JP3047622B2 - Method and apparatus for treating wastewater containing hydrogen peroxide - Google Patents
Method and apparatus for treating wastewater containing hydrogen peroxideInfo
- Publication number
- JP3047622B2 JP3047622B2 JP4135832A JP13583292A JP3047622B2 JP 3047622 B2 JP3047622 B2 JP 3047622B2 JP 4135832 A JP4135832 A JP 4135832A JP 13583292 A JP13583292 A JP 13583292A JP 3047622 B2 JP3047622 B2 JP 3047622B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- sludge
- biological
- treatment
- reaction tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Removal Of Specific Substances (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は過酸化水素(H
2 O 2 )、フッ化水素(HF)、BOD成分および窒素
化合物を含有する排水からこれらの物質を除去するため
の方法および装置に関 し、詳しくは、排水の生物処理工
程に用いる微生物汚泥にとって無害な程度まで、前記排
水中の過酸化水素を微生物汚泥により還元無害化処理し
た後、この無害化処理水を前記生物処理工程で処理する
とともに、この生物処理工程で増殖した微生物汚泥を前
記した過酸化水素処理用の微生物汚泥として有効利用す
るようにした過酸化水素含有排水の処理方法および装置
に関するものである。 BACKGROUND OF THE INVENTIONHydrogen peroxide (H
Two O Two ), Hydrogen fluoride (HF), BOD components and nitrogen
To remove these substances from wastewater containing compounds
Method and equipment And more specifically, biological treatment of wastewater
To the extent harmless to the microbial sludge used.
Reduction and detoxification of hydrogen peroxide in water with microbial sludge
After that, the detoxified treated water is treated in the biological treatment step.
Along with the microbial sludge grown in this biological treatment process.
Effective use as microbial sludge for the treatment of hydrogen peroxide
And apparatus for treating hydrogen peroxide-containing wastewater
It is about.
【0002】[0002]
【従来の技術】H2 O2 は各産業分野で使用されている
が、最近は特に半導体製造業のウェーハ製造プロセス及
びデバイス形成プロセスにおいて他の無機薬品と組み合
わされ、HF/H2 O2 ,NH3 /H2 O2 ,HCl/
H2 O2 というような構成で洗浄プロセスで多量に用い
られている。これらの洗浄プロセスより多量に排出され
るH2 O2 は洗浄工程自体では殆ど還元されておらず、
ほぼそのままの量が排水処理場へ流入し、何らかの還元
処理を施し、あるいは影響のないレベルにまで希釈して
放流されている。H2 O2 は3%程度で消毒殺菌剤とし
て使用されていることは周知の通りで、もし無処理で放
流すれば下流生物への影響があり、またH2 O2 排水に
有機物が混っている場合は生物処理工程で処理すること
が多く、そのようなシステムでは、生物処理工程以前で
無害なレベルまでH2 O2 を除去する必要がある。2. Description of the Related Art Although H 2 O 2 is used in various industrial fields, recently, it is combined with other inorganic chemicals especially in a wafer manufacturing process and a device forming process of a semiconductor manufacturing industry, and HF / H 2 O 2 , NH 3 / H 2 O 2 , HCl /
H 2 O 2 is used in a large amount in a cleaning process with a structure such as H 2 O 2 . H 2 O 2 discharged in a large amount from these cleaning processes is hardly reduced in the cleaning process itself.
Almost the same amount flows into the wastewater treatment plant, is subjected to some reduction treatment, or is diluted to a level that has no effect and discharged. It is well known that about 3% of H 2 O 2 is used as a disinfectant and disinfectant, and if it is discharged without treatment, it will affect downstream organisms, and the H 2 O 2 wastewater will contain organic matter. In many cases, the treatment is performed in a biological treatment step, and such a system needs to remove H 2 O 2 to a harmless level before the biological treatment step.
【0003】H2 O2 を分解する方法は理論上各種ある
が、従来の一般的な処理方法は下記の3方法である。 (1)活性炭によるH2 O2 の還元法 反応式:2H2 O2 +C→CO2 +2H2 O (2)無機系還元薬品によるH2 O2 の還元法 反応式:2NaHSO3 +2H2 O2 →Na2 SO4 +
H2 SO4 +2H2 ONa2 SO3 +H2 O2 →Na2
SO4 +H2 O (3)有機系還元薬品による還元法 H2 O2 分解酵素を含有する薬品(水処理薬品メーカー
より販売されている)により処理するものである。 反応式:2H2 O2 +C→CO2 +2H2 OThere are theoretically various methods for decomposing H 2 O 2 , and the conventional general treatment methods are the following three methods. (1) Reduction method of H 2 O 2 by activated carbon Reaction formula: 2H 2 O 2 + C → CO 2 + 2H 2 O (2) Reduction method of H 2 O 2 by inorganic reducing chemicals Reaction formula: 2NaHSO 3 + 2H 2 O 2 → Na 2 SO 4 +
H 2 SO 4 + 2H 2 ONa 2 SO 3 + H 2 O 2 → Na 2
SO 4 + H 2 O (3) Reduction method using an organic reducing agent Treatment is performed with a chemical containing H 2 O 2 degrading enzyme (sold by a water treatment chemical manufacturer). Reaction formula: 2H 2 O 2 + C → CO 2 + 2H 2 O
【0004】[0004]
【発明が解決しようとする課題】H2 O2 が確実に濃
度、水量共一定で排水処理設備に排出される場合には、
対H2 O2 反応当量より少し過剰の還元薬品を定量的に
投入すればよい。またH2 O2 排水が高濃度で少水量で
あれば回分的に確実な処理が、従来方法によっても容易
に可能である。しかし、通常どんな排水においても、そ
の水量変動、濃度変動が激しいのが一般的である。それ
らを処理設備以前に均一に調整できるような巨大なバッ
ファタンクをもつようなことは常識的には不可能であ
る。一般的には、一日当たりの平均濃度に対してピーク
値は数十倍になることが多い。上記3方法において最も
一般的な手法ではNaHSO3 (重亜硫酸ソーダ)が使
われる。この場合、流入変動に対応する方法としては、
H2 O2 の存在を感知する自動モニターというものが未
だ開発されていない為、唯一の手段は酸化還元電位計に
より制御する方法である。In the case where H 2 O 2 is discharged to a wastewater treatment facility with a certain concentration and a fixed amount of water,
What is necessary is just to quantitatively add a small excess of the reducing agent to the H 2 O 2 reaction equivalent. If the H 2 O 2 waste water has a high concentration and a small amount of water, batchwise reliable treatment can be easily performed by the conventional method. However, in any wastewater, the water volume and concentration generally fluctuate greatly. It is not possible with common sense to have a huge buffer tank so that they can be adjusted evenly before the processing equipment. Generally, the peak value is often several tens of times the average concentration per day. Of the above three methods, the most common method uses NaHSO 3 (sodium bisulfite). In this case, as a method to cope with inflow fluctuation,
Since an automatic monitor for detecting the presence of H 2 O 2 has not been developed yet, the only means is to control it with an oxidation-reduction potentiometer.
