JP3052353B2 - Electro-optical device - Google Patents
Electro-optical deviceInfo
- Publication number
- JP3052353B2 JP3052353B2 JP2221946A JP22194690A JP3052353B2 JP 3052353 B2 JP3052353 B2 JP 3052353B2 JP 2221946 A JP2221946 A JP 2221946A JP 22194690 A JP22194690 A JP 22194690A JP 3052353 B2 JP3052353 B2 JP 3052353B2
- Authority
- JP
- Japan
- Prior art keywords
- cell
- electro
- transmittance
- color filter
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Liquid Crystal (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気光学装置に関する。詳しくはカラーフ
ィルター層を有する電気光学装置に関する。Description: TECHNICAL FIELD The present invention relates to an electro-optical device. Specifically, the present invention relates to an electro-optical device having a color filter layer.
[従来の技術] 従来、カラーフィルター上に透明電極を形成する方法
として特開昭61−233720号公報,特開昭61−260224号公
報や特開昭61−198131号公報、又は特開昭62−153826号
公報の様にカラーフィルター及び、保護層等の形状、材
質について提案されている。また、特開昭64−519号公
報にて提案されている高容量表示対応可能な電気光学装
置(以下、NTNという)と上記カラーフィルター形成方
法とを組合せセルを形成する方法が提案されている。[Prior Art] Conventionally, as a method of forming a transparent electrode on a color filter, JP-A-61-233720, JP-A-61-260224, JP-A-61-198131, or JP-A-61-198131. As disclosed in JP-A-153826, the shape and material of a color filter and a protective layer are proposed. Further, a method of forming a cell by combining an electro-optical device (hereinafter referred to as NTN) capable of supporting high-capacity display proposed in JP-A-64-519 and the above-described color filter forming method has been proposed. .
[発明が解決しようとする課題] しかしながら、前述の従来技術では、カラーフィルタ
ー上に透明電極を形成する方法に付いてはその平坦化、
耐熱性等から検討されており、該方法をNTNに応用すれ
ば高画質の電気光学装置が提供できる可能性があるが、
この際、前記カラーフィルターの分光透過率と、カラー
フィルター上に透明電極が形成されてなる調光用液晶セ
ル(以下Bセルという)、光学的異方体(以下Aセルと
いう)の屈折率異方性(△n)とセル厚(d)の積で示
される複屈折率(△n×d)の積で各波長に於ける透過
率特性が表され電気光学装置の白、黒レベル、色再現性
等の表示品位が決まる。この時、Bセル、Aセルの表示
品位は複屈折性(△n×d)を合わせ込む事により決ま
り、同一の液晶材料を使用する場合(△nが等しい)
は、セル厚をセル全体に渡って同一としなければならな
い。しかし、Bセルの液晶材料は応答スピードや、光学
的な急峻性を向上させるため高価な添加剤を必要として
コストアップとなるという問題を有している。そこで、
△n×dの積が等しく成るように安価な液晶材料でAセ
ルを形成する事が考えられるが屈折率分散を考慮してい
ないため厳密には可視光域で完全な白、黒とはならない
という表示品位に係わる問題を有することとなる。一
方、カラーフィルター側では、各カラーフィルター間に
遮光用のブラックマスク(以下、B/Mという)を形成す
る事により例えばネガモードでは透過量を押え黒レベル
を向上させる事を図っているが、B/Mを形成する為にコ
ストアップとなる、B/M形成時に欠陥が発生し歩留りが
低下する、厳密には画素部の白、黒レベルは向上しない
等の問題を有している。[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, the method of forming a transparent electrode on a color filter involves flattening,
It has been studied from the viewpoint of heat resistance and the like, and if this method is applied to NTN, there is a possibility that a high-quality electro-optical device can be provided,
At this time, the spectral transmittance of the color filter and the refractive index difference of a dimming liquid crystal cell (hereinafter, referred to as B cell) and an optically anisotropic substance (hereinafter, referred to as A cell) having a transparent electrode formed on the color filter. The transmittance characteristic at each wavelength is represented by the product of the birefringence index (Δn × d) represented by the product of the anisotropy (Δn) and the cell thickness (d). The display quality such as reproducibility is determined. At this time, the display quality of the B cell and the A cell is determined by adjusting the birefringence (Δn × d), and when the same liquid crystal material is used (Δn is equal).
