JP3069761B2 - Manufacturing method of prismatic sealed battery - Google Patents
Manufacturing method of prismatic sealed batteryInfo
- Publication number
- JP3069761B2 JP3069761B2 JP5324015A JP32401593A JP3069761B2 JP 3069761 B2 JP3069761 B2 JP 3069761B2 JP 5324015 A JP5324015 A JP 5324015A JP 32401593 A JP32401593 A JP 32401593A JP 3069761 B2 JP3069761 B2 JP 3069761B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- insulating packing
- manufacturing
- battery
- sealing body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000003466 welding Methods 0.000 claims description 40
- 238000012856 packing Methods 0.000 claims description 24
- 238000007789 sealing Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 9
- 230000035515 penetration Effects 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000010248 power generation Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 13
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 4
- 229910052987 metal hydride Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009783 overcharge test Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/317—Re-sealable arrangements
- H01M50/325—Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、角形密閉電池の製造方
法に関する。The present invention relates to a method for manufacturing a sealed rectangular battery.
【0002】[0002]
【従来の技術】ニカド電池(ニッケルカドミウム二次電
池)の後継としてニッケル水素電池が採用されてきてい
る。このニッケル水素電池は、ニカド電池に比べて単位
体積当たりのエネルギ容量が高く、且つ諸特性について
もニカド電池に遜色のない特性を有している。2. Description of the Related Art Nickel-metal hydride batteries (nickel-cadmium secondary batteries) have been replaced by nickel-metal hydride batteries. The nickel-metal hydride battery has a higher energy capacity per unit volume than the nickel-cadmium battery, and has various characteristics comparable to those of the nickel-cadmium battery.
【0003】ところで、通常のニカド電池、ニッケル水
素電池は、円筒形とされているために機器への収納に際
して収納効率が悪く、特に、小型軽量化を図っているコ
ードレス機器においては大きな問題となってきている。
そこで、機器への収納効率を高めるようにした角形の電
池が使用されてきている。角形密閉電池は、図6に示す
ように偏平な直方体状をなし、例えば、高さは、円筒形
電池と同じ高さ、長側面1aは円筒電池の直径と同じ長
さ、短側面1bは長側面1aの1/3の長さとされてお
り、3個並べると円筒形電池1個分を収納するスペース
に相当する大きさとなるように形成されている。そし
て、外装缶1内に発電要素が嵌挿され、電解液が注入さ
れた後矩形状の上部開口端1cに封口体2が嵌合装着さ
れ、全周を溶接されて密閉構造とされている。[0003] Incidentally, ordinary nickel-cadmium batteries and nickel-metal hydride batteries have a cylindrical shape and therefore have a poor storage efficiency when stored in equipment. In particular, cordless equipment that is reduced in size and weight is a major problem. Is coming.
For this reason, rectangular batteries designed to increase the storage efficiency in devices have been used. The rectangular sealed battery has a flat rectangular parallelepiped shape as shown in FIG. 6, for example, the height is the same height as the cylindrical battery, the long side 1a is the same length as the diameter of the cylindrical battery, and the short side 1b is long. It is 1 / of the length of the side surface 1a, and is formed to have a size corresponding to a space for accommodating one cylindrical battery when three are arranged. Then, the power generating element is inserted into the outer can 1, and after the electrolyte is injected, the sealing body 2 is fitted and attached to the rectangular upper opening end 1c, and the entire periphery is welded to form a sealed structure. .
【0004】封口体2は、矩形状の蓋板3と、この蓋板
3の中央に絶縁パッキン(ガスケット)4を介して嵌合
装着され、下端が発電要素の陽極集電体が接続されるリ
ード板と共に蓋板3に固定されたリベット(図示せず)
と、このリベット上面に溶着固定され、各長側面1aに
臨む各側面の各下端に夫々ガスの逃げ孔5aが設けられ
た陽極キャップ5と、当該陽極キャップ5に内蔵された
安全弁等により構成されている。The sealing body 2 is fitted and mounted on a rectangular cover plate 3 at the center of the cover plate 3 via an insulating packing (gasket) 4, and the lower end is connected to an anode current collector of a power generating element. Rivet (not shown) fixed to the lid plate 3 together with the lead plate
The anode cap 5 is welded and fixed to the upper surface of the rivet, and has a gas escape hole 5a at each lower end of each side face facing each long side face 1a, and a safety valve built in the anode cap 5 and the like. ing.