【0005】しかし、酸化還元電位計(以下ORP)は
pH中性下でしか正しい電位を指示しない為、確実な中
和設備を必要とする。しかるにNaHSO3 との反応で
は、H2 SO4 を生成する為、確実な中和が通常困難で
あるという欠点を有する。Na2 SO3 ならばH2 SO
4 を生成する欠点がないが、Na2 SO3 が一般的手段
として採用されていない理由は、薬剤コストが高いこと
と、市場において液状品が流通していないので溶解させ
る設備が必要となる為である。これらの無機薬品のかわ
りとして最近使用され始めているのが、H2 O2 分解酵
素という液状薬品である。この薬品を用いる方法の長所
は大きな設備を要せず、簡単な注入設備だけあれば良い
ということであるが、逆に短所はH2 O2 分解に要する
半減期が30分で、ほぼ完全に反応させるのには2時間
以上の反応時間、即ち反応槽を必要とし流入変動の激し
い場合は反応当量より過剰なコストをしいられることで
ある。活性炭充填槽にH2 O2 排水を送水する方法が最
も安全確実な方法である。この方法は、薬剤処理方法と
異なり、対H2 O2 反応当量当たり過剰なランニングコ
ストになることはないが、設備費用が巨大となる欠点が
ある。However, an oxidation-reduction potentiometer (hereinafter referred to as an ORP) indicates a correct potential only under neutral pH, and thus requires a reliable neutralization facility. However, the reaction with NaHSO 3 has the disadvantage that reliable neutralization is usually difficult because H 2 SO 4 is produced. Na 2 SO 3 for H 2 SO
Although there is no drawback of producing 4 , the reason why Na 2 SO 3 is not adopted as a general means is that the cost of chemicals is high and because liquid products are not distributed in the market, equipment for dissolving is required. It is. As a replacement for these inorganic chemicals, a liquid chemical called H 2 O 2 degrading enzyme has recently been used. The advantage of the method using this chemical is that it does not require a large facility and only a simple injection facility is required. On the contrary, the half-life required for H 2 O 2 decomposition is 30 minutes, and it is almost complete. In order to carry out the reaction, a reaction time of 2 hours or more, that is, a reaction tank is required, and in the case where the inflow fluctuation is severe, the cost is increased more than the reaction equivalent. The method of sending H 2 O 2 wastewater to the activated carbon filling tank is the safest method. This method is different from the chemical treatment method in that it does not cause excessive running cost per H 2 O 2 reaction equivalent, but has a disadvantage that equipment cost is huge.
【0006】以上、現状の代表的なH2 O2 処理方法を
紹介したが、いずれの方法も新たな設備投資が必要とな
り、かつランニングコストは流入H2 O2 に比例し膨大
なコストとなる。また、確実なH2 O2 モニターが存在
しない為、通常過剰な薬剤を投入しがちである。さもな
くば、多少のH2 O2 のリークは無視することとなって
しまう。いずれにしても、添加薬剤を多用する方法はコ
ストばかりでなく地球環境的視野に立ってみれば、排水
浄化プロセスとして極めて不合理である。すなわち、処
理という名のもとに、処理用添加薬剤を使用しそれによ
る塩分増加は全く無視するような従来の排水処理手段
は、コスト面だけではなく地球環境面でみても最良では
ない。活性炭は添加薬剤を使わぬ点では良い方法ではあ
るが、再生の為、新炭製造と同程度のエネルギーを消耗
する点で最良とはいえない。As described above, the current typical H 2 O 2 treatment methods have been introduced. However, each of these methods requires new capital investment, and the running cost is enormous in proportion to the inflow H 2 O 2. . In addition, since there is no reliable H 2 O 2 monitor, an excessive amount of drug is usually injected. Otherwise, some H 2 O 2 leakage will be ignored. In any case, the method of using a large amount of added chemicals is extremely unreasonable as a wastewater purification process from the viewpoint of not only cost but also the global environment. That is, under the name of treatment, a conventional wastewater treatment means that uses an additive for treatment and completely ignores the increase in salt content due to the treatment is not the best not only in terms of cost but also in terms of global environment. Activated carbon is a good method in that no additional chemicals are used, but it is not the best in terms of consuming as much energy as new carbon production for regeneration.
【0007】また従来、H 2 O 2 ,HF,有機酸(BO
D成分)および窒素化合物を含有する排水からこれらの
水質汚濁物質を総合的に除去する場合、H 2 O 2 処理工
程と、排水の生物処理機能がH 2 O 2 の影響を大きく受
けるBOD成分・窒素化合物の生物処理工程とを、どの
ように結合するべきかが大きな課題であった。 Conventionally, H 2 O 2 , HF and organic acids (BO
D) and wastewater containing nitrogen compounds
When removing water pollutants comprehensively, use H 2 O 2 treatment
And the biological treatment function of wastewater is greatly affected by H 2 O 2
Process of BOD components and nitrogen compounds
Is a big issue.
【0008】ところで、排水の生物処理に関する文献等
によると、BOD除去だけの好気性菌だとH2 O2 のリ
ークは大した影響はないという事例があるようである
が、どの程度だという詳細な事例はない。硝化菌は阻害
が大きいという事例が多い。脱Nに関する事例は少ない
が、H2O2 のリーク分、脱N効率が低下することは明
白である。また、通常の生物処理では菌は浮遊混合型な
ので影響が少ないとされているが、円転円板方式のよう
な生物膜付着方式では、H2 O2 のリークにより生物膜
が剥がれるという事例が多い。上記のように生物処理に
対するH2 O2 のリークの事例は少ないが、リークは生
物処理に対しミニマムであった方が良いと言える。By the way, according to the literature concerning biological treatment of waste water, BOD removal only of the leakage of H 2 O 2 that it aerobic bacteria but there appears to be cases that it is not much affected, details that it how There is no such case. In many cases, nitrifying bacteria have a large inhibition. Practices for de-N is small, the leakage amount of H 2 O 2, it is evident that de N efficiency decreases. In addition, it is said that bacteria are not affected in normal biological treatment because they are of the floating mixed type. However, in the case of a biofilm attached method such as a circular disc method, there is a case where the biofilm is peeled off due to leakage of H 2 O 2. Many. Although there are few cases of H 2 O 2 leakage in biological treatment as described above, it can be said that the leak should be minimum for biological treatment.
【0009】本発明は、上記諸問題を解決するものであ
り、その目的は簡便な操作により極めて短時間、かつ低
コストでH 2 O 2 ,HF,BOD成分および窒素化合物
を含有する排水から、これらの水質汚濁物質を総合的に
除去することができる過酸化水素含有排水の処理方法お
よび装置を提供することにある。The present invention has been made to solve the above-mentioned problems, and has as its object the simple operation of the H 2 O 2 , HF, BOD component and nitrogen compound in an extremely short time and at low cost .
These water pollutants from wastewater containing
An object of the present invention is to provide a method and an apparatus for treating wastewater containing hydrogen peroxide that can be removed .
【0010】[0010]
【課題を解決するための手段】本発明に係る過酸化水素
含有排水の処理方法および装置は、排水の生物処理工程
に用いる生物汚泥(微生物汚泥)に無害な程度まで、前
記排水中の過酸化水素を微生物汚泥により還元無害化処
理した後、この無害化処理水を前記生物処理工程で処理
するとともに、この生物処理工程で増殖する生物汚泥を
前記した過酸化水素処理用の微生物汚泥として有効利用
するように構成したものである。 Means for Solving the Problems Hydrogen peroxide according to the present invention
A method and an apparatus for treating wastewater containing wastewater, comprising:
To the extent harmless to biological sludge (microbial sludge) used for
Hydrogen peroxide in wastewater is reduced and rendered harmless by microbial sludge.
And then treat the detoxified water in the biological treatment step.
And the biological sludge that grows in this biological treatment process
Effective use as microbial sludge for the above-mentioned hydrogen peroxide treatment
It is configured so that
【0011】本発明に係る過酸化水素含有排水の処理方
法は、過酸化水素と、無機酸として少なくともフッ化水
素と、BOD成分と窒素化合物とを含有する排水を脱フ
ッ素処理工程の第1反応槽に導入し消石灰を添加混合し
てフッ化水素をフッ化カルシウムとなし、次いでこの排
水を第2反応槽に導入し鉱酸を添加混合して前記フッ化
カルシウムを造粒すると共に、これら第1反応槽、第2
反応槽の少なくとも一方に微生物汚泥を添加混合して過
酸化水素の還元無害化処理を行い、さらに第2反応槽か
らの無害化処理液に高分子凝集剤を添加混合して前記微
生物汚泥及び造粒物を凝集処理したのち、沈澱槽に導入
して沈澱汚泥と上澄水に分離し、この上澄水中のBOD
成分及び窒素化合物は生物学的硝化脱窒素工程で処理
し、この工程の生物沈澱槽で沈澱分離された生物汚泥を
前記還元無害化処理用の微生物汚泥として利用すること
を特徴とする。The method for treating wastewater containing hydrogen peroxide according to the present invention is characterized in that wastewater containing hydrogen peroxide, at least hydrogen fluoride as an inorganic acid, a BOD component and a nitrogen compound is subjected to a first reaction in a defluorination treatment step. Introduced into the tank, slaked lime was added and mixed to make hydrogen fluoride into calcium fluoride, and then this wastewater was introduced into the second reaction tank, and mineral acid was added and mixed to granulate the calcium fluoride. 1 reaction tank, 2nd
Microbial sludge is added to and mixed in at least one of the reaction tanks to perform a detoxification treatment of hydrogen peroxide, and a polymer flocculant is further added to and mixed with the detoxification treatment liquid from the second reaction tank, and the microbial sludge and the production thereof are mixed. After the particles are subjected to a coagulation treatment, they are introduced into a sedimentation tank and separated into settled sludge and supernatant water.
The components and nitrogen compounds are treated in a biological nitrification and denitrification step, and the biological sludge precipitated and separated in the biological sedimentation tank in this step is used as the microbial sludge for the reduction and detoxification treatment.
【0012】本発明に係る過酸化水素含有排水の処理装
置は、フッ化水素を除去する脱フッ素処理装置と、過酸
化水素の還元無害化処理装置と、BOD成分及び窒素化
合物の生物学的硝化脱窒素装置とがこの順に連結配備さ
れた排水の処理装置であって、前記脱フッ素処理装置は
消石灰供給部を有する第1反応槽と、鉱酸供給部を有 す
る第2反応槽と、凝集反応槽と、沈殿槽とをこの順に連
結して備え、前記生物学的硝化脱窒素装置は、前記沈殿
槽からの上澄水中に残留するBOD成分及び窒素化合物
を処理する生物学的処理槽と、該生物学的処理槽からの
処理水中の生物汚泥を分離する生物沈殿槽とを備え、該
生物沈殿槽の生物汚泥排出部は前記第1反応槽、前記第
2反応槽のいずれか少なくとも一方に連絡されているこ
とを特徴とする。 [0012] The treatment apparatus for wastewater containing hydrogen peroxide according to the present invention.
The equipment consists of a defluorination treatment device for removing hydrogen fluoride and a peracid
Detoxification equipment for hydrogen hydride, BOD component and nitrogenation
And a biological nitrification denitrifier for the compound
Waste water treatment device, wherein the defluorination treatment device is
A first reaction vessel having a calcium hydroxide supply unit, to have the mineral acid feed portion
A second reaction tank, a coagulation reaction tank, and a precipitation tank are connected in this order.
The biological nitrification and denitrification apparatus is provided with
Components and nitrogen compounds remaining in the supernatant water from the tank
A biological treatment tank for treating
A biological sedimentation tank for separating biological sludge in the treated water,
The biological sludge discharge part of the biological sedimentation tank is the first reaction tank,
Make sure that at least one of the two reactors is
And features.
【0013】[0013]
【作用】上記過酸化水素含有排水の処理方法において
は、過酸化水素は脱フッ素処理工程の第1反応槽及び/
又は第2反応槽で微生物汚泥中の微生物と反応して水と
酸素に還元分解され、フッ化水素は第1反応槽で消石灰
と反応して微粒子状のフッ化カルシウムとなり、第2反
応槽では鉱酸によるpH調整でこのフッ化カルシウムの
造粒が進行し、さらに高分子凝集剤の添加により第2反
応槽内の微生物汚泥及び上記造粒物の凝集反応が進行
し、この凝集物は沈澱槽において沈澱汚泥となり脱フッ
素処理ずみの上澄水から分離される。この上澄水中に残
留するBOD成分及び窒素化合物は、次段の生物学的硝
化脱窒素工程で処理され、ここで増殖した微生物は生物
沈殿槽で生物汚泥として沈澱分離され、その少なくとも
一部が第1反応槽及び/又は第2反応槽に供給されて過
酸化水素の還元分解に利用される。[Action] In the processing method of the hydrogen peroxide-containing wastewater, hydrogen peroxide first reaction vessel and the defluorination process /
Or, it reacts with microorganisms in microbial sludge in the second reaction tank and is reduced and decomposed into water and oxygen. Hydrogen fluoride reacts with slaked lime in the first reaction tank to form fine-particle calcium fluoride, and in the second reaction tank, Granulation of this calcium fluoride proceeds by adjusting the pH with a mineral acid, and furthermore, the addition of a polymer flocculant causes the flocculation reaction of the microbial sludge in the second reaction tank and the above-mentioned granulated product to proceed. It becomes settled sludge in the tank and separated from the supernatant water after defluorination treatment. BOD component and the nitrogen compounds remaining in the supernatant water is treated with the next stage of biological nitrification denitrification step, where grown microorganism organism
The sludge is separated and settled as biological sludge in the sedimentation tank, and at least a part thereof is supplied to the first reaction tank and / or the second reaction tank and used for reductive decomposition of hydrogen peroxide.
【0014】また、上記過酸化水素含有排水の処理装置
では、生物沈殿槽からの生物汚泥(微生物汚泥)が第1
反応槽及び/又は第2反応槽に供給され、排水中の過酸
化水素は微生物汚泥中の微生物と反応して水と酸素に還
元分解される。また、消石灰が第1反応槽に、鉱酸が第
2反応槽にそれぞれ供給される。そして、排水中のフッ
化水素は消石灰と反応して微粒子状のフッ化カルシウム
となり、第2反応槽では鉱酸によるpH調整でこのフッ
化カルシウムの造粒が進行する。さらに、凝集反応槽で
は高分子凝集剤の添加により、第2反応槽からの処理液
中の微生物汚泥及び上記造粒物の凝集反応が進行し、こ
の凝集物は沈澱槽において沈澱汚泥となり脱フッ素処理
ずみの上澄水から分離される。 この上澄水中に残留する
BOD成分及び窒素化合物は、生物学的硝化脱窒素装置
で処理され、ここで増殖した微生物は生物沈殿槽で生物
汚泥として沈殿分離され、その少なくとも一部が第1反
応槽及び/又は第2反応槽に供給されて過酸化水素の還
元分解に利用される。 [0014] Further , the apparatus for treating the hydrogen peroxide-containing wastewater.
Then, biological sludge (microbial sludge) from the biological sedimentation tank
Peracid in the wastewater supplied to the reaction tank and / or the second reaction tank
Hydrogen hydride reacts with microorganisms in microbial sludge and returns to water and oxygen
Originally decomposed. Slaked lime is in the first reactor and mineral acid is in the first reactor.
Each is supplied to two reaction tanks. And the drainage
Hydrogen hydride reacts with slaked lime to form fine calcium fluoride
In the second reaction tank, the pH was adjusted with mineral acid to
Granulation of calcium chloride proceeds. Furthermore, in the coagulation reaction tank
Is a processing solution from the second reaction tank by adding a polymer flocculant.
Agglomeration reaction of microbial sludge and the above granulated material in
Aggregates become sludge in the sedimentation tank and defluoridation
Separated from the supernatant water. This remains in the supernatant water
BOD component and nitrogen compound are biological nitrification denitrification equipment
The microorganisms grown here are treated in a biological sedimentation tank
Separated as sludge, at least a part of which is
The hydrogen peroxide is supplied to the reaction tank and / or the second reaction tank and
Used for original decomposition.
【0015】[0015]
【実施例】次に本発明を、図面に示す実施例によりさら
に詳細に説明する。実施例1 図1 は過酸化水素、BOD成分として少なくとも酢酸、
窒素酸化物及び無機酸として少なくともフッ化水素を含
有する酸性排水を処理する装置を示している。この装置
は、HF、酢酸(BOD成分)及び硝酸(HNO3 )を
含有する従来排水61を処理する装置に新設ライン46
(図中、太線で示す)を追加することにより、H
2 O2 、HF、アンニモア(NH3 )及び塩酸(HC
l)を含有する新規排水62を上記従来排水61と合併
して処理できるように構成したものであり、大別して原
水槽21、脱F工程31及び脱BOD脱N工程41及び
脱水機51から構成されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the embodiments shown in the drawings. Example 1 FIG. 1 shows hydrogen peroxide, at least acetic acid as a BOD component,
1 shows an apparatus for treating acidic wastewater containing at least hydrogen fluoride as a nitrogen oxide and an inorganic acid. This apparatus is a new line 46 for processing a conventional waste water 61 containing HF, acetic acid (BOD component) and nitric acid (HNO 3 ).
(Shown by a bold line in the figure)
2 O 2 , HF, annimore (NH 3 ) and hydrochloric acid (HC
1) is configured so that the new wastewater 62 containing l) can be treated in combination with the above-mentioned conventional wastewater 61. The new wastewater 62 is roughly divided into a raw water tank 21, a de-F process 31, a de-BOD de-N process 41, and a dehydrator 51. Have been.
【0016】上記脱F工程31は第1反応槽32、第2
反応槽33、第3反応槽34及び沈澱槽35をこの順に
連絡して構成され、脱BOD脱N工程41は、生物学的
硝化脱窒素工程であって、生物脱N槽42、後曝気槽4
3及び生物沈澱槽44をこの順に連絡して構成されてい
る。そして、上記沈澱槽35の上澄水流出口は生物脱N
槽42に、汚泥排出口は汚泥混合槽52にそれぞれ連絡
され、上記生物沈澱槽44の汚泥排出口は、ポンプ45
を介して汚泥計量函47と上記汚泥混合槽52に分岐連
絡され、この汚泥混合槽52は脱水機51を介して原水
槽21に、原水槽21はポンプ22を介して第1反応槽
32に、さらに上記新設ラインすなわち汚泥供給ライン
46は第1反応槽32及び第2反応槽33に、それぞれ
連絡されている。なお、図中pHCはpH指示調節計で
ある。The above-mentioned F removal step 31 comprises a first reaction tank 32 and a second reaction tank 32.
The reaction tank 33, the third reaction tank 34, and the precipitation tank 35 are connected in this order, and the BOD removal N step 41 is a biological nitrification denitrification step, and is a biological removal N tank 42, a post-aeration tank. 4
3 and the biological sedimentation tank 44 are connected in this order. And the supernatant water outlet of the settling tank 35 is
The sludge outlet is connected to a sludge mixing tank 52, and the sludge outlet of the biological sedimentation tank 44 is connected to a pump 45.
Is connected to a sludge measuring box 47 and the above-mentioned sludge mixing tank 52 via a dehydrator 51. The sludge mixing tank 52 is connected to a raw water tank 21 via a dehydrator 51, and the raw water tank 21 is connected to a first reaction tank 32 via a pump 22. Further, the new line, that is, the sludge supply line 46 is connected to the first reaction tank 32 and the second reaction tank 33, respectively. In the figure, pHC is a pH indicating controller.
【0017】この排水処理装置では従来排水61、新規
排水62及び脱水分離水53が、原水槽21で攪拌混合
されて、例えばH2 O2 60〜1000ppm、フッ素
1000ppm、pH1〜3の混合排水となり、第1反
応槽32ではCa(OH)2を添加混合することにより
pH9へのpH調整と並行してHFからのCaF2 微粒
子の生成反応(CaF2 の一次核の生成)が進行する。
このpH調整が終了後、生物沈澱槽44からの返送汚泥
48の一部が第1反応槽32に添加混合されてH2 O2
が瞬時ないし5分以内に水に分解される。In this waste water treatment apparatus, the conventional waste water 61, the new waste water 62, and the dewatered separated water 53 are stirred and mixed in the raw water tank 21 to form a mixed waste water of, for example, H 2 O 2 60 to 1000 ppm, fluorine 1000 ppm, and pH 1 to 3. In the first reaction tank 32, the addition reaction of Ca (OH) 2 causes the generation reaction of CaF 2 fine particles from HF (the generation of primary nuclei of CaF 2 ) in parallel with the pH adjustment to pH 9.
After the completion of the pH adjustment, a part of the sludge 48 returned from the biological sedimentation tank 44 is added to the first reaction tank 32 and mixed, and H 2 O 2
Is decomposed into water within an instant or within 5 minutes.
【0018】第1反応槽32からの汚泥混合液は、第2
反応槽33においてH2 SO4 の添加混合によりpH7
〜8に調整され約30分間、CaF2 の造粒が行われた
のち、第3反応槽34において高分子凝集剤の添加混合
により約30分間、汚泥及びCaF2 造粒物の凝集反応
が行われ、次いで沈澱槽35に流入して上澄水36と引
抜き汚泥37に分離され、上澄水36は脱BOD脱N工
程41に流入し、引抜き汚泥37は汚泥混合槽52に流
入する。The sludge mixture from the first reaction tank 32 is supplied to the second
In the reaction tank 33, the pH was adjusted to 7 by adding and mixing H 2 SO 4.
After the granulation of CaF 2 is carried out for about 30 minutes, the coagulation reaction of sludge and CaF 2 granules is carried out in the third reaction tank 34 by adding and mixing a polymer flocculant for about 30 minutes. Then, it flows into the sedimentation tank 35 and is separated into the supernatant water 36 and the drawn sludge 37. The supernatant water 36 flows into the BOD removal de-N step 41, and the drawn sludge 37 flows into the sludge mixing tank 52.
【0019】脱BOD脱N工程41においては、BOD
成分である酢酸と、窒素化合物であるNH 3 等が除去さ
れる。生物沈澱槽44からの生物処理水63は活性炭吸
着装置(図示せず)に導入して残留するフッ素分(Fと
して約5ppm)が除去され、引抜き汚泥64の一部は
返送汚泥48、残部は余剰汚泥49となり、さらに返送
汚泥48の一部は生物脱N槽42に返送され、残部は第
1反応槽32に供給される。余剰汚泥49は汚泥混合槽
52で引抜き汚泥37と混合して脱水機51で処理さ
れ、脱水ケーキ54と脱水分離水53に分離され、この
脱水分離水は原水槽21に返送され、残留する汚濁成分
の処理が行われる。脱水ケーキ54は産排ケーキとして
焼却等により処分される。In the BOD removal N step 41, the BOD removal
And acetic acid is a component, NH 3 or the like are removed are nitrogen compounds. The biologically treated water 63 from the biological sedimentation tank 44 is introduced into an activated carbon adsorption device (not shown) to remove residual fluorine (about 5 ppm as F), and a part of the drawn sludge 64 is returned sludge 48 and the remaining part is sludge. The excess sludge 49 is returned, and a part of the returned sludge 48 is returned to the biological denitrification tank 42, and the remainder is supplied to the first reaction tank 32. The excess sludge 49 is mixed with the extracted sludge 37 in the sludge mixing tank 52 and treated by the dehydrator 51 to be separated into the dewatered cake 54 and the dewatered separated water 53. Processing of the components is performed. The dewatered cake 54 is disposed of by incineration or the like as a waste cake.
【0020】すなわち、上記脱BOD脱N工程41は、
脱F工程31の沈澱槽35からの上澄水36中のBOD
成分(CH 3 COOHなど)を好気性菌により、窒素化
合物(HNO 3 ,NH 3 等)を硝化菌及び脱窒菌により
それぞれ除去すると共に、生物脱N槽42、後曝気槽4
3で増殖した微生物を生物沈澱槽44で微生物汚泥と し
て沈澱分離し、その一部を生物脱N槽42への返送汚泥
48とし、残部を余剰汚泥49とするものである。 That is, the above-mentioned BOD removal N step 41
BOD in supernatant water 36 from sedimentation tank 35 in de-F process 31
Nitrogenation of components (CH 3 COOH etc.) by aerobic bacteria
Compounds (HNO 3 , NH 3 etc.) by nitrifying bacteria and denitrifying bacteria
Each of them is removed, and the biological removal N tank 42 and the post-aeration tank 4
The growth microorganisms and microbial sludge in the biological settling tank 44 at 3
Sludge, and a part of the sludge is returned to the biological denitrification tank 42.
48, and the remaining sludge 49.
【0021】なお、生物沈澱槽44からの汚泥は、第1
反応槽32に代えて第2反応槽33に供給してもよく、
第1、第2反応槽の両方に分けて供給してもよい。ま
た、余剰汚泥49を汚泥混合槽52を介することなく直
接第1反応槽32に供給することもできるし、所望によ
り生物脱N槽42もしくは後曝気槽43の汚泥混合液又
は脱水ケーキ54の一部を供給してH2 O2 の分解に使
用することも可能である。The sludge from the biological sedimentation tank 44 is supplied to the first
It may be supplied to the second reaction tank 33 instead of the reaction tank 32,
It may be supplied separately to both the first and second reaction tanks. Further, the excess sludge 49 can be directly supplied to the first reaction tank 32 without passing through the sludge mixing tank 52, or, if desired, the sludge mixed liquid or the dewatered cake 54 in the biological removal N tank 42 or the post-aeration tank 43. It is also possible to supply parts and use them for the decomposition of H 2 O 2 .
【0022】実施例2 図2は、図1 における脱F工程31の代わりに、一次脱
F工程71と二次脱F工程81とを直結して設けたもの
で、他の工程は図1と同様である。上記一次脱F工程7
1は脱F工程31と実質的に同一の工程であって、一次
反応槽72、二次反応槽73、一次凝集槽74及び一次
沈澱槽75により構成され、二次脱F工程81は三次反
応槽82、二次凝集槽83及び二次沈澱槽84により構
成されている。 Embodiment 2 FIG. 2 shows that a primary F removal step 71 and a secondary F removal step 81 are directly connected instead of the removal F step 31 in FIG. 1, and the other steps are the same as those in FIG. The same is true. The above-mentioned primary removal F step 7
1 is substantially the same as the de-F step 31, and is composed of a primary reaction tank 72, a secondary reaction tank 73, a primary flocculation tank 74 and a primary precipitation tank 75. A tank 82, a secondary coagulation tank 83, and a secondary precipitation tank 84 are provided.
【0023】この装置では、H2 O2 、HF、HNO3
及びCH3 COOHを含有する酸性排水中のH2 O2 及
びHFの殆どは一次脱F工程で除去される。そして、一
次沈澱槽75からの上澄水76は、無機凝集剤PACを
添加されたのち三次反応槽82において返送汚泥48の
一部が添加混合され、次いで二次凝集槽83で高分子凝
集剤と返送汚泥48の一部が添加混合される。これによ
り上澄水76中に残留する微量のH2 O2 は全量還元分
解され、上澄水76中に残留するCaF2 等の汚泥及び
新たに添加した上記微生物汚泥は凝集処理される。この
凝集処理汚泥は二次沈澱槽84で分離され、上澄水85
は脱BOD脱N工程41に流入して生物処理される。な
お、図2において77,86は引抜き汚泥である。In this apparatus, H 2 O 2 , HF, HNO 3
And most H 2 O 2 and HF in the acid waste water containing CH 3 COOH is removed by the primary de-F steps. The supernatant water 76 from the primary sedimentation tank 75 is mixed with a part of the returned sludge 48 in the tertiary reaction tank 82 after the inorganic coagulant PAC is added. A part of the returned sludge 48 is added and mixed. As a result, the trace amount of H 2 O 2 remaining in the supernatant water 76 is totally reduced and decomposed, and the sludge such as CaF 2 remaining in the supernatant water 76 and the newly added microbial sludge are subjected to coagulation treatment. This coagulated sludge is separated in the secondary sedimentation tank 84 and the supernatant water 85
Flows into the de-BOD de-N step 41 for biological treatment. In FIG. 2 , reference numerals 77 and 86 denote drawn sludge.
【0024】本発明では、H2 O2 の分解に使用する汚
泥量は揮発性生物汚泥乾重量(MLVSS)に換算した
場合、排水中のH2 O2 1kgに対し0.1kg以上と
することが好ましく、H2 O2 の全量を分解することが
できるが、過剰に使用するのがさらに好ましい。これ
は、過剰使用によりH2 O2 リークの可能性を皆無にす
ることができるうえ、脱F工程や脱BOD脱N工程に何
ら特別な不利をもたらすものではなく、沈澱槽35の負
荷がわずかに増大するのみだからである。In the present invention, the amount of sludge used for decomposing H 2 O 2 is 0.1 kg or more per 1 kg of H 2 O 2 in the wastewater, when converted to volatile biological sludge dry weight (MLVSS). Is preferable, and it is possible to decompose the entire amount of H 2 O 2 , but it is more preferable to use it in excess. This not only eliminates the possibility of H 2 O 2 leakage due to excessive use, but also does not cause any particular disadvantage in the F-removing step or the BOD-removing N-removing step. Because it only increases.
【0025】次に、本発明の実験例について説明する。 実験例 微生物汚泥のH2 O2 分解能力及びそのメカニズムを知
る為、以下のようなテストを試みた。 使用汚泥: 生物脱N槽の汚泥、MLSS 5g
/l MLVSS 3g/l H2 O2 試薬: 濃度30wt% 0.3g/ml試薬 1)6本のビーカーに同一の汚泥を1lずつ投入 2)全て60rpmにて攪拌する 3)各ビーカーにH2 O2 の量を変えて投入し、経過時
間毎に残留H2 O2 をH2 O2 試験紙にて測定したうえ
容量を乗じて、残留H2 O2 重量を調査した結果を〔表
1〕に示す。Next, an experimental example of the present invention will be described. Experimental Example In order to understand the H 2 O 2 decomposing ability of microbial sludge and its mechanism, the following test was attempted. Sludge used: sludge from biological removal N tank, MLSS 5g
/ L MLVSS 3g / l H 2 O 2 reagent: Concentration 30 wt% 0.3 g / ml reagent 1) to six beakers the same sludge by 1l turned 2) all 3 stirred at 60 rpm) H 2 to each beaker by changing the amount of O 2 were charged, the residual H 2 O 2 for every elapsed time multiplied by the volume after having measured by H 2 O 2 test paper, the results of the examination of residual H 2 O 2 by weight Table 1 ].
【0026】[0026]
【表1】 [Table 1]
【0027】RUN No.1〜4により、H2 O2 の全量
を分解するのに必要なMLVSSすなわち有機汚泥重量
は、H2 O2 重量の約1/10以上であることがわか
る。同様のテストをし尿系の有機汚泥でもテストしたが
同様に約1/10以上であった。また、RUN No.4〜
6により、過剰H2 O2 を投入分に関してはいくら時間
が経過しても、以降分解していない。これは、汚泥を分
解しうる細胞が全く死滅していることを示すものであ
る。H2 O2 を分解可能な細胞が残存している内は、H
2 O2 を投入しても発泡しているが、細胞すべてが死滅
した後、過剰のH2 O2 を投入しても全く発泡現象は見
られなかった。このことによって汚泥がH2 O2 を分解
することが証明されたと共に、生物処理工程に誤ってH
2 O2 をリークさせたケースの状況メカニズムも推測で
きる。即ち、H2 O2 は菌に阻害を与えるかという次元
ではなく、完全に菌を死滅させてしまう。但し生物反応
系の菌の全存在量に対してわずかなH2 O2 のリークで
あれば、その分だけ死滅するだけであって、生物処理機
能が致命的な状態に至るものではないと推測できる。次
いで、H2 O2 排水は通常他の酸、アルカリと混合され
中性でない場合が多いので、汚泥がH2 O2 を分解する
うえでの適正なpHはどうかという調査もした。その結
果、極端な酸、アルカリ雰囲気では汚泥はH2 O2 を分
解する以前に、その分解機能を損ずること、及び適正p
Hは6〜10であり、7〜8が最適で、微生物汚泥は酸
に弱く、多少アルカリには強いことがわかった。RUN Nos. 1 to 4 show that the MLVSS required to decompose the total amount of H 2 O 2 , that is, the weight of organic sludge, is about 1/10 or more of the weight of H 2 O 2 . A similar test was performed on urine-based organic sludge, and the result was about 1/10 or more. Also, RUN No.4 ~
According to 6, the excess H 2 O 2 was not decomposed thereafter, no matter how much time had passed. This indicates that cells capable of decomposing sludge have been completely killed. The cells remaining capable of decomposing H 2 O 2 remain H
Although 2 O 2 has foamed be charged, after all cells died completely foaming phenomenon be charged with excess H 2 O 2 was observed. This proved that the sludge decomposed H 2 O 2 , and erroneously added H to the biological treatment process.
The situation mechanism in the case where 2 O 2 was leaked can also be inferred. That is, H 2 O 2 completely kills the bacterium, not the dimension of whether or not the bacterium is inhibited. However, if a small amount of H 2 O 2 leaks with respect to the total abundance of the bacteria in the biological reaction system, it is only killed by that amount, and it is presumed that the biological treatment function does not reach a lethal state. it can. Next, since the H 2 O 2 waste water is usually mixed with other acids and alkalis and is often not neutral, a study was also conducted to determine the appropriate pH for sludge to decompose H 2 O 2 . As a result, in extreme acid and alkali atmospheres, sludge impairs its decomposition function before decomposing H 2 O 2 ,
H was 6 to 10, and 7 to 8 was optimal, and it was found that microbial sludge was weak to acid and somewhat strong to alkali.
【0028】[0028]
【発明の効果】以上の説明で明らかなように、本発明に
係る過酸化水素含有排水の処理方法においては排水中の
過酸化水素を、BOD成分等の生物処理工程に用いる生
物汚泥に無害な程度まで、微生物汚泥により還元無害化
処理した後、この無害化処理水を前記生物処理工程で処
理するとともに、この生物処理工程で増殖する生物汚泥
を前記した過酸化水素処理用の微生物汚泥として有効利
用するようにしたものである。 このように本発明では過
酸化水素の処理工程と、BOD成分等の生物処理工程と
が互いにその機能を補いあって進行するように構成され
ているから、上記排水を極めて合理的に処理することが
できる。 As is apparent from the above description, the present invention
In the method for treating such waste water containing hydrogen peroxide ,
Hydrogen peroxide is used for biological treatment of BOD components
Detoxification by microbial sludge to an extent harmless to material sludge
After the treatment, this detoxified water is treated in the biological treatment step.
Biological sludge that grows in this biological treatment process
Is effective as microbial sludge for hydrogen peroxide treatment as described above.
It is intended to be used. Thus, in the present invention,
A process for treating hydrogen oxide and a process for treating biological matter such as BOD components
Are configured to proceed with each other
Therefore, the above wastewater can be treated extremely rationally.
it can.
【0029】また、本発明に係る過酸化水素含有排水の
処理装置は、消石灰供給部を有する第1反応槽と、鉱酸
供給部を有する第2反応槽と、凝集反応槽と、沈殿槽と
をこの順に連結して脱フッ素処理装置を構成し、生物沈
殿槽の生物汚泥排出部を第1反応槽、第2反応槽のいず
れか少なくとも一方に連絡したものであるから、構造は
極めて簡単である。 The hydrogen peroxide-containing wastewater of the present invention
The treatment apparatus includes a first reaction tank having a slaked lime supply unit, and a mineral acid.
A second reaction tank having a supply unit, a coagulation reaction tank, and a precipitation tank;
Are connected in this order to form a defluoridation device,
The biological sludge discharge part of the tongue tank is either the first reaction tank or the second reaction tank.
Because at least one was contacted, the structure was
Extremely simple.
【0030】また、既設の生物学的硝化脱窒素装置の生
物汚泥排出部を、既設の中和処理装置に連絡する汚泥供
給ラインを新設するだけで、この中和処理装置をH 2 O
2 分解装置として機能させることができるから、本発明
に係る過酸化水素含有排水の処理装置は、既設装置の簡
単な改造により構成することができる。 In addition, the production of existing biological nitrification denitrification equipment
The sludge discharge section connects the sludge discharge section to the existing neutralization equipment.
By simply installing a new supply line, this neutralization device can be replaced with H 2 O
(2) The present invention can function as a disassembly device.
The treatment device for wastewater containing hydrogen peroxide according to
It can be configured by simple modification.
【0031】以上のように本発明によれば、簡便な操作
により極めて短時間、かつ低コストでH 2 O 2 ,HF,
BOD成分および窒素化合物を含有する酸性排水から、
これらの水質汚濁物質を総合的に除去することが可能な
過酸化水素含有排水の処理方法および装置を提供するこ
とができる。 As described above, according to the present invention, a simple operation
H 2 O 2 , HF,
From acidic wastewater containing BOD components and nitrogen compounds,
It is possible to comprehensively remove these water pollutants
Provided is a method and apparatus for treating wastewater containing hydrogen peroxide.
Can be.
【図1】FIG.
本発明の一実施例を示すフローチャートであ5 is a flowchart illustrating an embodiment of the present invention.
る。You.
【図2】FIG. 2 別の実施例を示すフローチャートである。9 is a flowchart illustrating another embodiment.
21 原水槽 22 ポンプ 31 脱F工程 32 第1反応槽 33 第2反応槽 34 第3反応槽 35 沈澱槽 36 上澄水 37 引抜き汚泥 41 脱BOD脱N工程 42 生物脱N槽 43 後曝気槽 44 生物沈澱槽 45 ポンプ 46 新設ライン(汚泥供給ライン) 47 計量函 48 返送汚泥 49 余剰汚泥 51 脱水機 52 汚泥混合槽 53 脱水分離水 54 脱水ケーキ 61 従来排水 62 新規排水 63 生物処理水 64 引抜き汚泥 71 一次脱F工程 72 一次反応槽 73 二次反応槽 74 一次凝集槽 75 一次沈澱槽 76 上澄水 77 引抜き汚泥 81 二次脱F工程 82 三次反応槽 83 二次凝集槽 84 二次沈澱槽 85 上澄水 86 引抜き汚泥 Reference Signs List 21 raw water tank 22 pump 31 de-F step 32 first reaction tank 33 second reaction tank 34 third reaction tank 35 precipitation tank 36 supernatant water 37 drawn sludge 41 de-BOD de-N step 42 biological de-N tank 43 post-aeration tank 44 organism Settling tank 45 Pump 46 New line (sludge supply line) 47 Measuring box 48 Return sludge 49 Excess sludge 51 Dehydrator 52 Sludge mixing tank 53 Dewatered separated water 54 Dewatered cake 61 Conventional wastewater 62 New wastewater 63 Biologically treated water 64 Pull-out sludge 71 Primary F-elimination step 72 Primary reaction tank 73 Secondary reaction tank 74 Primary coagulation tank 75 Primary sedimentation tank 76 Supernatant water 77 Extraction sludge 81 Secondary de-flation step 82 Tertiary reaction tank 83 Secondary coagulation tank 84 Secondary sedimentation tank 85 Supernatant water 86 Drawn sludge
フロントページの続き (72)発明者 石井 栄 福島県西白河群西郷村大字小田倉字大平 150番地 信越半導体株式会社 白河工 場内 (56)参考文献 特開 昭63−270595(JP,A) 特公 昭63−32519(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 3/00 - 3/34 C02F 1/58 C02F 9/00 Continued on the front page (72) Inventor Sakae Ishii 150 Ohira, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima Prefecture Shirakawa Works, Shin-Etsu Semiconductor Co., Ltd. −32519 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3/00-3/34 C02F 1/58 C02F 9/00
Claims (2)
フッ化水素と、BOD成分と窒素化合物とを含有する排
水を脱フッ素処理工程の第1反応槽に導入し消石灰を添
加混合してフッ化水素をフッ化カルシウムとなし、次い
でこの排水を第2反応槽に導入し鉱酸を添加混合して前
記フッ化カルシウムを造粒すると共に、これら第1反応
槽、第2反応槽の少なくとも一方に微生物汚泥を添加混
合して過酸化水素の還元無害化処理を行い、さらに第2
反応槽からの無害化処理液に高分子凝集剤を添加混合し
て、前記微生物汚泥及び造粒物を凝集処理したのち沈澱
槽に導入して沈澱汚泥と上澄水に分離し、この上澄水中
のBOD成分及び窒素化合物は生物学的硝化脱窒素工程
で処理し、この工程の生物沈澱槽で沈殿分離された生物
汚泥を前記還元無害化処理用の微生物汚泥として利用す
ることを特徴とする過酸化水素含有排水の処理方法。 1. A wastewater containing hydrogen peroxide, at least hydrogen fluoride as an inorganic acid, a BOD component and a nitrogen compound is introduced into a first reaction tank in a defluorination treatment step, and slaked lime is added and mixed. Hydrogen is converted into calcium fluoride, and then the wastewater is introduced into a second reaction tank, and mineral acid is added and mixed to granulate the calcium fluoride. At least one of the first reaction tank and the second reaction tank is used. Microbial sludge is added and mixed to reduce hydrogen peroxide for detoxification.
A polymer flocculant was added to the detoxification treatment liquid from the reaction tank and mixed, and the microbial sludge and the granulated product were subjected to a flocculation treatment, and then introduced into a precipitation tank to be separated into precipitated sludge and supernatant water. organisms of BOD component and the nitrogen compounds is treated with biological nitrification denitrification step, which is precipitated separated in the biological settling tank of this step
A method for treating hydrogen peroxide-containing wastewater, wherein the sludge is used as the microbial sludge for the reduction detoxification treatment.
と、過酸化水素の還元無害化処理装置と、BOD成分及And hydrogen peroxide reduction detoxification equipment, BOD components and
び窒素化合物の生物学的硝化脱窒素装置とがこの順に連Biological nitrification and denitrification equipment for nitrogen and nitrogen compounds in this order.
結配備された排水の処理装置であって、前記脱フッ素処A wastewater treatment device, which is disposed and provided, wherein the defluoridation treatment is performed.
理装置は消石灰供給部を有する第1反応槽と、鉱酸供給The treatment device includes a first reaction tank having a slaked lime supply unit, and a mineral acid supply unit.
部を有する第2反応槽と、凝集反応槽と、沈殿槽とをこThe second reaction tank having a section, the coagulation reaction tank, and the precipitation tank
の順に連結して備え、前記生物学的硝化脱窒素装置は、The biological nitrification denitrification apparatus is connected in the order of
前記沈殿槽からの上澄水中に残留するBOD成分およびBOD components remaining in the supernatant water from the settling tank; and
窒素化合物を処理する生物処理槽と、該生物処理槽からA biological treatment tank for treating a nitrogen compound; and
の処理水中の生物汚泥を分離する生物沈殿槽とを備え、A biological sedimentation tank that separates biological sludge from the treated water of
該生物沈殿槽の生物汚泥排出部は前記第1反応槽、前記The biological sludge discharge part of the biological sedimentation tank is the first reaction tank,
第2反応槽のいずれか少なくとも一方に連絡されているConnected to at least one of the second reaction tanks
ことを特徴とする過酸化水素含有排水の処理装置。An apparatus for treating wastewater containing hydrogen peroxide, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4135832A JP3047622B2 (en) | 1992-04-28 | 1992-04-28 | Method and apparatus for treating wastewater containing hydrogen peroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4135832A JP3047622B2 (en) | 1992-04-28 | 1992-04-28 | Method and apparatus for treating wastewater containing hydrogen peroxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05305295A JPH05305295A (en) | 1993-11-19 |
JP3047622B2 true JP3047622B2 (en) | 2000-05-29 |
Family
ID=15160825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4135832A Expired - Lifetime JP3047622B2 (en) | 1992-04-28 | 1992-04-28 | Method and apparatus for treating wastewater containing hydrogen peroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3047622B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11470913B2 (en) | 2015-02-05 | 2022-10-18 | Adidas Ag | Plastic component and shoe |
US11504928B2 (en) | 2016-12-01 | 2022-11-22 | Adidas Ag | Method for the manufacture of a plastic component, plastic component, midsole and shoe |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3434438B2 (en) * | 1997-09-18 | 2003-08-11 | シャープ株式会社 | Wastewater treatment method and wastewater treatment device |
JP3684081B2 (en) * | 1998-08-10 | 2005-08-17 | シャープ株式会社 | Wastewater treatment equipment |
JP4136194B2 (en) * | 1999-05-26 | 2008-08-20 | 栗田工業株式会社 | Fluorine-containing wastewater treatment method |
JP3653422B2 (en) * | 1999-08-20 | 2005-05-25 | シャープ株式会社 | Waste water treatment method and waste water treatment equipment |
JP3978303B2 (en) * | 2000-04-07 | 2007-09-19 | シャープ株式会社 | Waste water treatment method and waste water treatment equipment |
JP4088630B2 (en) * | 2005-02-28 | 2008-05-21 | シャープ株式会社 | Wastewater treatment equipment |
JP4782576B2 (en) * | 2005-03-25 | 2011-09-28 | シャープ株式会社 | Wastewater treatment equipment |
JP5017172B2 (en) * | 2008-05-14 | 2012-09-05 | 株式会社神鋼環境ソリューション | Method and apparatus for treating peroxide-containing wastewater |
JP2015130844A (en) * | 2014-01-15 | 2015-07-23 | 株式会社片山化学工業研究所 | Decomposition treatment method for hydrogen peroxide |
-
1992
- 1992-04-28 JP JP4135832A patent/JP3047622B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11470913B2 (en) | 2015-02-05 | 2022-10-18 | Adidas Ag | Plastic component and shoe |
US11504928B2 (en) | 2016-12-01 | 2022-11-22 | Adidas Ag | Method for the manufacture of a plastic component, plastic component, midsole and shoe |
Also Published As
Publication number | Publication date |
---|---|
JPH05305295A (en) | 1993-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2812640B2 (en) | Wastewater treatment device and wastewater treatment method | |
US4069148A (en) | Industrial waste water treatment process | |
JP2001037467A (en) | Method and arrangement for treating wastewater containing both ammonia and phosphorus | |
JP3047622B2 (en) | Method and apparatus for treating wastewater containing hydrogen peroxide | |
JP2000051880A (en) | Method and apparatus for treating waste water | |
JP2000140884A (en) | Waste water treatment and waste water treatment device | |
CN105712564A (en) | Equipment for processing waste water through glyphosate production | |
JPH10277568A (en) | Treatment of organic matter-containing waste water | |
JPH0788500A (en) | Method for treating sewage countercurrent water | |
CN113184972B (en) | Method for removing organic pollutants in wastewater by sequencing batch reaction | |
JP3377346B2 (en) | Organic wastewater treatment method and apparatus | |
JPH0710388B2 (en) | Treatment method of wastewater containing organic matter | |
JP3736397B2 (en) | Method for treating organic matter containing nitrogen component | |
JP3449864B2 (en) | Method and apparatus for reducing organic sludge | |
JP3526141B2 (en) | Method and apparatus for reducing organic sludge and recovering phosphorus resources | |
JP3526143B2 (en) | Advanced wastewater treatment method | |
JPH11319889A (en) | Treatment of selenium-containing waste water and device therefor | |
JPH0585240B2 (en) | ||
JP2002326088A (en) | Method and apparatus for treating phosphorous and cod- containing water | |
JP2947684B2 (en) | Nitrogen removal equipment | |
JP3139337B2 (en) | Method and apparatus for treating liquid waste containing high COD and high nitrogen compounds | |
JPH0141115B2 (en) | ||
JP2002282874A (en) | Wastewater treating device | |
KR200194165Y1 (en) | Waste water disposal plant | |
JPS6146198B2 (en) |