Must have the same cell thickness throughout the cell. However, the liquid crystal material of the B cell has a problem that an expensive additive is required to improve the response speed and the optical steepness, resulting in an increase in cost. Therefore,
It is conceivable to form the A cell with an inexpensive liquid crystal material so that the product of Δn × d becomes equal, but strictly speaking, complete white and black are not obtained in the visible light region because the refractive index dispersion is not considered. In the display quality. On the other hand, on the color filter side, a black mask (hereinafter, referred to as B / M) is formed between each color filter to reduce the amount of transmission in the negative mode and improve the black level. There is a problem that the cost is increased due to the formation of the / M, a defect occurs at the time of the formation of the B / M, the yield decreases, and strictly, the white and black levels of the pixel portion are not improved.
そこで、本発明は上記問題点を解決するもので、その
目的とする所は白、黒レベルの再現性が良い高品位のカ
ラー表示可能な電気光学装置を容易に、安価に提供する
事に有る。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an electro-optical device capable of displaying a high-quality color with good reproducibility of white and black levels easily and at low cost. .
[課題を解決するための手段] 本発明の電気光学装置は、対向する一対の基板間に、
複屈折性と屈折率分散を有する液晶が挟持されてなり、
前記一対の基板の一方の基板にカラーフィルターが形成
されてなる液晶セルと、複屈折性と屈折率分散を有する
少なくとも1層の光学的異方体と、偏光体とを積層して
なる電気光学装置であって、前記液晶セルと前記光学的
異方体が有する複屈折性及び屈折率分散の視感度透過率
に対する関係において、視感度透過率が最小となるよう
に前記複屈折性及び屈折率分散を設定してなり、前記カ
ラーフィルターの青、緑、赤の各色要素の透過率の最大
値の比を1.8以内とすると共に、各色要素の透過率の最
大値を、青、緑、赤の順に大きくすることを特徴とす
る。[Means for Solving the Problems] The electro-optical device of the present invention includes a pair of opposing substrates.
Liquid crystal having birefringence and refractive index dispersion is sandwiched,
Electro-optics in which a liquid crystal cell in which a color filter is formed on one of the pair of substrates, at least one optically anisotropic body having birefringence and refractive index dispersion, and a polarizer are laminated. In the device, the relationship between the birefringence and the refractive index dispersion of the liquid crystal cell and the optically anisotropic body to the luminous transmittance, the birefringence and the refractive index such that the luminous transmittance is minimized. Dispersion is set, and the ratio of the maximum value of the transmittance of each of the blue, green, and red color components of the color filter is set to 1.8 or less, and the maximum value of the transmittance of each of the color components is set to blue, green, and red. It is characterized in that they are sequentially increased.
[実施例] 以下、本発明を一実施例に基づき、より詳細に説明す
る。尚、本発明の電気光学装置としては、従来より用い
られている周知の配向処理によるねじれ配向されるもの
ばかりでなく基板と平行に配向(ねじれていない)する
ものでも適用できるのでいかに述べる実施例に限定され
るものでもない。更に、ねじれ配向させる場合には、そ
のねじれ角に制限があるわけではないが、コントラスト
や表示特性又製造上の安定性から90゜〜360゜が望まし
い。しかし、ねじれ角に制限があるわけではないので90
゜未満や360゜以上でも適用は可能である。又、第1図
ではAセルはBセルの上方に配置しているが、下方に配
置してもよいし、上方及び、下方に配置してもよい、更
に、積層しても同様の効果が得られる。第1図では透過
型の電気光学装置を示しているが、下偏光体1の下方に
周知の反射体を設置して反射型電気光学装置としてもよ
い。EXAMPLES Hereinafter, the present invention will be described in more detail based on one example. The electro-optical device according to the present invention can be applied not only to a device that is conventionally twisted by a known orientation process but also to a device that is oriented (not twisted) in parallel with a substrate. It is not limited to. Further, in the case of twist orientation, the twist angle is not limited, but is preferably 90 ° to 360 ° in view of contrast, display characteristics and manufacturing stability. However, there is no limit on the twist angle, so 90
It can be applied to less than 360mm or more than 360mm. Also, in FIG. 1, the A cell is arranged above the B cell, but may be arranged below, or may be arranged above and below. can get. FIG. 1 shows a transmissive electro-optical device, but a well-known reflector may be provided below the lower polarizer 1 to form a reflective electro-optical device.