【0005】外装缶1と封口体2の蓋板3との溶接方法
としては、シーム溶接やアーク溶接が従来から広く行わ
れているが、溶接部近辺の発電要素、ガスケット等への
熱影響を抑えるため、近年は微細加工に適したパルス式
レーザ溶接方法が採用されている。ここで、溶接条件と
しては、溶け込み深さが0.15mm以上であり(例えば、特
公平4−196049号公報)、溶接位置は、外装缶1
の開口端と封口体2の蓋板3との嵌合部の隙間の中央を
溶接している。As a method of welding the outer can 1 and the cover plate 3 of the sealing body 2, seam welding and arc welding have been widely performed, but the influence of heat on a power generating element, a gasket, etc. in the vicinity of a welded portion is considered. In recent years, a pulse-type laser welding method suitable for fine processing has been adopted in order to suppress this. Here, as the welding conditions, the penetration depth is 0.15 mm or more (for example, Japanese Patent Publication No. 4-196049), and the welding position is the outer can 1
Is welded at the center of the gap between the fitting ends of the opening end of the sealing body 2 and the cover plate 3.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、外装缶
1の開口端と封口体2の蓋板3との嵌合部の隙間の中央
を溶接する方法は、外装缶1と封口体2との溶接強度は
向上するものの、外装缶1の長側面1a側では蓋板3と
の溶接部が絶縁パッキン4に近くなるために、溶接時の
熱の影響により、絶縁パッキン4が劣化してしまい、内
部の電解液が漏出し、当該電池を組み込んだ機器を損傷
させる虞れがあるという問題がある。However, the method of welding the center of the gap between the opening end of the outer can 1 and the cover plate 3 of the sealing body 2 is a method of welding the outer can 1 and the sealing body 2. although the strength is improved, in order to weld the cover plate 3 is close to the insulating packing 4 on the long side surface 1a of the outer can 1, by the influence of heat during welding, insulation packing 4 ends up deteriorating, There is a problem that the internal electrolyte leaks and may damage equipment incorporating the battery.
【0007】本発明は上述の点に鑑みてなされたもの
で、外装缶と封口体との溶接時における絶縁パッキンへ
の熱影響を少なくして劣化を防止するようにした角形密
閉電池の製造方法を提供することを目的とする。The present invention has been made in view of the above points, and a method of manufacturing a sealed rectangular battery in which the influence of heat on an insulating packing during welding between an outer can and a sealing body is reduced to prevent deterioration. The purpose is to provide.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に本発明によれば、角形の外装缶に発電要素を収納し、
蓋板に絶縁パッキンを介して安全弁を内蔵した陽極キャ
ップを設けた封口体を嵌合装着し、前記外装缶の開口端
と前記蓋体との嵌合部をレーザ溶接して封口する角形密
閉電池の製造方法において、前記開口端と前記蓋体との
溶接位置を前記絶縁パッキンの近辺のみ嵌合部よりも外
側に0.05mm乃至0.07mmずらして溶接するよ
うにしたものである。According to the present invention, in order to achieve the above object, a power generating element is housed in a rectangular outer can,
A rectangular sealed battery in which a sealing body provided with an anode cap having a built-in safety valve is fitted and mounted on a cover plate via an insulating packing, and the fitting portion between the opening end of the outer can and the lid is sealed by laser welding. In the manufacturing method, the welding position of the opening end and the lid is shifted by 0.05 mm to 0.07 mm outside the fitting portion only in the vicinity of the insulating packing.
【0009】そして、レーザ溶接は、溶接位置を外側に
ずらした部分と、他の溶接部分との出力を変えることに
より何れの溶接部分においても溶け込み深さを0.15mm以
上とすることが好ましい。[0009] In laser welding, it is preferable that the penetration depth is 0.15 mm or more in any of the welded portions by changing the output of the portion where the welding position is shifted outward and the output of the other welded portions.
【0010】[0010]
【作用】外装缶の長側面側開口端と封口体とをレーザ溶
接する際に、溶接位置を少なくとも絶縁パッキンの近傍
のみ、外方に0.05mm乃至0.07mmずらし、且
つ溶け込み深さを0.15mm以上とする。これにより
レーザ溶接時の熱影響による絶縁パッキンの劣化が防止
され、溶接封口部からの電解液の漏出が防止される。When the long side opening end of the outer can is laser-welded to the sealing body, the welding position should be at least near the insulating packing.
