JP3069641B2 - Dielectric multilayer film - Google Patents
Dielectric multilayer filmInfo
- Publication number
- JP3069641B2 JP3069641B2 JP9058230A JP5823097A JP3069641B2 JP 3069641 B2 JP3069641 B2 JP 3069641B2 JP 9058230 A JP9058230 A JP 9058230A JP 5823097 A JP5823097 A JP 5823097A JP 3069641 B2 JP3069641 B2 JP 3069641B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- multilayer film
- film
- dielectric multilayer
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Inorganic Insulating Materials (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は高効率の光の反射
鏡、反射防止膜、光学フィルター等の光学素子として用
いられる誘電体多層膜に関し、特に高耐久性の誘電体多
層膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric multilayer film used as an optical element such as a high-efficiency light reflecting mirror, an antireflection film, and an optical filter, and more particularly to a highly durable dielectric multilayer film.
【0002】[0002]
【従来の技術】誘電体多層膜は光の高反射率鏡、反射防
止膜、フィルタ等の光学素子として従来から広く用いら
れている。誘電体多層膜の断面を図3に示す。基板20
0上に屈折率の異なる複数の誘電体膜層1,2,3,…
が積層された誘電体多層膜100が形成されている。基
板200は通例ガラス等が用いられる。誘電体膜層1,
2,3,…の積層は、例えば真空蒸着、スパッタリン
グ、イオンビームスパッタリング等を用い複数の誘電体
材料を順次に成膜することで、適宜に行える。誘電体多
層膜100が光学素子として作用する原理を以下に示
す。誘電体多層膜100が光学素子として使用されると
きには、光が誘電体多層膜100中を通過する。それぞ
れの誘電体層1−2、2−3、…間で屈折率が異なるこ
とから、誘電体膜層1、2、3、…の境界でフレネル反
射が起こる。誘電体膜層1、2、3、…それぞれの屈折
率、厚さを適切な値とすることで、複数の層間で生じる
フレネル反射波同士を相互に強め合うように、あるいは
弱めあうように干渉状態を制御できる。誘電体多層膜1
00は、フレネル反射波同士が相互に強め合う干渉状態
では反射鏡として、相互に弱め合う干渉状態では反射防
止膜として機能する。さらに、ある波長範囲内で反射波
同士が相互に弱め合いそれ以外の波長範囲では強め合う
場合は、その波長範囲の光のみを通過する波長選択フィ
ルタとして機能することになる。2. Description of the Related Art A dielectric multilayer film has been widely used as an optical element such as a high-reflectance mirror for light, an antireflection film, and a filter. FIG. 3 shows a cross section of the dielectric multilayer film. Substrate 20
A plurality of dielectric film layers 1, 2, 3,...
Are formed to form a dielectric multilayer film 100. The substrate 200 is typically made of glass or the like. Dielectric film layer 1,
.. Can be appropriately formed by sequentially forming a plurality of dielectric materials using, for example, vacuum evaporation, sputtering, ion beam sputtering, or the like. The principle that the dielectric multilayer film 100 functions as an optical element will be described below. When the dielectric multilayer film 100 is used as an optical element, light passes through the dielectric multilayer film 100. Since the refractive index differs among the dielectric layers 1-2, 2-3,..., Fresnel reflection occurs at the boundaries between the dielectric film layers 1, 2, 3,. By setting the refractive index and thickness of each of the dielectric film layers 1, 2, 3,... To appropriate values, the Fresnel reflected waves generated between a plurality of layers interfere with each other so as to strengthen each other or weaken each other. You can control the state. Dielectric multilayer film 1
Reference numeral 00 functions as a reflector in an interference state where the Fresnel reflected waves mutually reinforce each other, and as an antireflection film in an interference state where the Fresnel reflected waves mutually weaken. Further, when the reflected waves weaken each other within a certain wavelength range and reinforce each other in other wavelength ranges, they function as a wavelength selection filter that passes only light in that wavelength range.