本発明の諸検討に用いた電気光学装置の構造を第1図
を用いて説明する。尚、本発明の効果がここに示す構造
のみに限定されるのではないことは上記にて説明した通
りである。第1図に示した様にカラーフィルターを内部
に有しセル厚7μmで左ツイスト230゜と設定してBセ
ルとし、該Bセルと同じ複屈折性(セルギャップ:d
と 液晶もしくは光学的異方体の屈折率異方性:△n
の積 △n×d=0.9、△n=0.129)と同じ複屈折性
を持ちBセルを光学的に補償出来る様にAセルを偏光
体1,2の間に設置した。本実施例ではAセルは△n×
d=0.9としてd=8μm,△n=0.113とした。ここで、
BセルとAセルと屈折率分散(α)を下記式にて定
義する。(液晶材料は一般に屈折率異方性△nが波長λ
(nm)に対して負の依存性を示す為波長λ=450nm及び
波長λ=600nmの時の屈折率異方性の比を用いる) 尚、αは同一液晶材料なら同一で有るが、異なった液晶
材料でも設定しだいで同一となる。このαと複屈折性
(△n×d)の視感度透過率(%T)に対する関係は第
2図の関係となる事が知られており本実施例では視感度
透過率が最小となる条件とした。この条件の時黒色の良
好な状態となる。尚、視感度透過率はBセル及びAセル
を透過する時の透過率を測定し、各波長における透過率
に視感度補正したものである。この関係はBセルとAセ
ルが同じ複屈折率を持つなら屈折率分散(α)は同じ値
となる。本実施例の条件下ではα=1.08である。尚、こ
の関係は複屈折性と屈折率分散の値により最適値があり
本実施例の値に限定されるものではなく、セル条件によ
り最も視感度透過率が小さく成るように設定すれば良
い。The structure of the electro-optical device used in various studies of the present invention will be described with reference to FIG. It is to be noted that the effect of the present invention is not limited to only the structure shown here, as described above. As shown in FIG. 1, a color filter is provided inside, a cell thickness is 7 μm, and the left twist is set to 230 ° to form a B cell, and the same birefringence as the B cell (cell gap: d
And liquid crystal or optically anisotropic refractive index anisotropy: Δn
A cell was placed between the polarizers 1 and 2 so as to have the same birefringence as Δn × d = 0.9 and Δn = 0.129) and to optically compensate the B cell. In this embodiment, the A cell is Δn ×
Assuming d = 0.9, d = 8 μm and Δn = 0.113. here,
The B cell, the A cell, and the refractive index dispersion (α) are defined by the following equation. (In general, a liquid crystal material has a refractive index anisotropy Δn having a wavelength λ.
(Use the ratio of refractive index anisotropy at wavelengths λ = 450 nm and λ = 600 nm to show negative dependence on (nm).) Α is the same for the same liquid crystal material, but becomes the same depending on the setting of different liquid crystal materials. It is known that the relationship between α and the birefringence (Δn × d) with respect to the luminous transmittance (% T) is as shown in FIG. 2, and in this embodiment, the condition under which the luminous transmittance is minimized And Under these conditions, a good black state is obtained. The luminous transmittance is obtained by measuring the transmittance at the time of transmission through the B cell and the A cell, and correcting the luminosity to the transmittance at each wavelength. This relationship is such that if the B cell and the A cell have the same birefringence, the refractive index dispersion (α) has the same value. Under the conditions of the present embodiment, α = 1.08. Note that this relationship has an optimum value depending on the values of the birefringence and the refractive index dispersion, and is not limited to the value of the present embodiment. The relationship may be set so that the luminous transmittance becomes smallest depending on the cell condition.
