WO2021095200A1 (en) | 2019-11-14 | 2021-05-20 | 三菱電機株式会社 | Rotor, electric motor, fan, and electric vacuum cleaner or hand dryer |
WO2022138727A1 (en) * | 2020-12-24 | 2022-06-30 | シチズン千葉精密株式会社 | Rotor, brushless motor, and method for manufacturing rotor |
JP7130728B2 (en) * | 2020-12-24 | 2022-09-05 | シチズン千葉精密株式会社 | ROTOR, BRUSHLESS MOTOR, ROTOR MANUFACTURING METHOD |
-
1990
- 1990-11-19 JP JP02311408A patent/JP3072851B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04183238A (en) | 1992-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3587350B2 (en) | Turbocharger with generator / motor | |
JP3072851B2 (en) | Permanent magnet rotor of ultra high-speed rotating machine | |
US5121605A (en) | Turbo-charger with rotary machine | |
JP4400425B2 (en) | Surface magnet type electric motor, method of manufacturing surface magnet type electric motor, and internal combustion engine equipped with surface magnet type electric motor | |
JP2012529265A (en) | Electric motor rotor | |
JP4112468B2 (en) | Axis of rotation | |
KR20000070611A (en) | Improvements in high speed rotor shafts | |
CN105680595B (en) | Rotor, electric booster and the electronic hydraulic booster of motor | |
JP2785423B2 (en) | Rotor of vehicle alternator and method of manufacturing the same | |
JP2008501882A (en) | Exhaust turbocharger for internal combustion engine and control method thereof | |
JPS58136256A (en) | Field coil holding member for inductor type ac generator and manufacture thereof | |
US5063320A (en) | Feeder lead wire of rotor for electric machine | |
JPH11234975A (en) | Assembly for rotor of generator | |
JP2847756B2 (en) | Rotating electric machine rotor | |
JP2000145469A (en) | Assembling method for turbocharger having generator/ motor | |
JP2019534976A (en) | Assembling method of turbocharger | |
JP2007202371A (en) | Rotor, its manufacturing method, rotary electric machine, and internal combustion engine | |
US6750587B2 (en) | High RPM/output rotor | |
EP2789807A1 (en) | Turbocharger | |
JPH04339193A (en) | Manufacture of rotor for mechanical drive supercharger | |
JPS6270275A (en) | Method for bonding ceramic rotor and metal rotary shaft | |
JP3083446B2 (en) | High frequency motor rotor | |
JPH03207229A (en) | Permanent magnet rotor for rotating machine directly coupled with turbocharger | |
JPH03212137A (en) | Claw pole type synchronous generator | |
JP2847757B2 (en) | Rotating electric machine rotor |