JP3071489B2 - Non-contact bearing overload detection device - Google Patents
Non-contact bearing overload detection deviceInfo
- Publication number
- JP3071489B2 JP3071489B2 JP3112681A JP11268191A JP3071489B2 JP 3071489 B2 JP3071489 B2 JP 3071489B2 JP 3112681 A JP3112681 A JP 3112681A JP 11268191 A JP11268191 A JP 11268191A JP 3071489 B2 JP3071489 B2 JP 3071489B2
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- bearing
- contact
- contact bearing
- rotating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 title claims description 10
- 238000005096 rolling process Methods 0.000 claims description 27
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 239000012530 fluid Substances 0.000 description 10
- 239000002131 composite material Substances 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/12—Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
- F16C17/24—Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2233/00—Monitoring condition, e.g. temperature, load, vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2322/00—Apparatus used in shaping articles
- F16C2322/39—General buildup of machine tools, e.g. spindles, slides, actuators
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Rolling Contact Bearings (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、非接触型の軸受け装置
において、軸に対する過負荷状態を検出する装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type bearing device for detecting an overload state on a shaft.
【0002】[0002]
【従来の技術】一般に、流体軸受けや磁気軸受けなどの
非接触型の軸受けの負荷容量は、ころがり軸受けに比較
して小さくなっている。このため、過負荷や誤動作など
によって、軸に大きな荷重が掛かると、軸が非接触軸受
けに接触し、それらの接触面で焼き付きが生じる。2. Description of the Related Art Generally, the load capacity of a non-contact type bearing such as a fluid bearing or a magnetic bearing is smaller than that of a rolling bearing. For this reason, when a large load is applied to the shaft due to overload or malfunction, the shaft comes into contact with the non-contact bearing, and seizure occurs on those contact surfaces.
【0003】この対策として、軸の負荷点と非接触軸受
けとの間にころがり軸受けを組み込み、ころがり軸受け
の内輪の内径と軸の外径との隙間を非接触軸受けの隙間
よりも小さく設定し、軸に対する大きな負荷の作用時
に、軸が非接触軸受けに接触する前に、ころがり軸受け
によって、支えられるようにした複合型の軸受け装置が
提案されている(1988年4月10日発行・社団法人
日本機械学会編・株式会社工業調査会刊「工作機械の最
先端技術」の第4章「複合軸受による高速・高剛性
化」)。[0003] As a countermeasure, a rolling bearing is incorporated between the load point of the shaft and the non-contact bearing, and the gap between the inner diameter of the inner ring of the rolling bearing and the outer diameter of the shaft is set smaller than that of the non-contact bearing. A composite bearing device has been proposed in which, when a large load is applied to a shaft, the shaft is supported by a rolling bearing before the shaft comes into contact with the non-contact bearing (issued on April 10, 1988, Japan Corporation). Chapter 4 “High-speed and high-rigidity with composite bearings” in “The cutting-edge technology of machine tools”, edited by the Japan Society of Mechanical Engineers and published by the Industrial Research Institute.
【0004】しかし、上記の軸受け装置の場合に、軸の
回転数がころがり軸受けの許容回転数よりも高いとき、
ころがり軸受けが焼き付き、破損の危険がある。また、
焼き付き状態に至らなくても、軸がころがり軸受けによ
って支持された時点から、ころがり運動支持に変化する
ため、非接触軸受けの滑らかな回転特性が得られず、加
工精度に悪影響をおよぼす。However, in the case of the above bearing device, when the rotation speed of the shaft is higher than the allowable rotation speed of the rolling bearing,
Rolling bearings seize and may be damaged. Also,
Even if the burn-in state does not occur, since the shaft is changed to the rolling motion support from the time when the shaft is supported by the rolling bearing, smooth rotation characteristics of the non-contact bearing cannot be obtained, which adversely affects the machining accuracy.
【0005】[0005]
【発明の目的】したがって、本発明の目的は、非接触軸
受けおよびころがり軸受けを有する軸受け装置におい
て、軸に対する過負荷状態を検出し、過負荷状態に応じ
て必要な対策をとれるようにすることである。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a bearing device having a non-contact bearing and a rolling bearing, which detects an overload state on a shaft and takes necessary measures according to the overload state. is there.
【0006】[0006]
【発明の解決手段】上記目的の下に、本発明は、非接触
軸受けおよびころがり軸受けを有する軸受け装置におい
て、ころがり軸受けの回転側の部分に環状の回転体を軸
に対して挿入状態で取り付け、ころがり軸受けの回転部
分および回転体のうちいずれかの内周面と軸の外周面と
の隙間を非接触軸受けの隙間よりも小さく設定し、軸と
ころがり軸受けとの隙間内の空気の摩擦抵抗力による回
転体の回転を回転センサーにより検出し、回転センサー
の出力をF/V変換器および信号レベル検出器によって
検出できるようにしている。According to the present invention, there is provided a bearing device having a non-contact bearing and a rolling bearing, wherein an annular rotating body is attached to a rotating side portion of the rolling bearing in an inserted state with respect to the shaft. The clearance between the inner peripheral surface of any one of the rotating part and the rotating body of the rolling bearing and the outer peripheral surface of the shaft is set smaller than the clearance of the non-contact bearing, and the frictional resistance of air in the clearance between the shaft and the rolling bearing is set. Is detected by a rotation sensor, and the output of the rotation sensor can be detected by an F / V converter and a signal level detector.
【0007】軸の回転中に、軸に過負荷がかかり偏心す
ると、その偏心量に比例して摩擦抵抗力が大きくなり、
回転体の回転速度は上がる。この回転速度が回転センサ
ーにより検出され、F/V変換器の信号レベルが次第に
高まってくる。これによって軸に対する過負荷状態が検
出できる。したがって、この過負荷状態に応じて、適切
な対策例えば非接触軸受けの支持力の制御や軸の回転数
の制御などが行える状態となる。If the shaft is overloaded and eccentric during rotation of the shaft, the frictional resistance increases in proportion to the amount of eccentricity.
The rotation speed of the rotating body increases. This rotation speed is detected by the rotation sensor, and the signal level of the F / V converter gradually increases. Thus, an overload state on the shaft can be detected. Therefore, in accordance with the overload state, a state where appropriate measures such as control of the support force of the non-contact bearing and control of the rotation speed of the shaft can be performed.
【0008】[0008]
【実施例】図1および図2は、本発明の非接触軸受けの
過負荷状態検出装置1を示している。この過負荷状態検
出装置1は、複合型の軸受け装置2を前提として構成さ
れている。1 and 2 show a non-contact bearing overload detecting apparatus 1 according to the present invention. The overload state detecting device 1 is configured on the premise of a composite type bearing device 2.
【0009】軸受け装置2は、例えば工作機械の主軸3
を非接触状態で支持するために、ハウジング4の内部で
例えば流体式の非接触軸受け5を備えている。この非接
触軸受け5は、軸3に挿入されており、軸3の外周面と
非接触軸受け5の内周面との間で間隔δ1の隙間6を形
成しており、この隙間6の空間に向けてハウジング4に
形成された流体ポート7から圧力流体8を供給すること
によって、軸3を非接触の状態で保持できるようになっ
ている。The bearing device 2 includes, for example, a main shaft 3 of a machine tool.
For example, a fluid type non-contact bearing 5 is provided inside the housing 4 in order to support the non-contact type. The non-contact bearing 5 is inserted into the shaft 3, and forms a gap 6 with an interval δ1 between the outer peripheral surface of the shaft 3 and the inner peripheral surface of the non-contact bearing 5. The shaft 3 can be held in a non-contact state by supplying a pressure fluid 8 from a fluid port 7 formed in the housing 4 toward the housing 3.