BセルとAセルの合い接する面の配向方向のなす
角は70゜〜110゜の範囲が望ましく、更に望ましくは90
゜である。本実施例では90゜とした。又、各々の偏光体
の偏光軸とBセル、Aセル各々の合い接する面側の
配向方向のなす角を20〜50゜で振り本実施例で用いてい
る複屈折性と屈折率分散の値では非点灯時に黒く全点灯
時に白となる条件は45゜である。但し配向方向に対して
変更軸が電気光学装置の上からみて右か左かはポジかネ
ガかの相違であり本実施例ではネガとなるようにした。The angle between the orientation directions of the contact surfaces of the B cell and the A cell is preferably in the range of 70 ° to 110 °, more preferably 90 °.
゜. In this embodiment, the angle is 90 °. Further, the angle between the polarization axis of each polarizer and the alignment direction of the contact surface side of each of the B cell and the A cell is set at 20 to 50 °, and the values of the birefringence and the refractive index dispersion used in this embodiment are changed. The condition for black when not lit and white when fully lit is 45 °. However, whether the axis of change with respect to the alignment direction is right or left when viewed from above the electro-optical device is a difference between positive and negative. In this embodiment, the change is made negative.
又、青、緑、赤の各々の色座標は広いことが色再現性
に対して良い事は言うまでもないが、各々の透過率最大
値の比が1.8以内望ましくは1.4以内に有るとより白色の
再現性が良い。本実施例では1.4以内に設定した。この
事は、例えばカラーフィルターが100〜200μmのストラ
イプ状の時、株式会社トプコン社製のBM−7で20mmφの
スポット径で色座標を測定したときx,yの座標が(x,y)
=(0.29〜0.32,0.31〜0.33)の範囲に入れば良い白色
となる事が分かっており、その結果と一致する。透過率
最大値の比がずれると、色バランスが崩れ、透過率の大
きな色側に全体の白色がずれる事となる。Also, it goes without saying that the color coordinates of each of blue, green, and red are good for color reproducibility to be wide, but the ratio of each transmittance maximum value is 1.8 or less, and preferably 1.4 or less. Good reproducibility. In this embodiment, it is set within 1.4. This means that, for example, when the color filter is in a stripe shape of 100 to 200 μm, when the color coordinates are measured at a spot diameter of 20 mmφ with BM-7 manufactured by Topcon Corporation, the coordinates of x, y are (x, y).
= (0.29-0.32, 0.31-0.33), it is known that a good white color is obtained, which is consistent with the result. If the ratio of the transmittance maximum value is deviated, the color balance is lost, and the entire white color is shifted to the color side having the higher transmittance.
[実施例1] 第3図を用いて説明する。ガラス基板3上に赤、緑、
青の各々の顔料を分散させたインクをオフセット法によ
り110μm幅でストライプ状に印刷してカラーフィルタ
ー4を1.5μm厚で形成した。この際カラーフィルター
は各々隣合うストライプで重なりが0〜10μmと成るよ
うに印刷してB/Mの替わりとしカラーフィルターの各々
隣合う部分での光抜けを防止した。その後該カラーフィ
ルター上にアクリレート樹脂をスクリーン印刷法にて10
μm厚で形成し保護層5とした。該保護層5上に低温マ
グネトロンスパッタ法により180℃の成膜温度で酸化イ
ンジュウム−酸化スズ(以下ITOという)よりなる透明
導電性膜を2000Å形成し、フォトリソグラフ法にて透明
電極6をカラーフィルター4と直交する様に形成した。
次に第4図を用いて本発明の電気光学装置の構造を説明
する。第3図で示したガラス基板3と同じくガラス基板
8上にITOにてマトリックス状に成るように対向電極9
を形成する。この後ポリミイドを用いて配向膜7,10を30
0〜400Åで各々形成した。この時カラーフィルターのあ
るガラス基板3の配向剤はシール11の下より0.8mm外側
まで形成した後、ギャップ材12を介して液晶13を封入し
た。この様にして形成した電気光学装置の光学特性を1/
400デューティー相当の矩形波を印加してその時の分光
透過率を使って調べた所、第5図に示す様にOFFでBセ
ル、Aセル各々の分散透過率が一致しあらゆる波長域に
て光学的補償が出来、良いシャッター性を示し黒色とな
る事が分かる。又、ON時には各々保護層、透明電極が有
る状態で青(460nmで分光透過率45%)、緑(540nmで分
光透過率50%)赤(620nmで分光透過率60%)のカラー
フィルターとし、この時、青、緑、赤の各々の分光透過
率最大値の比は1.4以内として平均化して良い白色の状
態となり高品位の電気光学装置を形成できた。なお、第
5図において、カラーフィルターの透過率は、青の透過
率最大値、緑の透過率最大値、赤の透過率最大値が順に
大きくなるように設定されており、電気光学装置として
のON時の透過率は図示されるようになる。Example 1 This will be described with reference to FIG. Red, green,
The ink in which each of the blue pigments was dispersed was printed in a stripe pattern with a width of 110 μm by an offset method to form a color filter 4 with a thickness of 1.5 μm. At this time, the color filters were printed so that the overlap between adjacent stripes was 0 to 10 μm, and the color filters were replaced with B / M to prevent light leakage at the adjacent portions of the color filters. After that, an acrylate resin is applied on the color filter by screen printing.