【0003】誘電体多層膜100はフレネル反射を利用
しており、原理的に光の吸収を利用しない、また誘電体
1、2、3、…は一般に光の吸収が極めて小さい材料で
ある。このため、誘電体多層膜100を用いて極めて高
効率な光学素子を製作できることが知られている。例え
ば、SiO2とTiO2をそれぞれ110nm、69n
mの厚さで21層の積層を行った誘電体多層膜100
は、誘電体膜層1、2、…21の消衰係数を無視すれ
ば、632.8nmの波長において99.99%と、ほ
とんど100%近い高反射率を有する反射鏡となり得
る。この反射分光特性を図4に実線で示す。図4のグラ
フにおいて、横軸は光の波長を、縦軸は反射率を表わ
す。図4はシミュレーション結果を示すものであるが、
実際にもこれとほぼ同等特性の誘電体多層膜を製作可能
である。しかし、誘電体多層膜が劣化すれば、光吸収が
増加し光学素子の効率が低下する。例えば、上記SiO
2とTiO2の21層の積層膜において誘電体多層膜層
100の劣化によりSiO2とTiO2の消衰係数が
0.01となったとすると、図4の破線に示すように波
長632.8nmでの反射率が98.4%まで低下して
しまう。この誘電体多層膜100の劣化は特に大強度、
大エネルギーの光が入射するときに生じ易い。このた
め、大強度、大エネルギーの光を取り扱う光学素子の寿
命が極めて短かく、光学素子を頻繁に交換せねばならな
い原因となってきた。The dielectric multilayer film 100 utilizes Fresnel reflection and does not use light absorption in principle. The dielectrics 1, 2, 3,... Are generally materials having extremely low light absorption. For this reason, it is known that an optical element with extremely high efficiency can be manufactured using the dielectric multilayer film 100. For example, SiO 2 and TiO 2 are 110 nm and 69 n, respectively.
Dielectric multilayer film 100 in which 21 layers are laminated with a thickness of m
If the extinction coefficient of the dielectric film layers 1, 2,... 21 is neglected, it can be a reflecting mirror having a high reflectivity of almost 99.99% at a wavelength of 632.8 nm, which is almost 100%. This reflection spectral characteristic is shown by a solid line in FIG. In the graph of FIG. 4, the horizontal axis represents light wavelength, and the vertical axis represents reflectance. FIG. 4 shows a simulation result.
Actually, a dielectric multilayer film having substantially the same characteristics as the above can be manufactured. However, if the dielectric multilayer film deteriorates, light absorption increases and the efficiency of the optical element decreases. For example, the above SiO
When SiO 2 and the extinction coefficient of the TiO 2 is to become 0.01 in the multilayer films of 2 and TiO 2 of 21 layers due to deterioration of the dielectric multilayer film 100, the wavelength as shown in broken line in FIG. 4 632.8 nm Reflectivity to 98.4%. The deterioration of the dielectric multilayer film 100 is particularly strong,
It is easy to occur when light of high energy enters. For this reason, the life of an optical element that handles high-intensity and high-energy light is extremely short, which has been a cause that the optical element must be frequently replaced.
【0004】[0004]
【発明が解決しようとする課題】以上述べたように、誘
電体多層膜は極めて高効率の光学素子を構成し得るが、
誘電体多層膜の劣化により高効率の利点を享受し難くな
る。本発明は誘電体多層膜の劣化を低減し、大強度ある
いは高エネルギー光を使用する環境中でも高効率を長期
間維持する、高耐力の誘電体多層膜を提供することを目
的とする。As described above, the dielectric multilayer film can constitute an optical element with extremely high efficiency.
Deterioration of the dielectric multilayer film makes it difficult to enjoy the advantage of high efficiency. SUMMARY OF THE INVENTION An object of the present invention is to provide a high yield strength dielectric multilayer film which reduces deterioration of the dielectric multilayer film and maintains high efficiency for a long time even in an environment using high intensity or high energy light.
【0005】[0005]
【課題を解決するための手段】本願発明では、誘電体多
層膜の構成に際し、水素を含有する誘電体膜を用いる。According to the present invention, a dielectric film containing hydrogen is used for forming a dielectric multilayer film.
【0006】[0006]
【作用】本願発明において、誘電体膜に含有された水素
が、光の吸収の原因となる誘電体中の格子欠陥を補償す
ることにより、誘電体多層膜の長寿命化をもたらす。In the present invention, the hydrogen contained in the dielectric film compensates for lattice defects in the dielectric which cause light absorption, thereby extending the life of the dielectric multilayer film.