【0010】また、上記ハウジング4の開口面側にカバ
ー9が取り付けられており、このカバー9によって、軸
3の非回転側支持部分つまりハウジング4に、焼き付き
防止用のころがり軸受け10が軸3に対し非接触の挿入
状態で取り付けられている。なお、この非接触軸受け5
の両側開口部分は、ポケット18を形成しており、排出
ポート19に連なっている。A cover 9 is attached to the opening side of the housing 4 so that a rolling bearing 10 for preventing seizure is attached to the non-rotational side support portion of the shaft 3, that is, the housing 4. On the other hand, it is installed in a non-contact insertion state. Note that this non-contact bearing 5
Are formed with pockets 18 and are connected to the discharge port 19.
【0011】本発明の過負荷検出装置1は上記軸受け装
置2に組み込まれ、回転体11、回転センサー12、F
/V変換器13および比較器14によって構成されてい
る。The overload detecting device 1 of the present invention is incorporated in the bearing device 2 and includes a rotating body 11, a rotation sensor 12,
/ V converter 13 and comparator 14.
【0012】回転体11は、銅または砲金製で、筒状の
部分でころがり軸受け10の回転側の内輪10aに圧入
などによって固定されており、その内周面で軸3の外周
面に対して前記間隔δ1よりも小さな間隔δ2の隙間1
6を形成した状態で、軸3に挿入されており、円周に沿
って等間隔で、回転センサー12の検出特性に応じて凹
凸または反射率の異なる反射面あるいは磁性体などの被
検出体15を有している。なお、軸3の外周面で回転体
11の内周と対向する部分に必要に応じて等しいピッチ
の溝などが形成される。The rotating body 11 is made of copper or gunmetal, and is fixed to the inner ring 10 a on the rotating side of the rolling bearing 10 by press fitting or the like at a cylindrical portion. Gap 1 with an interval δ2 smaller than the interval δ1
6 are inserted into the shaft 3 in a state where they are formed, and the detection object 15 such as a reflection surface or a magnetic material having different irregularities or reflectivity according to the detection characteristics of the rotation sensor 12 at equal intervals along the circumference. have. A groove or the like having an equal pitch is formed on a portion of the outer peripheral surface of the shaft 3 facing the inner periphery of the rotating body 11 as necessary.
【0013】そして前記回転センサー12は、カバー9
の部分に取り付けられており、被検出体15の凹凸、反
射面あるいは磁性体と対応して、静電容量式近接センサ
ー、光近接センサーまたは磁気近接センサーとして構成
されており、F/V変換器13を介して比較器14の一
方の入力端に接続されている。なお、比較器14は、他
方の入力端で、基準設定器17に接続されている。The rotation sensor 12 includes a cover 9
And is configured as a capacitive proximity sensor, an optical proximity sensor, or a magnetic proximity sensor corresponding to the unevenness, the reflection surface, or the magnetic material of the detection target 15, and an F / V converter. 13 is connected to one input terminal of a comparator 14. The comparator 14 is connected to the reference setting device 17 at the other input terminal.
【0014】軸3の高速回転時に、非接触軸受け5の流
体ポート7に圧力流体8が供給され隙間6に噴射され
る。これによって、非接触軸受け5は、軸3を非接触の
状態で支持している。なお、隙間6から流出した圧力流
体8は、ポケット18の内部に入り、排出ポート19か
ら循環系に送り込まれる。When the shaft 3 rotates at a high speed, a pressure fluid 8 is supplied to a fluid port 7 of the non-contact bearing 5 and injected into the gap 6. Thus, the non-contact bearing 5 supports the shaft 3 in a non-contact state. The pressure fluid 8 flowing out of the gap 6 enters the inside of the pocket 18 and is sent from the discharge port 19 to the circulation system.
【0015】軸3が回転すると、軸3と隙間内の空気と
の摩擦抵抗力により、ころがり軸受け10は、内輪10
a、球10bおよび外輪10cの相互間のころがり摩擦
抵抗と空気摩擦抵抗力との釣り合いのとれたある回転数
で回転する。When the shaft 3 rotates, the rolling bearing 10 is moved to the inner race 10 by the frictional resistance between the shaft 3 and the air in the gap.
a, the ball 10b and the outer ring 10c rotate at a certain rotational speed in which the rolling friction resistance and the air friction resistance force are balanced.