The protective layer 5 was formed with a thickness of μm. A transparent conductive film made of indium oxide-tin oxide (hereinafter referred to as ITO) was formed on the protective layer 5 at a film forming temperature of 180 ° C. by low-temperature magnetron sputtering at 2000 ° C., and a transparent electrode 6 was formed by a photolithographic method. 4 was formed so as to be orthogonal.
Next, the structure of the electro-optical device of the present invention will be described with reference to FIG. Similarly to the glass substrate 3 shown in FIG. 3, a counter electrode 9 is formed on the glass substrate 8 by ITO so as to form a matrix.
To form After that, the alignment films 7, 10 are
Each was formed at 0 to 400 °. At this time, the alignment agent of the glass substrate 3 having the color filter was formed to be 0.8 mm outside from under the seal 11, and then the liquid crystal 13 was sealed through the gap material 12. The optical characteristics of the electro-optical device formed in this manner are reduced by 1 /
When a rectangular wave equivalent to 400 duty was applied and the spectral transmittance at that time was examined, as shown in Fig. 5, the dispersion transmittance of each of the B cell and A cell coincided with OFF as shown in FIG. It can be seen that the target was compensated, the shutter performance was good, and the color became black. In addition, when ON, a color filter of blue (spectral transmittance of 45% at 460 nm), green (spectral transmittance of 50% at 540 nm), and red (spectral transmittance of 60% at 620 nm) with a protective layer and a transparent electrode respectively, At this time, the ratio of the maximum value of each of the spectral transmittances of blue, green, and red was set to within 1.4, and the white state was good to be averaged, so that a high-quality electro-optical device could be formed. In FIG. 5, the transmittance of the color filter is set so that the maximum value of the blue transmittance, the maximum value of the green transmittance, and the maximum value of the red transmittance increase in order. The transmittance at the time of ON is as shown in the figure.
[実施例2] 第6図、第7図を用いて説明する。第6図に本発明の
カラーフィルター付き基板の断面図を示す。ガラス基板
3上に実施例1と同様にオフセット印刷法によりカラー
フィルターをストライプ状に印刷後プレス加圧してカラ
ーフィルター14を平坦化して形成した。この時カラーフ
ィルターは100μm幅とし、重なりがプレス後10μmに
成るように設定した。次ぎに、エポキシアクリレート樹
脂に紫外線感光性を付与してスピンコート法により1.2
μm厚でコートした後、紫外線照射して保護層15を選択
的に形成した。その後、第7図に示す様に実施例1と同
様に電気光学装置を形成した所同様に良好な結果を得る
事が出来た。尚、保護層15は本実施例ではセル厚が制御
しやすいようにシール11の下まで形成したが、シール11
より内側でも、外側でも同様の結果が得られる事は言う
までもない。Embodiment 2 This will be described with reference to FIGS. 6 and 7. FIG. 6 shows a cross-sectional view of the substrate with a color filter of the present invention. A color filter was printed in a stripe pattern on a glass substrate 3 by offset printing in the same manner as in Example 1, and then press-pressed to form a flat color filter 14. At this time, the color filter was set to have a width of 100 μm, and the overlap was set to be 10 μm after pressing. Next, ultraviolet sensitization was given to the epoxy acrylate resin, and 1.2
After coating with a thickness of μm, the protective layer 15 was selectively formed by irradiating ultraviolet rays. Thereafter, as shown in FIG. 7, when the electro-optical device was formed in the same manner as in Example 1, similar good results could be obtained. In this embodiment, the protective layer 15 is formed under the seal 11 so that the cell thickness can be easily controlled.