【0007】[0007]
【発明の実施の形態】本発明の実施例を図1に示す。図
1では誘電体多層膜100の断面が表わされていて、基
板200上にそれぞれが水素を含有するSiO2膜1A
とTiO2膜2Aが交互に積層された誘電体多層膜10
0が形成されている。水素を含有するSiO2とTiO
2の膜を形成するには種々の方法がある。例えば、Si
O2、TiO2の膜形成後に水素雰囲気中での熱処理、
あるいはイオンガンを用いた水素イオン打ち込みによっ
て行うことができる。熱処理、イオン打ち込みは誘電体
多層膜構造の形成後に行うことができる。また、各層を
形成するたびに行うことも可能であり、誘電体多層膜の
劣化低減により有効である。これは、以下に示すように
含有水素の量が劣化低減の程度と密接に関連するため、
各層で水素含有量が異なると水素含有量の少ない層が先
に劣化することが有り得るからである。しかし、一方で
は各層の誘電体の材質を考慮して、劣化しやすい材料に
対してより多くの水素を含有させることが、誘電体多層
膜全体としての劣化防止に有効な場合も有る。また他の
例として、水素雰囲気中でSiO2、TiO2膜を形成
する方法もある。この方法では膜の形成と水素の含有が
同時に行われるので、水素を含有した誘電体多層膜を効
率よく形成できる。このとき、積層する膜の材料毎に水
素雰囲気の濃度を調整することで、上述の様に誘電体多
層膜全体として有効に劣化防止を図ることができる。FIG. 1 shows an embodiment of the present invention. FIG. 1 shows a cross section of a dielectric multilayer film 100, and a SiO 2 film 1 A containing hydrogen on a substrate 200.
Dielectric film 10 in which a TiO 2 film 2A and a TiO 2 film 2A are alternately laminated
0 is formed. SiO 2 and TiO containing hydrogen
There are various methods for forming the second film. For example, Si
Heat treatment in a hydrogen atmosphere after forming a film of O 2 and TiO 2 ,
Alternatively, it can be performed by hydrogen ion implantation using an ion gun. The heat treatment and the ion implantation can be performed after the formation of the dielectric multilayer structure. It is also possible to carry out each time each layer is formed, which is more effective for reducing deterioration of the dielectric multilayer film. This is because the amount of hydrogen contained is closely related to the degree of deterioration reduction as shown below,
This is because if the hydrogen content is different in each layer, the layer having a low hydrogen content may deteriorate first. However, on the other hand, in consideration of the dielectric material of each layer, it may be effective to prevent the deterioration of the dielectric multilayer film as a whole by including more hydrogen in a material that is easily deteriorated. As another example, there is a method of forming a SiO 2 or TiO 2 film in a hydrogen atmosphere. In this method, since the formation of the film and the inclusion of hydrogen are performed simultaneously, a dielectric multilayer film containing hydrogen can be efficiently formed. At this time, by adjusting the concentration of the hydrogen atmosphere for each material of the film to be laminated, it is possible to effectively prevent deterioration of the entire dielectric multilayer film as described above.
【0008】次に水素含有による劣化低減の効果を示
す。図2は水素を含有したSiO2膜と含有しないSi
O2膜それぞれに対して、ArFエキシマレーザーで波
長193nmの高エネルギー光パルスを照射した結果を
示したものである。水素を含有したSiO2膜中の水素
濃度は1017〜5×1018cm−3程度である。図
2のグラフの横軸は照射した光パルスの数、即ち全照射
量を示し、左側の縦軸は膜中のE’格子欠陥濃度、右側
の縦軸は膜中のNBOHC格子欠陥濃度をそれぞれ示
す。ここで、E’格子欠陥は「≡Si・」、即ちシリコ
ン原子で未結合ボンドが生じていることを、NBOHC
格子欠陥は「≡Si−O・」、即ち酸素原子で未結合ボ
ンドが生じていることをそれぞれ意味している。このよ
うな格子欠陥は光吸収の原因となることが知られてお
り、E’格子欠陥の濃度増加により波長215nmの光
吸収が、NBOHC格子欠陥の濃度増加により波長26
0nmの光吸収がそれぞれ増加する。光吸収が増加すれ
ば、誘電体多層膜全体として、前述のように光の反射特
性、透過特性が劣化する。図4のグラフから、水素を含
有することにより、E’格子欠陥は1桁以上減少し、一
方NBOHC格子欠陥は生成されないことが判る。この
格子欠陥低減のメカニズムは、光照射により原子間の結
合が切れて生じた格子欠陥が水素原子と結びつき補償す
ることによる。以上のように含有水素濃度を1018c
m−3のオーダー程度とすることで誘電体膜の光耐力を
大きく向上することができることが判る。そして、この
耐力向上は格子欠陥が水素原子と結びつくことによるも
のであるから、SiO2のみならず広く誘電体一般、例
えばTiO2、Al2O3等の金属酸化物誘電体に適用
可能である。Next, the effect of reducing deterioration due to hydrogen content will be described. FIG. 2 shows a SiO 2 film containing hydrogen and a Si film not containing hydrogen.