Only the outside is shifted by 0.05 mm to 0.07 mm, and the penetration depth is set to 0.15 mm or more. This prevents the insulation packing from deteriorating due to the heat effect at the time of laser welding, and prevents leakage of the electrolyte from the welded sealing portion.
【0011】[0011]
【実施例】以下本発明の一実施例を添付図面に基づいて
詳述する。尚、図4と同一部材には同一符号を付してあ
る。図1及び図2は、本発明を適用した角形密閉電池の
上部断面を示し、外装缶1は、直方体状をなし、且つ開
口端1aは矩形状をなして形成されている。この外装缶
1の開口端1aには封口体2が嵌合装着されており、開
口端1aと封口体2とはレーザ溶接により全周に亘りシ
ーム溶接されて密閉構造とされている。そして、外装缶
1は、例えば、ステンレス或いは、ニッケルメッキ鋼板
により一体に形成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the accompanying drawings. The same members as those in FIG. 4 are denoted by the same reference numerals. 1 and 2 show an upper cross section of a rectangular sealed battery to which the present invention is applied. The outer can 1 has a rectangular parallelepiped shape, and the open end 1a has a rectangular shape. A sealing body 2 is fitted and mounted on the opening end 1a of the outer can 1, and the opening end 1a and the sealing body 2 are seam-welded all around by laser welding to form a closed structure. The outer can 1 is integrally formed of, for example, stainless steel or a nickel-plated steel plate.
【0012】封口体2は、蓋板3と、当該蓋板3の中央
に穿設された孔3aに絶縁パッキン4を介して液密に嵌
合装着され、下端が発電要素6の陽極集電体が接続され
るリード板7の一端と共に蓋板3にカシメ固定され、中
央に小孔8aが穿設されたリベット8と、当該リベット
8上に配設固定され外装缶1の長側面1aに臨む各側面
の各下端の略中央に夫々ガスの逃げ孔5aが設けられた
陽極キャップ5と、当該陽極キャップ5に内蔵されリベ
ット8の孔8aを閉塞する安全弁9等により構成されて
いる。蓋板3も、外装缶1と同様ステンレス板或いはニ
ッケルメッキ鋼1板により形成されている。The sealing body 2 is fitted in a liquid-tight manner through a cover plate 3 and a hole 3 a formed in the center of the cover plate 3 via an insulating packing 4.
GoSo is deposited, the lower end is caulked to the cover plate 3 with one end of the lead plate 7 where the anode current collector of the power generating element 6 is connected, the rivet 8 small holes 8a is formed in the center, the rivet 8 An anode cap 5 having a gas escape hole 5a provided substantially at the center of each lower end of each side face facing the long side surface 1a of the outer can 1 and fixed to the upper side, and a hole of a rivet 8 built in the anode cap 5 8a is constituted by a safety valve 9 and the like. The lid plate 3 is also formed of a stainless steel plate or a nickel-plated steel plate 1 like the outer can 1.
【0013】以下外装缶1と封口体2の蓋板3との溶接
方法について説明する。外装缶1の開口端1cの短側面
1b側と封口体2の蓋板3との嵌合部は、図1及び図3
に示すようにガスケット4からの距離が長く、絶縁パッ
キン4は、溶接時における熱の影響を受けにくい。従っ
て、当該部分の溶接に際しては、レーザ光線Lを嵌合部
の中央を走査させて行っても特に問題はない。尚、レー
ザ光線Lは、パルス式のレーザ光線である。Hereinafter, a method of welding the outer can 1 and the cover plate 3 of the sealing body 2 will be described. The fitting portion between the short side 1b side of the opening end 1c of the outer can 1 and the cover plate 3 of the sealing body 2 is shown in FIGS.
As shown in (2), the distance from the gasket 4 is long, and the insulating packing 4 is hardly affected by heat during welding. Therefore, there is no particular problem in welding the portion by scanning the center of the fitting portion with the laser beam L. The laser beam L is a pulsed laser beam.