It goes without saying that similar results can be obtained both inside and outside.
実施例1,2を通じて説明してきたが本発明の構造は他
のカラーフィルター形成方法(例えば電着法、ポリイミ
ド系基質等に顔料を分散させる方法、顔料を紫外線等の
光感光性の有る基質に分散させフォト法によりパターニ
ングする方法等)や保護層として他の材料(例えば、熱
硬化性メラミン樹脂、エポキシ樹脂、シリコーン系樹脂
等)による制約は受けない。Although described through Examples 1 and 2, the structure of the present invention can be applied to other color filter forming methods (for example, an electrodeposition method, a method of dispersing a pigment in a polyimide substrate or the like, Dispersion and patterning by a photo method, etc.) and other materials (for example, thermosetting melamine resin, epoxy resin, silicone resin) as a protective layer are not restricted.
[発明の効果] 以上述べたように本発明によれば、液晶セルと光学的
異方体が有する複屈折性及び屈折率分散の視感度透過率
に対する関係において、視感度透過率が最小となるよう
に複屈折性及び屈折率分散を設定し、且つカラーフィル
ターの各色要素の透過率の最大値の比を1.8以内とし、
各色要素の透過率の最大値を、青、緑、赤の順に大きく
することにより、黒色をより黒く表示でき、白色をバラ
ンスの良い白表示とすることができ、加えて、カラーフ
ィルターの透過率の最大値を青、緑、赤の順に大きくす
ることにより、電気光学装置の波長透過率特性のアンバ
ランスさも補償することができるので、色再現性を向上
すると共にコントラストを向上することができる。[Effects of the Invention] As described above, according to the present invention, the luminous transmittance is minimized in relation to the luminous transmittance of the birefringence and the refractive index dispersion of the liquid crystal cell and the optically anisotropic material. Set the birefringence and the refractive index dispersion as described above, and the ratio of the maximum value of the transmittance of each color element of the color filter to 1.8 or less,
By increasing the maximum value of the transmittance of each color element in the order of blue, green, and red, black can be displayed more black, white can be displayed as a well-balanced white display, and the transmittance of the color filter By increasing the maximum value in the order of blue, green, and red, the unbalance of the wavelength transmittance characteristics of the electro-optical device can be compensated, so that the color reproducibility and the contrast can be improved.
第1図は本発明の一実施例で示す電気光学装置の構造を
示す図。 第2図は本発明の一実施例で示す屈折率分散と複屈折性
(△n×d)の視感度透過率(%T)に対する関係を示
す図。 第3図は本発明の実施例1で示すカラーフィルター付き
基板の断面図。 第4図は本発明の実施例1で示す電気光学装置の構造を
示す図。 第5図は本発明の実施例1,2で示す電気光学装置の分光
特性を示す図。 第6図は本発明の実施例2で示すカラーフィルター付き
基板の断面図。 第7図は本発明の実施例2で示す電気光学装置の構造を
示す図。 1,2……偏光体 3……ガラス基板 4……カラーフィルター 5……保護層 6……透明電極 7……配向膜 8……ガラス基板 9……対向電極 10……配向膜 11……シール 12……ギャップ材 13……液晶 14……カラーフィルター 15……保護層FIG. 1 is a diagram showing a structure of an electro-optical device shown in one embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the refractive index dispersion and the birefringence (△ nxd) with respect to the luminous transmittance (% T) shown in one embodiment of the present invention. FIG. 3 is a sectional view of a substrate with a color filter shown in Embodiment 1 of the present invention. FIG. 4 is a diagram showing the structure of the electro-optical device shown in Embodiment 1 of the present invention. FIG. 5 is a diagram showing the spectral characteristics of the electro-optical devices shown in Examples 1 and 2 of the present invention. FIG. 6 is a sectional view of a substrate with a color filter according to a second embodiment of the present invention. FIG. 7 is a diagram showing a structure of an electro-optical device according to a second embodiment of the present invention. 1,2 ... Polarizer 3 ... Glass substrate 4 ... Color filter 5 ... Protective layer 6 ... Transparent electrode 7 ... Alignment film 8 ... Glass substrate 9 ... Counter electrode 10 ... Alignment film 11 ... Seal 12 gap material 13 liquid crystal 14 color filter 15 protective layer
Claims (1)
率分散を有する液晶が挟持されてなり、前記一対の基板
の一方の基板にカラーフィルターが形成されてなる液晶
セルと、複屈折性と屈折率分散を有する少なくとも1層
の光学的異方体と、偏光体とを積層してなる電気光学装
置であって、 前記液晶セルと前記光学的異方体が有する複屈折性及び
屈折率分散の視感度透過率に対する関係において、視感