【0016】ここで、軸3に過負荷がかかると、軸3が
偏心するため、その部分の摩擦抵抗力が図4に示すよう
に、隙間16の減少に反比例して大きくなるため、軸3
の全外周部分の摩擦抵抗力は大きくなり、この結果とし
て、ころがり軸受け10の内輪10cおよび回転体11
の回転数は次第に高くなる。そして、最終的に、軸3が
回転体11の内周面に接触すると、この時点で、ころが
り軸受け10の内輪10aは、軸3の回転と同じ回転速
度で回転する。Here, if the shaft 3 is overloaded, the shaft 3 is eccentric, and the frictional resistance at that portion increases in inverse proportion to the decrease in the gap 16, as shown in FIG.
The frictional resistance of the entire outer peripheral portion of the rolling bearing 10 increases, and as a result, the inner race 10c of the rolling bearing 10 and the rotating
Gradually increases. Finally, when the shaft 3 comes into contact with the inner peripheral surface of the rotating body 11, the inner ring 10 a of the rolling bearing 10 rotates at the same rotation speed as the rotation of the shaft 3 at this point.
【0017】この間に、回転センサー12は、被検出体
15を検出し、図3に例示するように、その検出時点で
長方形状の出力信号を発生し、F/V変換器13に送り
込んでいる。もちろん、この回転センサー12からの出
力信号の周波数は、回転体11の回転数に比例して高く
なる。During this time, the rotation sensor 12 detects the object 15 to be detected, generates a rectangular output signal at the time of the detection, and sends it to the F / V converter 13 as shown in FIG. . Of course, the frequency of the output signal from the rotation sensor 12 increases in proportion to the rotation speed of the rotating body 11.
【0018】そこで、F/V変換器13は、回転センサ
ー12からの出力信号の周波数を電圧レベルに変換し、
比較器14の一方の入力端に送り込む。比較器14は、
他方の入力端で基準設定器17により設定された基準電
圧と比較し、出力信号レベル≧基準電圧レベルとなった
ときに、例えば“H”レベルの出力信号を発生する。Then, the F / V converter 13 converts the frequency of the output signal from the rotation sensor 12 into a voltage level,
The signal is sent to one input terminal of the comparator 14. The comparator 14
The other input terminal compares the output voltage with the reference voltage set by the reference setting device 17 and, when the output signal level ≧ the reference voltage level, generates an output signal of, for example, “H” level.
【0019】したがって、この出力信号の有無によっ
て、軸3に対する過負荷状態が外部から確認でき、また
この出力信号で圧力流体8の圧力を制御したり、あるい
は軸3の回転数を制御することによって、非接触軸受け
5やころがり軸受け10の焼き付きが未然に防止できる
ことになる。Therefore, depending on the presence or absence of this output signal, an overload state on the shaft 3 can be confirmed from the outside, and the output signal controls the pressure of the pressure fluid 8 or the number of revolutions of the shaft 3. In addition, seizure of the non-contact bearing 5 and the rolling bearing 10 can be prevented beforehand.
【0020】[0020]
【他の実施例】上記実施例は、回転体11の筒状の軸け
部分の内周面と軸3の外周面との間で隙間16を形成し
ているが、回転体11が内輪10aの側面に対して接着
などの手段によって固定できれば、上記隙間16は、軸
3の内周面と内輪10aとの内周面とで形成されること
になる。Other Embodiments In the above embodiment, a gap 16 is formed between the inner peripheral surface of the cylindrical shaft portion of the rotating body 11 and the outer peripheral surface of the shaft 3, but the rotating body 11 is The gap 16 is formed by the inner peripheral surface of the shaft 3 and the inner peripheral surface of the inner race 10a if it can be fixed to the side surface of the shaft by means such as bonding.