【0014】外装缶1の開口端1cの長側面1a側と封
口体2の蓋板3との嵌合部は、図2及び図4に示すよう
に絶縁パッキン4からの距離が近く、従って、絶縁パッ
キン4は、溶接時における熱の影響を受け易い。そこ
で、当該部分の溶接に際しては、レーザ光線Lを嵌合部
の中央から所定の距離Wだけ外側即ち、絶縁パッキン4
から離れた位置を走査させる。このときの溶接ビード1
0の溶け込みを深さhは、0.15mm以上とする。ここに、
溶け込み深さhは、外装缶1の開口端1c及び蓋体3の
上面から当該開口端1cの内面と蓋体3の端面との当接
部における溶接されている部分までの深さをいう。The fitting portion between the long side surface 1a side of the open end 1c of the outer can 1 and the cover plate 3 of the sealing body 2 has a short distance from the insulating packing 4 as shown in FIGS. The insulating packing 4 is easily affected by heat during welding. Therefore, when welding the portion, the laser beam L is directed outward by a predetermined distance W from the center of the fitting portion, that is, the insulating packing 4
To scan the position away from. Weld bead 1 at this time
The depth h of the penetration of 0 is 0.15 mm or more. here,
The penetration depth h refers to the depth from the open end 1c of the outer can 1 and the upper surface of the lid 3 to the welded portion at the contact portion between the inner surface of the open end 1c and the end surface of the lid 3.
【0015】図5は、溶接位置のずれwと絶縁パッキン
4の周辺部及び溶接封口部の漏液不良発生率の関係をま
とめたもので、溶接位置wのずれが、0.05mm未満の場合
は、封口溶接部の漏液発生率は無くなるが、レーザ溶接
時の熱影響で絶縁パッキン4等が劣化してしまい、漏液
発生率が高くなり、漏液に至る可能性がある。また、溶
接位置wのずれが0.08mmを超えた場合には、絶縁パッキ
ン4部の漏液発生率は無くなるが、レーザ光線Lの出力
を上げても十分な溶け込み深さが得られず、溶接封口部
の漏液発生率が高くなり、漏液の可能性がある。FIG. 5 summarizes the relationship between the deviation w of the welding position and the rate of occurrence of liquid leakage failure at the peripheral portion of the insulating packing 4 and the welded sealing portion. If the deviation of the welding position w is less than 0.05 mm, However, the rate of occurrence of liquid leakage at the sealing weld portion disappears, but the insulating packing 4 and the like are deteriorated due to the influence of heat during laser welding, and the rate of occurrence of liquid leakage increases, which may lead to liquid leakage. In addition, when the displacement of the welding position w exceeds 0.08 mm, the rate of occurrence of liquid leakage at the insulating packing 4 disappears, but a sufficient penetration depth cannot be obtained even if the output of the laser beam L is increased. The rate of liquid leakage at the sealing portion increases, and there is a possibility of liquid leakage.
【0016】従って、図5から明らかなように溶接位置
の外側へのずれwを0.05〜0.07mmの範囲とし、溶け込み
深さhを0.15mm以上の範囲とすることが好ましい。尚、
レーザ溶接は、溶接位置を外側にずらした部分と、他の
溶接部分との出力を変えることにより何れの溶接部分に
おいても溶け込み深さhが0.15mm以上となるようにす
る。Therefore, as is apparent from FIG. 5, it is preferable that the displacement w to the outside of the welding position be in the range of 0.05 to 0.07 mm and the penetration depth h be in the range of 0.15 mm or more. still,
In the laser welding, the penetration depth h is set to 0.15 mm or more in any of the welded portions by changing the output of the portion where the welding position is shifted outward and the output of the other welded portion.
【0017】また、長側面1a側における溶接位置は、
少なくとも絶縁パッキン4の近傍をずらせれば良く、当
該長側面1aの全長に亘りずらす必要はない。尚、図5
において、○印は、溶接封口部の漏液発生率を示し、●
印は、絶縁パッキン4部の漏液発生率を示す。また、本
発明による製造方法における電池をA、B、C、絶縁パ
ッキン4近傍において溶接位置をずらさない従来の製造
方法による電池をDとして、夫々n=100 個試作して過
充電試験を行ない、絶縁パッキン周辺部及び溶接封口部
の漏液不良発生率を比較した結果を表1に示す。この表
1から明らかなように、本発明方法による製造方法で試
作した電池には、漏液不良の発生は見られなかったが、
従来の製造方法で試作した電池は、絶縁パッキンの劣化
に起因する約33%の漏液不良が見られた。The welding position on the long side 1a is
At least the vicinity of the insulating packing 4 may be shifted, and it is not necessary to shift the entire length of the long side surface 1a. FIG.