度透過率が最小となるように前記複屈折性及び屈折率分
散を設定してなり、 前記カラーフィルターの青、緑、赤の各色要素の透過率
の最大値の比を1.8以内とすると共に、各色要素の透過
率の最大値を青、緑、赤の順に大きくする ことを特徴とする電気光学装置。1. A liquid crystal cell comprising a liquid crystal having birefringence and refractive index dispersion interposed between a pair of opposed substrates, and a liquid crystal cell having a color filter formed on one of the pair of substrates. An electro-optical device formed by laminating at least one layer of optically anisotropic substance having refractivity and refractive index dispersion and a polarizer, wherein the liquid crystal cell and the optically anisotropic substance have birefringence and In the relationship between the refractive index dispersion and the luminous transmittance, the birefringence and the refractive index dispersion are set so that the luminous transmittance is minimized, and the transmission of the blue, green, and red color elements of the color filter is performed. An electro-optical device, wherein the ratio of the maximum values of the ratios is within 1.8, and the maximum value of the transmittance of each color element is increased in the order of blue, green, and red.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2221946A JP3052353B2 (en) | 1990-08-23 | 1990-08-23 | Electro-optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2221946A JP3052353B2 (en) | 1990-08-23 | 1990-08-23 | Electro-optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04104123A JPH04104123A (en) | 1992-04-06 |
JP3052353B2 true JP3052353B2 (en) | 2000-06-12 |
Family
ID=16774635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2221946A Expired - Lifetime JP3052353B2 (en) | 1990-08-23 | 1990-08-23 | Electro-optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3052353B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09292611A (en) * | 1996-04-30 | 1997-11-11 | Nec Corp | Liquid crystal display device |
-
1990
- 1990-08-23 JP JP2221946A patent/JP3052353B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04104123A (en) | 1992-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6731359B1 (en) | Color filters including light scattering fine particles and colorants | |
US5623353A (en) | Color liquid crystal device having thickness controlling layers disposed at pixel portions | |
US6407787B1 (en) | Reflective liquid crystal display device | |
JP2784205B2 (en) | Transmissive liquid crystal display | |
KR19980063717A (en) | Reflective liquid crystal display device | |
JPH03105318A (en) | Liquid crystal display device | |
US6933994B1 (en) | Liquid crystal display including an anisotropic scattering layer | |
US6456346B1 (en) | Color liquid crystal display device including super twisted nematic liquid crystal with molecular major axis directions parallel to a display screen horizontal axis | |
JP3474167B2 (en) | Liquid crystal display | |
JP4504482B2 (en) | Color filter | |
JP3435113B2 (en) | Liquid crystal display | |
JP3052353B2 (en) | Electro-optical device | |
JPH03191327A (en) | Phase difference plate and liquid crystal cell | |
JP4500409B2 (en) | Color filter | |
JP2001125105A (en) | Reflective liquid crystal display device | |
JP4366985B2 (en) | Liquid crystal display | |
JPH0330126B2 (en) | ||
JP3736076B2 (en) | Liquid crystal device | |
JP3289385B2 (en) | Color liquid crystal display | |
JP2003172925A (en) | Liquid crystal display device | |
JP3293586B2 (en) | Liquid crystal display device and method of manufacturing the same | |
JP3580994B2 (en) | Liquid crystal display | |
JP3289389B2 (en) | Color liquid crystal display | |
KR920006145Y1 (en) | Color liquid crystal display | |
JP2001281647A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080407 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 11 |