【0021】また、上記実施例は、軸3の外側部分にこ
ろがり軸受け10を配置している関係から、回転体11
は、内輪10aに固定されているが、軸3が筒状であっ
て、ころがり軸受け10が筒状の軸3の内部に挿入され
ており、外輪10cの部分で軸3の内周面と対向する支
持形態の場合に、外輪10cの部分が軸3と共まわりす
る回転側となるため、回転体11は、外輪10cの部分
に取り付けられる。Further, in the above embodiment, since the rolling bearing 10 is arranged on the outer portion of the shaft 3, the rotating body 11
Is fixed to the inner ring 10a, but the shaft 3 is cylindrical, and the rolling bearing 10 is inserted into the cylindrical shaft 3, and the outer ring 10c faces the inner peripheral surface of the shaft 3. In the case of the supporting form described above, the portion of the outer ring 10c is on the rotating side co-rotating with the shaft 3, so that the rotating body 11 is attached to the portion of the outer ring 10c.
【0022】[0022]
【発明の効果】本発明では、軸に過負荷がかかったと
き、軸の周面が非接触型の軸受けの周面に接触する前
に、回転体が軸からの動圧の影響である回転数で回転
し、この状態がF/V変換器および比較器によって検出
できるため、軸に対する過負荷状態の検出が可能とな
る。したがって、ころがり軸受けが軸の高速回転の影響
を受けて焼き付くのを未然に防止できる。According to the present invention, when an overload is applied to a shaft, the rotating body is rotated by an effect of dynamic pressure from the shaft before the circumferential surface of the shaft comes into contact with the circumferential surface of a non-contact type bearing. The number of rotations, which can be detected by the F / V converter and the comparator, makes it possible to detect an overload state on the shaft. Therefore, it is possible to prevent the rolling bearing from burning due to the influence of the high-speed rotation of the shaft.
【図1】本発明の非接触軸受けの過負荷検出装置を軸受
け装置とともに示す断面図である。FIG. 1 is a cross-sectional view showing a non-contact bearing overload detection device of the present invention together with a bearing device.
【図2】回転体の正面図である。FIG. 2 is a front view of a rotating body.
【図3】回転センサーからの出力信号を横軸に時間、縦
軸に電圧レベルとして示すグラフである。FIG. 3 is a graph showing an output signal from a rotation sensor as time on a horizontal axis and a voltage level on a vertical axis.
【図4】軸の偏心量に対する摩擦抵抗力の変化を示すグ
ラフである。FIG. 4 is a graph showing a change in frictional resistance with respect to an eccentric amount of a shaft.
1 非接触軸受けの過負荷状態検出装置 2 軸受
け装置 3 軸 4 ハウ
ジング 5 非接触軸受け 6 隙間 7 流体ポート 8 圧力
流体 9 カバー 10 ころ
がり軸受け 11 回転体 12 回
転センサー 13 F/V変換器 14 比
較器 15 被検出体 16 隙
間 17 基準設定器DESCRIPTION OF SYMBOLS 1 Non-contact bearing overload state detecting device 2 Bearing device 3 Shaft 4 Housing 5 Non-contact bearing 6 Gap 7 Fluid port 8 Pressure fluid 9 Cover 10 Rolling bearing 11 Rotating body 12 Rotary sensor 13 F / V converter 14 Comparator 15 Detected object 16 Gap 17 Reference setter
Claims (2)
に、軸の非回転側支持部分に焼き付き防止用のころがり
軸受けを軸に対して非接触状態で組み込んでなる軸受け
装置において、ころがり軸受けの回転側部分に環状の回
転体を軸に対して挿入状態で取り付け、ころがり軸受け
の回転側の部分および回転体のうちいずれかの周面と軸
の周面とに形成される隙間を軸の周面と非接触軸受けの
周面とによって形成される隙間よりも小さく設定し、さ
らに上記回転体に定位置の回転センサーを対向させ、こ
の回転センサーをF/V変換器および信号レベル検出器
に順次接続してなることを特徴とする非接触軸受けの過
負荷状態検出装置。1. A bearing device in which a shaft is supported by a non-contact bearing, and a rolling bearing for preventing seizure is incorporated in a non-rotation side supporting portion of the shaft in a non-contact state with respect to the shaft. The ring-shaped rotating body is attached to the shaft in a state of being inserted into the shaft, and the gap formed between one of the rotating surface of the rolling bearing and the circumferential surface of the rotating body and the circumferential surface of the shaft is defined as the circumferential surface of the shaft. It is set smaller than the gap formed by the peripheral surface of the non-contact bearing, and a rotation sensor at a fixed position is opposed to the rotating body, and this rotation sensor is connected to the F / V converter and the signal level detector sequentially. An overload state detection device for a non-contact bearing, comprising:
し、回転体の周囲に近接センサーの検出特性に対応する
被検出体を組み込んでなることを特徴とする請求項1の
非接触軸受けの過負荷状態検出装置。2. The overload state of the non-contact bearing according to claim 1, wherein the rotation sensor is constituted by a proximity sensor, and a detection object corresponding to a detection characteristic of the proximity sensor is incorporated around the rotation body. Detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3112681A JP3071489B2 (en) | 1991-02-22 | 1991-02-22 | Non-contact bearing overload detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3112681A JP3071489B2 (en) | 1991-02-22 | 1991-02-22 | Non-contact bearing overload detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05187441A JPH05187441A (en) | 1993-07-27 |
JP3071489B2 true JP3071489B2 (en) | 2000-07-31 |
Family
ID=14592815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3112681A Expired - Lifetime JP3071489B2 (en) | 1991-02-22 | 1991-02-22 | Non-contact bearing overload detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3071489B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2918845B1 (en) * | 2014-03-11 | 2018-11-28 | Skf Magnetic Mechatronics | Rotary machine and method for manufacturing a rotary machine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2792381B1 (en) * | 1999-04-14 | 2001-05-25 | Roulements Soc Nouvelle | BEARING WITH INCORPORATED ENCODER |
US7652489B2 (en) * | 2005-12-06 | 2010-01-26 | General Electric Company | Multi-range clearance measurement system and method of operation |
CN102158003B (en) * | 2011-02-27 | 2013-06-26 | 江西中船航海仪器有限公司 | Air magnetic bearing motor |
-
1991
- 1991-02-22 JP JP3112681A patent/JP3071489B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2918845B1 (en) * | 2014-03-11 | 2018-11-28 | Skf Magnetic Mechatronics | Rotary machine and method for manufacturing a rotary machine |
Also Published As
Publication number | Publication date |
---|---|
JPH05187441A (en) | 1993-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5739609A (en) | Magnetic bearing apparatus | |
US6653756B2 (en) | Magnetic bearing device | |
US4792244A (en) | Ceramic bearing construction | |
JP4993680B2 (en) | Spindle device | |
JPH02261923A (en) | Thrust bearing with magnetic field sensor | |
US5160876A (en) | Method of protecting rotating machine | |
US20060257061A1 (en) | Rolling bearing | |
JP2009061571A (en) | Spindle device for machine tool spindle | |
WO2002021004A2 (en) | Bearing with adjustable setting | |
JP3071489B2 (en) | Non-contact bearing overload detection device | |
US5205078A (en) | Rotary apparatus | |
EP0214729A1 (en) | Bearing structures | |
JP3652187B2 (en) | Fluid bearing | |
JP3438403B2 (en) | Rolling bearing vibration measurement device | |
CN112334671B (en) | Rolling bearing and sealing device with at least two sealing lips | |
WO2020050129A1 (en) | Bearing device | |
JP3733160B2 (en) | Magnetic bearing device | |
US20150260194A1 (en) | Turbo Compressor | |
EP3822605B1 (en) | Bearing device and machine tool spindle apparatus | |
JP2006022914A (en) | Magnetic bearing device | |
WO2022059573A1 (en) | Bearing device | |
JPH03163214A (en) | Bearing device | |
JPS63289317A (en) | Radial ball bearing for protection in magnetic bearing device | |
JPS62218889A (en) | Static pressure gas bearing spindle with vacuum suction mechanism | |
US4371217A (en) | Hydrostatic sliding element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 11 |