, Indicates the rate of liquid leakage at the welded seal,
The marks indicate the rate of occurrence of liquid leakage at the insulating packing 4 part. Also, the batteries in the manufacturing method according to the present invention are A, B, and C, and the batteries according to the conventional manufacturing method in which the welding position is not shifted in the vicinity of the insulating packing 4 are D, and n = 100 prototypes are manufactured and subjected to an overcharge test. Table 1 shows the results of comparing the rates of occurrence of liquid leakage failures in the peripheral portion of the insulating packing and the welded sealing portion. As is evident from Table 1, no battery leakage defect was observed in the battery manufactured by the manufacturing method according to the method of the present invention.
The battery prototyped by the conventional manufacturing method exhibited a liquid leakage defect of about 33% due to the deterioration of the insulating packing.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【発明の効果】以上説明したように本発明によれば、外
装缶への封口体の溶接時に絶縁パッキンの熱影響をなく
し、劣化を防止することができ、信頼性の高い角形密閉
電池を製造することが可能となるという効果がある。As described above, according to the present invention, it is possible to eliminate the thermal influence of the insulating packing when welding the sealing body to the outer can, prevent deterioration, and manufacture a highly reliable square sealed battery. There is an effect that it becomes possible to do.
【図1】本発明に係る角形密閉電池の陽極キャップを含
む上部断面図である。FIG. 1 is a top cross-sectional view including an anode cap of a prismatic sealed battery according to the present invention.
【図2】図1の矢線II−IIに沿う断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.
【図3】図1の溶接部の拡大図である。FIG. 3 is an enlarged view of a welding portion of FIG. 1;
【図4】図2の溶接部の拡大図である。FIG. 4 is an enlarged view of a welded portion of FIG. 2;
【図5】図4の溶接位置ずれとガスケットの漏液発生率
及び溶接封口部の漏液発生率を示すグラフである。FIG. 5 is a graph showing the welding position shift of FIG. 4, the rate of occurrence of liquid leakage at the gasket, and the rate of occurrence of liquid leakage at the welded seal.
【図6】角形密閉電池の外装缶の開口端と封口体との嵌
合部の溶接を示す上部斜視図である。FIG. 6 is a top perspective view showing welding of a fitting portion between an opening end of an outer can of a rectangular sealed battery and a sealing body.
1 外装缶 2 封口体 3 蓋板 4 ガスケット 5 陽極キャップ 5a 切欠 6 発電要素 8 リベット 9 安全弁 10 溶接ビード DESCRIPTION OF SYMBOLS 1 Outer can 2 Sealing body 3 Cover plate 4 Gasket 5 Anode cap 5a Notch 6 Power generation element 8 Rivet 9 Safety valve 10 Weld bead
───────────────────────────────────────────────────── フロントページの続き 合議体 審判長 刑部 俊 審判官 結田 純次 審判官 藤原 敬士 審判官 山岸 勝喜 審判官 田辺 秀三 (56)参考文献 特開 平3−295156(JP,A) 特開 昭60−56358(JP,A) 特開 平4−196049(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page Judge of the colleague Judge Shun Seibu Judge Junji Yuda Judge Keiji Fujiwara Judge Katsuyoshi Yamagishi Judge Shuzo Tanabe (56) Reference JP 3-295156 (JP, A) JP 60-56358 (JP, A) JP-A-4-196049 (JP, A)
Claims (2)
に絶縁パッキンを介して安全弁を内蔵した陽極キャップ
を設けた封口体を嵌合装着し、前記外装缶の開口端と前
記蓋体との嵌合部をレーザ溶接して封口する角形密閉電
池の製造方法において、前記開口端と前記蓋体との溶接
位置を前記絶縁パッキンの近辺のみ嵌合部よりも外側に
0.05mm乃至0.07mmずらして溶接することを特徴とする角
形密閉電池の製造方法。1. A power generation element is housed in a rectangular outer can, and a sealing body provided with an anode cap having a built-in safety valve is fitted and mounted on a cover plate via an insulating packing, and an opening end of the outer can and the lid are provided. In the method for manufacturing a sealed rectangular battery in which a fitting portion with a body is sealed by laser welding, a welding position between the open end and the lid is located outside the fitting portion only near the insulating packing.
A method for producing a prismatic sealed battery , characterized in that welding is performed with a displacement of 0.05 mm to 0.07 mm.
にずらした部分と、他の溶接部分との出力を変えること
により何れの溶接部分においても溶け込み深さを0.15mm
以上とすることを特徴とする請求項1記載の角形密閉電
池の製造方法。2. The laser welding has a penetration depth of 0.15 mm in any of the welded portions by changing the output of a portion in which the welding position is shifted outward and the output of another welded portion.
2. The method for manufacturing a prismatic sealed battery according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5324015A JP3069761B2 (en) | 1993-12-22 | 1993-12-22 | Manufacturing method of prismatic sealed battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5324015A JP3069761B2 (en) | 1993-12-22 | 1993-12-22 | Manufacturing method of prismatic sealed battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07183011A JPH07183011A (en) | 1995-07-21 |
JP3069761B2 true JP3069761B2 (en) | 2000-07-24 |
Family
ID=18161191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5324015A Expired - Lifetime JP3069761B2 (en) | 1993-12-22 | 1993-12-22 | Manufacturing method of prismatic sealed battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3069761B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5879416A (en) * | 1995-03-13 | 1999-03-09 | Nippondenso Co., Ltd. | Method of manufacturing battery having polygonal case |
KR19990041760A (en) * | 1997-11-24 | 1999-06-15 | 손욱 | Cap Assembly of Secondary Battery |
JP4112854B2 (en) * | 2001-12-13 | 2008-07-02 | 松下電器産業株式会社 | Square battery and manufacturing method thereof |
KR100667945B1 (en) | 2005-04-26 | 2007-01-11 | 삼성에스디아이 주식회사 | Secondary battery |
JP5504007B2 (en) * | 2010-02-26 | 2014-05-28 | 日立ビークルエナジー株式会社 | Square battery and method for manufacturing the same |
US9373825B2 (en) | 2010-09-30 | 2016-06-21 | Gs Yuasa International Ltd. | Cell and method for manufacturing cell |
KR101281038B1 (en) * | 2010-12-07 | 2013-07-09 | 주식회사 엘지화학 | Cap assembly and secondary battery using the same |
CN118176618A (en) * | 2021-11-16 | 2024-06-11 | 松下知识产权经营株式会社 | Battery cell |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6056358A (en) * | 1983-09-05 | 1985-04-01 | Sanyo Electric Co Ltd | Sealing method for battery |
JPH03295156A (en) * | 1990-04-12 | 1991-12-26 | Matsushita Electric Ind Co Ltd | Manufacture of rectangular battery |
-
1993
- 1993-12-22 JP JP5324015A patent/JP3069761B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07183011A (en) | 1995-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6190798B1 (en) | Sealed battery and method of manufacturing the same | |
EP1724858B1 (en) | Rechargeable battery | |
US9812675B2 (en) | Battery and production method thereof | |
JP2020074286A (en) | Secondary battery | |
KR101281038B1 (en) | Cap assembly and secondary battery using the same | |
JP3069761B2 (en) | Manufacturing method of prismatic sealed battery | |
JP3594404B2 (en) | Sealed battery | |
JP2005183360A (en) | Square battery and its manufacturing method | |
JP3838764B2 (en) | Square sealed battery and method for manufacturing the same | |
US20080038632A1 (en) | Sealed Battery And Method Of Manufacturing The Sealed Battery | |
US20230126089A1 (en) | Secondary battery | |
KR100490546B1 (en) | Secondary battery | |
JP3558407B2 (en) | Manufacturing method for square sealed battery | |
KR100646541B1 (en) | Can type secondary battery | |
JP2016110701A (en) | Manufacturing method of current interruption mechanism | |
JP3069760B2 (en) | Square sealed battery | |
JP2722315B2 (en) | Square sealed battery | |
JPH07183012A (en) | Square sealed battery | |
KR102578159B1 (en) | Cylindrical secondary battery | |
JP7389781B2 (en) | Manufacturing method for secondary batteries | |
WO2024219133A1 (en) | Battery | |
JPH07183009A (en) | Manufacture of square sealed battery | |
JPH0559745U (en) | Sealed battery safety valve device | |
JP2004039284A (en) | Method for manufacturing square type battery | |
JP2003346893A (en) | Method for inserting plate group into battery jar |