The result of irradiating a high-energy light pulse having a wavelength of 193 nm with an ArF excimer laser to each O 2 film is shown. The hydrogen concentration in the hydrogen-containing SiO 2 film is about 10 17 to 5 × 10 18 cm −3 . The horizontal axis of the graph in FIG. 2 indicates the number of irradiated light pulses, that is, the total irradiation amount, the left vertical axis indicates the E ′ lattice defect concentration in the film, and the right vertical axis indicates the NBOHC lattice defect concentration in the film. Show. Here, the E ′ lattice defect is “≡Si.”, That is, NBOHC indicates that an unbonded bond is generated at a silicon atom.
Lattice defects mean “≡Si—O.”, That is, the occurrence of unbonded bonds at oxygen atoms. It is known that such a lattice defect causes light absorption. Light absorption at a wavelength of 215 nm is caused by an increase in the concentration of the E ′ lattice defect, and a wavelength of 26 nm is caused by an increase in the concentration of the NBOHC lattice defect.
The light absorption at 0 nm respectively increases. If the light absorption increases, the light reflection and transmission characteristics of the entire dielectric multilayer film deteriorate as described above. From the graph of FIG. 4, it can be seen that the inclusion of hydrogen reduces E ′ lattice defects by more than an order of magnitude, while NBOHC lattice defects are not generated. The mechanism of this lattice defect reduction is based on the fact that lattice defects caused by breaking of bonds between atoms by light irradiation are combined with hydrogen atoms and compensated. As described above, the content hydrogen concentration was set to 10 18 c
It can be seen that the light proof strength of the dielectric film can be greatly improved by setting it to the order of m −3 . Since the improvement in proof stress is due to the fact that lattice defects are associated with hydrogen atoms, it can be applied not only to SiO 2 but also to a wide range of dielectrics in general, such as metal oxide dielectrics such as TiO 2 and Al 2 O 3. .
【0009】[0009]
【発明の効果】以上のように本発明により、誘電体多層
膜を構成する誘電体の各層あるいは1層が水素を含有す
ることにより、水素を含有しない誘電体に比し大強度、
高エネルギーの光に対して劣化の少ない誘電体多層膜を
提供することができる。この誘電体多層膜から構成され
た光学素子は、大強度あるいは高エネルギーの光を、長
期間に渡り光学特性が変化することなく取り扱うことが
できる。As described above, according to the present invention, since each layer or one layer of the dielectric constituting the dielectric multilayer film contains hydrogen, it has a higher strength than a dielectric not containing hydrogen.
It is possible to provide a dielectric multilayer film with less deterioration with respect to high-energy light. An optical element composed of this dielectric multilayer film can handle high-intensity or high-energy light for a long time without any change in optical characteristics.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の実施例であり、水素を含有する誘電体
を含む誘電体多層膜の断面を基板と共に示す。FIG. 1 is an embodiment of the present invention, showing a cross section of a dielectric multilayer film including a dielectric containing hydrogen together with a substrate.
【図2】水素を含有するSiO2材料と水素を含有しな
いSiO2材料にArFエキシマレーザーで光パルスを
照射したときの光パルス数と格子欠陥濃度の関係を示す
グラフである。2 is a graph showing the relationship between the light pulses and the lattice defect concentration when irradiated with light pulses in the SiO 2 material containing no SiO 2 material and hydrogen ArF excimer laser containing hydrogen.
【図3】誘電体多層膜の断面を示す図である。FIG. 3 is a diagram showing a cross section of a dielectric multilayer film.
【図4】SiO2とTiO2を積層した誘電体多層膜の
分光反射特性を示すグラフであり、実線は誘電体の消衰
係数が無視できる場合を、破線は誘電体の劣化によりそ
の消衰係数が0.01となった場合を示す。FIG. 4 is a graph showing the spectral reflection characteristics of a dielectric multilayer film in which SiO 2 and TiO 2 are laminated, where a solid line indicates a case where the extinction coefficient of the dielectric is negligible, and a broken line indicates the extinction due to deterioration of the dielectric The case where the coefficient becomes 0.01 is shown.
1:誘電体膜層 2:誘電体膜層 3:誘電体膜層 1A:水素を含有するSiO2膜層 2A:水素を含有するTiO2膜層 100:誘電体多層膜 200:基板1: Dielectric film layer 2: Dielectric film layer 3: Dielectric film layer 1A: Hydrogen-containing SiO 2 film layer 2A: Hydrogen-containing TiO 2 film layer 100: Dielectric multilayer film 200: Substrate
Claims (3)
てなる誘電体多層膜において、 上記誘電体膜のいずれか1以上が水素を含有する誘電体
膜であることを特徴とする誘電体多層膜1. A dielectric multilayer film comprising a plurality of dielectric films having different refractive indexes stacked, wherein at least one of the dielectric films is a dielectric film containing hydrogen. Body multilayer film
O2、Ta2O5、HfO2、ZrO2のいずれかに水
素を含有した誘電体膜であることを特徴とする誘電体多
層膜2. The dielectric multilayer film according to claim 1, wherein the hydrogen-containing dielectric film is made of SiO 2 , Al 2 O 3 , Ti
A dielectric multilayer film comprising a dielectric film containing hydrogen in any of O 2 , Ta 2 O 5 , HfO 2 , and ZrO 2
いて、 水素を含有する誘電体膜の水素濃度が1×1017cm
−3以上であることを特徴とする誘電体多層膜3. The dielectric multilayer film according to claim 1, wherein the hydrogen-containing dielectric film has a hydrogen concentration of 1 × 10 17 cm.
-3 or more dielectric multilayer film
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9058230A JP3069641B2 (en) | 1997-02-05 | 1997-02-05 | Dielectric multilayer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9058230A JP3069641B2 (en) | 1997-02-05 | 1997-02-05 | Dielectric multilayer film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10217377A JPH10217377A (en) | 1998-08-18 |
JP3069641B2 true JP3069641B2 (en) | 2000-07-24 |
Family
ID=13078294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9058230A Expired - Fee Related JP3069641B2 (en) | 1997-02-05 | 1997-02-05 | Dielectric multilayer film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3069641B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7528762B2 (en) * | 2020-12-11 | 2024-08-06 | 日本電気硝子株式会社 | Optical Filters |
KR20220157302A (en) | 2021-05-20 | 2022-11-29 | 캐논 가부시끼가이샤 | Film, element, and equipment |
-
1997
- 1997-02-05 JP JP9058230A patent/JP3069641B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10217377A (en) | 1998-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4327455B2 (en) | Glazing with laminates for sun protection and / or insulation | |
JP2627864B2 (en) | Mirror for reflecting light of selected frequency and method for forming the same | |
US20220373723A1 (en) | Optical element having a protective coating, method for the production thereof and optical arrangement | |
JP2003302520A (en) | Reflection mirror for infrared laser and method for manufacturing the same | |
JP2002250801A (en) | Ultraviolet antireflection coating at large incident angle | |
KR20040092422A (en) | Semiconductor laser device | |
JP3069641B2 (en) | Dielectric multilayer film | |
JPH02182447A (en) | Dielectric multilayer reflecting film | |
JP4171362B2 (en) | Transparent substrate with antireflection film | |
JPH05341122A (en) | Multi-layer film filter for ultraviolet ray irradiating device | |
JPH05127004A (en) | Reflecting mirror | |
JPH0716038B2 (en) | Gas laser | |
JP2008139525A (en) | Multilayer film optical element | |
JPH0777601A (en) | Two-wavelength antireflection film | |
JPH052101A (en) | Optical component | |
JP3153333B2 (en) | Multilayer filter for ultraviolet irradiation equipment | |
JP4118008B2 (en) | Multilayer reflection mirror | |
JPH09222507A (en) | Reflection mirror for laser | |
JPH0784105A (en) | Reflecting film | |
JPH05188203A (en) | Antireflection film for caf2 substrate | |
JP2003114303A (en) | Method for manufacturing optical thin film, and optical thin film | |
JP2993261B2 (en) | X-ray multilayer reflector | |
JP3084784B2 (en) | Argon gas laser mirror | |
JP2004085975A (en) | Oxide multilayer optical element and manufacturing method therefor | |
JP3102959B2 (en) | High durability thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000404 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120526 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120526 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |