[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3044160B2 - Light receiving device and traveling control device for beam light guided work vehicle - Google Patents

Light receiving device and traveling control device for beam light guided work vehicle

Info

Publication number
JP3044160B2
JP3044160B2 JP6068279A JP6827994A JP3044160B2 JP 3044160 B2 JP3044160 B2 JP 3044160B2 JP 6068279 A JP6068279 A JP 6068279A JP 6827994 A JP6827994 A JP 6827994A JP 3044160 B2 JP3044160 B2 JP 3044160B2
Authority
JP
Japan
Prior art keywords
light
vehicle
work
light receiving
guiding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6068279A
Other languages
Japanese (ja)
Other versions
JPH07281744A (en
Inventor
浩司 吉川
良三 黒岩
淳 増留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6068279A priority Critical patent/JP3044160B2/en
Publication of JPH07281744A publication Critical patent/JPH07281744A/en
Application granted granted Critical
Publication of JP3044160B2 publication Critical patent/JP3044160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、地上側に設けられたビ
ーム光投射手段にて投射される誘導用ビーム光に対する
車体横幅方向でのずれを検出すべく、その誘導用ビーム
光を受光する操向制御用光センサが、作業車に設けられ
たビーム光誘導式作業車用の受光装置、及び、かかる受
光装置を備えたビーム光誘導式作業車用の走行制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention receives a guiding light beam to detect a deviation in a vehicle width direction from a guiding light beam projected by a light beam projecting means provided on the ground side. The present invention relates to a light receiving device for a beam light guiding type working vehicle provided with a steering control optical sensor in a work vehicle, and a traveling control device for a beam light guiding type working vehicle provided with the light receiving device.

【0002】[0002]

【従来の技術】上記ビーム光誘導式作業車においては、
従来、例えば、ビーム光誘導式作業車としての田植え用
の作業車Vの場合について図20(a)に例示するよう
に、作業車Vは、矩形状の圃場である作業地Kの1辺M
2の長手方向に沿って投射される誘導用ビーム光A1を
車体左側の操向制御用センサS1で受光し、その誘導用
ビーム光A1に沿って自動走行する状態で、他の1辺M
1の一端部に設けた出入口Miから作業地Kに進入した
後、1辺M2の長手方向における両端側夫々の枕地部分
K1,K2にて旋回してその長手方向に沿って往復走行
しながら、中央側の作業対象部分Ksに対して植付け作
業する。その後、作業対象部分Ksの最終の走行行程の
終端部(図の右下位置)から辺M1に対向する辺M4に
隣接する第2枕地部分K2の最初の走行行程の始端部へ
向けて90度左旋回して移動し、この際、車体左側の操
向制御用センサS1で辺M2の長手方向に沿って投射さ
れる誘導用ビーム光A1を受光する状態から、車体右側
の操向制御用センサS1で辺M1の長手方向に沿って投
射される誘導用ビーム光A2を受光する状態に切り換え
る。その後、その誘導用ビーム光A2に沿う状態で第2
枕地部分K2の2つの走行行程を往復走行してから、第
2枕地部分K2の行程終端部から上記作業対象部分Ks
に対する作業で残しておいた図の下側の辺M3に隣接す
る走行行程部分K3の始端部に90度右旋回して(この
際、車体右側の操向制御用センサS1が受光する誘導用
ビーム光をA2からA1に切り換える)その走行行程部
分K3を走行し、次に、走行行程部分K3の終端部で右
旋回して(この際、車体右側の操向制御用センサS1が
受光する誘導用ビーム光をA1からA2に切り換える)
辺M1に隣接する第1枕地部分K1の外側の行程を非作
業状態で走行してから2つの行程を往復走行し、最後
に、第1枕地部分K1の行程終端部(図の上端)から9
0度左旋回して、出入口Miから作業地Kの外に退出す
る。
2. Description of the Related Art In the above-mentioned beam light guiding type working vehicle,
Conventionally, as shown in FIG. 20A, for example, in the case of a work vehicle V for rice planting as a beam light guiding work vehicle, the work vehicle V is one side M of a work place K which is a rectangular field.
2 is received by the steering control sensor S1 on the left side of the vehicle body and is guided along the longitudinal direction of the vehicle body 2 to automatically travel along the guiding beam light A1.
After entering the work place K from the entrance Mi provided at one end of the head 1, it turns at each of the headland portions K1 and K2 at both ends in the longitudinal direction of one side M2 while traveling back and forth along the longitudinal direction. The planting work is performed on the work target portion Ks on the center side. Thereafter, 90 from the end (the lower right position in the figure) of the final traveling stroke of the work target portion Ks to the beginning of the first traveling stroke of the second headland portion K2 adjacent to the side M4 facing the side M1. In this state, the steering control sensor S1 on the left side of the vehicle body receives the guiding light beam A1 projected along the longitudinal direction of the side M2 from the steering control sensor S1 on the left side of the vehicle body. At S1, the state is switched to a state of receiving the guiding light beam A2 projected along the longitudinal direction of the side M1. After that, the second light is applied along the guiding light beam A2.
After reciprocating the two traveling steps of the headland portion K2, the work target portion Ks is moved from the end of the stroke of the second headland portion K2.
To the starting end of the traveling stroke portion K3 adjacent to the lower side M3 of the figure left by the operation for the vehicle, turning right by 90 degrees (in this case, the guiding beam received by the steering control sensor S1 on the right side of the vehicle body). The light travels along the traveling stroke portion K3 (switching the light from A2 to A1), and then turns right at the end of the traveling stroke portion K3 (in this case, the guidance control sensor S1 on the right side of the vehicle body receives the light). (Switch the light beam from A1 to A2)
After traveling in a non-working state on the outer side of the first headland portion K1 adjacent to the side M1 and reciprocating two strokes, finally, the stroke end portion of the first headland portion K1 (upper end in the figure) From 9
The vehicle turns left by 0 degrees and leaves the work site K from the entrance Mi.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、作
業車Vを作業対象部分Ksの最終の走行行程の終端部か
ら第2枕地部分K2の最初の走行行程の始端部へ向けて
90度左旋回して移動させる場合(図20(a)の右下
位置)に、使用する操向制御用センサS1を車体左側の
操向制御用センサS1から車体右側の操向制御用センサ
S1に切り換え、その車体右側の操向制御用センサS1
が第2枕地部分K2の最初の走行行程の誘導用ビーム光
A2を受光するに伴い、その誘導用ビーム光A2の受光
情報に基づいて第2枕地部分K2の最初の走行行程に沿
って自動走行させることになる。しかし、図20(b)
に示すように、旋回途中において、車体右側の操向制御
用センサS1が前の行程の誘導用ビーム光A1を受光し
たり、あるいは、操向制御用センサS1が誘導用ビーム
光A1,A2の交差箇所に位置したときには、前の行程
の誘導用ビーム光A1と次の行程の誘導用ビーム光A2
を同時に受光する場合がある。前者の場合においては、
その受光した誘導用ビーム光A1を誤って次の行程の誘
導用ビーム光A2とみなし、後者の場合においては、前
の行程の誘導用ビーム光A1と次の行程の誘導用ビーム
光A2の区別ができないために、いずれの場合も、次の
行程(第2枕地部分K2の最初の走行行程)に沿って適
正に自動走行できないという不都合があった。
In the above prior art, the work vehicle V is moved 90 degrees from the end of the final travel of the work portion Ks to the beginning of the first travel of the second headland portion K2. When the vehicle is turned left (the lower right position in FIG. 20A), the steering control sensor S1 to be used is switched from the steering control sensor S1 on the left side of the vehicle to the steering control sensor S1 on the right side of the vehicle. Steering control sensor S1 on the right side of the vehicle
Receives the guiding light beam A2 in the first traveling process of the second headland portion K2, and along the first traveling process of the second headland portion K2 based on the light receiving information of the guiding beam light A2. It will be driven automatically. However, FIG.
As shown in the figure, during the turn, the steering control sensor S1 on the right side of the vehicle body receives the guiding light beam A1 of the previous stroke, or the steering control sensor S1 generates the guiding light beams A1 and A2. When located at the intersection, the guiding light beam A1 of the previous step and the guiding light beam A2 of the next step
May be received at the same time. In the former case,
The received guiding light beam A1 is erroneously regarded as the guiding light beam A2 of the next process, and in the latter case, the guiding light beam A1 of the previous process is distinguished from the guiding light beam A2 of the next process. In any case, there is a disadvantage that the vehicle cannot automatically travel properly along the next travel (the first travel travel of the second headland portion K2).

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、上記従来技術の欠点を解消すべ
く、操向制御用センサが自動走行すべき走行行程の誘導
用ビーム光を確実に受光することができるビーム光誘導
式作業車用の受光装置、及び、かかる受光装置を備えた
作業車が次の走行行程に沿って適正に自動走行すること
ができるビーム光誘導式作業車用の走行制御装置を得る
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to solve the above-mentioned drawbacks of the prior art, in which a steering control sensor automatically guides a travel path to be traveled. Light-receiving device for a light-guided work vehicle that can reliably receive light, and a light-guided work that enables a work vehicle equipped with such a light-receiving device to properly and automatically travel along the next travel path It is to obtain a traveling control device for a vehicle.

【0005】[0005]

【課題を解決するための手段】本発明によるビーム光誘
導式作業車用の受光装置は、地上側に設けられたビーム
光投射手段にて投射される誘導用ビーム光に対する車体
横幅方向でのずれを検出すべく、その誘導用ビーム光を
受光する操向制御用光センサが、作業車に設けられたビ
ーム光誘導式作業車用の受光装置であって、その第1の
特徴構成は、前記操向制御用光センサの受光部の前方側
に、車体前後方向を基準として車体横幅方向に所定角度
以上傾いた状態で入射する前記誘導用ビーム光を前記受
光部に入射させないように制限する第1入射光制限手段
が設けられている点にある。
According to the present invention, there is provided a light receiving device for a light beam guiding type working vehicle according to the present invention, which is displaced in a lateral direction of a vehicle body from a guiding light beam projected by a light beam projecting means provided on the ground side. A steering control optical sensor for receiving the guiding beam light is a light receiving device for a beam light guiding type working vehicle provided in a working vehicle, the first characteristic configuration of which is A light source for receiving the guidance light, which is incident on the front side of the light receiving unit of the steering control optical sensor at a predetermined angle or more in the vehicle width direction with respect to the vehicle longitudinal direction as a reference, so as not to be incident on the light receiving unit. (1) The point that the incident light limiting means is provided.

【0006】又、第2の特徴構成は、前記操向制御用光
センサの受光部の前方側に、車体前後方向を基準として
車体上下方向に所定角度以上傾いた状態で入射する光を
前記受光部に入射させないように制限する第2入射光制
限手段が設けられている点にある。
A second characteristic configuration is that the light incident on the front side of the light receiving section of the steering control optical sensor is inclined at a predetermined angle or more in the vertical direction of the vehicle with respect to the longitudinal direction of the vehicle. A second incident light restricting means for restricting the light from entering the portion.

【0007】又、第3の特徴構成は、前記ビーム光投射
手段からの2つの誘導用ビーム光が互いに直交する状態
で投射され、前記第1入射光制限手段が、車体前後方向
を基準として車体横幅方向に45度以上傾いた状態で入
射する前記誘導用ビーム光を前記受光部に入射させない
ように構成されている点にある。
A third characteristic configuration is that two guiding light beams from the light beam projecting means are projected in a state of being orthogonal to each other, and the first incident light restricting means is arranged so that the first incident light restricting means refers to the vehicle longitudinal direction as a reference. The present invention is characterized in that the guiding light beam incident in a state of being inclined at least 45 degrees in the lateral width direction is not incident on the light receiving unit.

【0008】又、第4の特徴構成は、前記第1入射光制
限手段が、垂直面内に沿う状態で車体横幅方向に所定間
隔を隔てて多数並置された縦壁状の第1遮光体から構成
され、前記第2入射光制限手段が、水平面内に沿う状態
で車体上下方向に所定間隔を隔てて多数並置された横壁
状の第2遮光体から構成されている点にある。
A fourth characteristic configuration is that the first incident light restricting means comprises a plurality of vertical wall-shaped first light shields juxtaposed at predetermined intervals in the width direction of the vehicle body along a vertical plane. The second incident light restricting means is constituted by a large number of side wall-shaped second light shields juxtaposed at predetermined intervals in the vehicle body vertical direction along a horizontal plane.

【0009】又、第5の特徴構成は、前記第1又は第2
入射光制限手段が、前記第1遮光体又は前記第2遮光体
を光透過性部材中に埋設保持するフィルム状体に形成さ
れている点にある。
A fifth characteristic configuration is that the first or the second
The incident light limiting means is formed in a film-like body that embeds and holds the first light shield or the second light shield in a light transmitting member.

【0010】又、本発明によるビーム光誘導式作業車用
の走行制御装置の特徴構成は、上記第1〜第5の特徴構
成を有する受光装置を備えた前記作業車が交差する状態
で設けた2つの走行行程の夫々に沿って自動走行するよ
うに、前記ビーム光投射手段が、前記2つの走行行程夫
々の長手方向に沿って誘導用ビーム光を投射するように
設けられ、前記作業車に、前記作業車の操向を司る操向
手段と、前記操向制御用光センサの受光情報に基づいて
前記作業車が前記2つの走行行程の夫々に沿って自動走
行するように前記操向手段の作動を制御し、且つ、前記
2つの走行行程の交差箇所において前記作業車が前記2
つの走行行程の一方の走行行程に沿う状態から設定旋回
パターンで旋回移動して、前記操向制御用光センサが前
記一方の走行行程における誘導用ビーム光を受光しなく
なってから次に誘導用ビーム光を受光するに伴い、その
受光した誘導用ビーム光の受光情報に基づいて前記作業
車が前記2つの走行行程の他方の走行行程に沿って自動
走行するように前記操向手段の作動を制御する制御手段
とが設けられている点にある。
The feature configuration of the traveling control device for a beam-guided work vehicle according to the present invention is provided in a state where the work vehicles provided with the light receiving devices having the above-described first to fifth feature configurations intersect. The light beam projecting means is provided so as to project the guiding light beam along the longitudinal direction of each of the two traveling steps so as to automatically travel along each of the two traveling steps. Steering means for controlling the steering of the work vehicle, and the steering means so that the work vehicle automatically travels along each of the two travel paths based on light reception information of the steering control optical sensor. And the work vehicle is controlled by the work vehicle at the intersection of the two traveling steps.
After turning along a set turning pattern from a state along one traveling stroke of the two traveling strokes, after the steering control optical sensor stops receiving the guiding beam light in the one traveling stroke, the guiding beam is then turned on. As the light is received, the operation of the steering means is controlled so that the work vehicle automatically travels along the other one of the two traveling steps based on the received information of the received guiding beam light. And control means for performing the control.

【0011】[0011]

【作用】本発明によるビーム光誘導式作業車用の受光装
置の第1の特徴構成によれば、地上側のビーム光投射手
段からの誘導用ビーム光が、車体前後方向を基準として
車体横幅方向に所定角度以上傾いた状態で入射するとき
には、その誘導用ビーム光は、操向制御用光センサの受
光部の前方側に設けた第1入射光制限手段にて制限され
て受光部に入射できない。一方、誘導用ビーム光が、車
体前後方向を基準として車体横幅方向に所定角度より小
さい角度傾いた状態で入射するときには、その誘導用ビ
ーム光は、上記第1入射光制限手段による制限を受けず
に受光部に入射して受光され、その受光情報に基づい
て、誘導用ビーム光に対する作業車の車体横幅方向での
ずれが検出されることになる。
According to the first characteristic configuration of the light receiving device for a light beam guided work vehicle according to the present invention, the guiding light beam from the light beam projecting means on the ground side is transmitted in the vehicle width direction with respect to the vehicle longitudinal direction. When the light beam is incident on the light source at a predetermined angle or more, the guiding light beam is restricted by the first incident light restricting means provided in front of the light receiving portion of the steering control optical sensor and cannot enter the light receiving portion. . On the other hand, when the guiding light beam is incident on the vehicle body at a smaller angle than the predetermined angle in the vehicle width direction with respect to the longitudinal direction of the vehicle, the guiding light beam is not restricted by the first incident light restricting means. Then, based on the received light information, a shift of the work vehicle in the body width direction of the work vehicle with respect to the guide light beam is detected.

【0012】又、第2の特徴構成によれば、車体前後方
向を基準として車体上下方向に所定角度以上傾いた状態
で入射する太陽光等は、操向制御用光センサの受光部の
前方側に設けた第2入射光制限手段にて制限されて受光
部に入射できず、受光情報も得られない。一方、誘導用
ビーム光は、車体前後方向を基準として車体上下方向に
所定角度より小さい角度傾いた状態で入射して、上記第
2入射光制限手段による制限を受けずに受光部に入射し
て受光情報が得られ、その受光情報に基づいて、誘導用
ビーム光に対する作業車の車体横幅方向でのずれが検出
される。
Further, according to the second characteristic configuration, sunlight or the like incident on the vehicle body at a predetermined angle or more in the vehicle vertical direction with respect to the vehicle front-rear direction is located on the front side of the light receiving section of the steering control optical sensor. And cannot be incident on the light receiving section because of the second incident light limiting means provided in the above. On the other hand, the guiding beam light is incident on the vehicle body in the state of being inclined at an angle smaller than a predetermined angle in the vehicle vertical direction with respect to the vehicle longitudinal direction, and is incident on the light receiving unit without being restricted by the second incident light restricting means. Light reception information is obtained, and based on the light reception information, a deviation of the work vehicle in the vehicle body width direction with respect to the guiding light beam is detected.

【0013】又、第3の特徴構成によれば、互いに直交
する状態で投射される2つの誘導用ビーム光の一方が、
車体前後方向を基準として車体横幅方向に45度以上傾
いた状態で入射すると、その誘導用ビーム光は、第1入
射光制限手段にて制限されて受光部に入射できない一方
で、他方の誘導用ビーム光は、車体前後方向を基準とし
て車体横幅方向に45度より小さい角度傾いた状態で入
射して、第1入射光制限手段による制限を受けずに受光
部に入射して受光され、その受光情報に基づいて、誘導
用ビーム光に対する作業車の車体横幅方向でのずれが検
出されることになる。
According to the third characteristic configuration, one of the two guiding light beams projected orthogonally to each other is:
When the light beam enters the vehicle in a state where it is inclined at an angle of 45 degrees or more in the vehicle body width direction with respect to the vehicle body front-rear direction, the guiding light beam is restricted by the first incident light restricting means and cannot enter the light receiving portion, while the other The light beam enters the vehicle at an angle of less than 45 degrees in the vehicle width direction with respect to the vehicle front-rear direction, enters the light receiving unit without being restricted by the first incident light restricting means, and is received. Based on the information, the shift of the work vehicle in the vehicle width direction with respect to the guide light beam is detected.

【0014】又、第4の特徴構成によれば、例えば図8
及び図9に例示するように、垂直面内に沿う状態で車体
横幅方向に所定間隔を隔てて多数並置された縦壁状の第
1遮光体20aの垂直面内に沿う壁長さaと車体横幅方
向の間隔bとによって決まる所定角度以上の傾き角θ
1、車体前後方向Jを基準として車体横幅方向に傾いた
状態で入射する誘導用ビーム光A1,A2は、その縦壁
状の第1遮光体20aにて遮光されて受光部S1a(S
1b)に入射できない。又、水平面内に沿う状態で車体
上下方向に所定間隔を隔てて多数並置された横壁状の第
2遮光体21aの水平面内に沿う壁長さa’と車体上下
方向の間隔b’とによって決まる所定角度以上の傾き角
θ2、車体前後方向Jを基準として車体上下方向に傾い
た状態で入射する光は、その横壁状の第2遮光体21a
にて遮光されて受光部S1a(S1b)に入射できな
い。
According to the fourth characteristic configuration, for example, FIG.
As illustrated in FIG. 9, the wall length a along the vertical plane of the vertical wall-shaped first light-shielding members 20a arranged in parallel with a predetermined interval in the vehicle body width direction along the vertical plane along the vertical plane and the vehicle body An inclination angle θ equal to or greater than a predetermined angle determined by the width b in the width direction.
1. The guiding light beams A1 and A2 incident in a state of being inclined in the vehicle body width direction with respect to the vehicle body front-rear direction J are shielded by the first wall-shaped first light shield 20a, and are received by the light receiving section S1a (S
1b) cannot be incident. Also, it is determined by the wall length a 'along the horizontal plane of the horizontal wall-shaped second light-shielding bodies 21a which are juxtaposed at predetermined intervals in the vehicle body vertical direction along the horizontal plane and the distance b' in the vehicle vertical direction. The light incident in a state of being inclined in the vertical direction of the vehicle body with respect to the vehicle body front-rear direction J with a tilt angle θ2 equal to or larger than a predetermined angle is reflected by the second light-shielding body 21 a having
And cannot enter the light receiving section S1a (S1b).

【0015】又、第5の特徴構成によれば、例えば図8
及び図9に例示するように、多数の縦壁状の第1遮光体
20aが光透過性部材22中に埋設保持されるととも
に、車体前後方向を基準として車体横幅方向に上記所定
角度以上の傾き角θ1で入射する誘導用ビーム光A1,
A2が、光透過性部材22は通過するが縦壁状の第1遮
光体20aにて遮光されて受光部S1a(S1b)に入
射できず、又、多数の横壁状の第2遮光体21aが光透
過性部材22中に埋設保持されるとともに、車体前後方
向を基準として車体上下方向に上記所定角度以上の傾き
角θ2で入射する光が、光透過性部材22は通過するが
横壁状の第2遮光体21aにて遮光されて受光部S1a
(S1b)に入射できない。
According to the fifth characteristic configuration, for example, FIG.
As illustrated in FIG. 9, a large number of vertical wall-shaped first light-shielding members 20 a are embedded and held in the light-transmitting member 22, and are inclined at a predetermined angle or more in the vehicle width direction with respect to the vehicle front-rear direction. Guiding light beam A1, incident at an angle θ1
A2 passes through the light transmissive member 22, but is blocked by the first light shield 20a having a vertical wall shape, cannot enter the light receiving portion S1a (S1b), and has a large number of second light shield members 21a having a horizontal wall shape. The light that is embedded in and held in the light transmissive member 22 and that is incident on the vehicle body up-down direction at an inclination angle θ2 equal to or greater than the predetermined angle with respect to the vehicle body front-rear direction passes through the light transmissive member 22 but has 2 The light receiving unit S1a is shielded from light by the light shield 21a.
(S1b) cannot be incident.

【0016】又、本発明によるビーム光誘導式作業車用
の走行制御装置の特徴構成によれば、作業車は、誘導用
ビーム光を操向制御用光センサにて受光した情報から検
出される車体横幅方向でのずれに基づいて操向手段を作
動させて、交差する状態で設けた2つの走行行程の一方
の走行行程に沿って自動走行し、上記2つの走行行程の
交差箇所において、操向手段を作動させて上記一方の走
行行程に沿う状態から設定旋回パターンで旋回移動す
る。このとき、例えば図18に例示するように、右側の
操向制御用光センサS1が上記一方の走行行程における
誘導用ビーム光A1を受光しなくなってから、使用セン
サを左側の操向制御用光センサS1に切り換えながら、
この左側の操向制御用光センサS1が次に受光する誘導
用ビーム光を調べると、旋回途中の図の(ロ)の位置で
は、その左側の操向制御用光センサS1に入射する前の
行程の誘導用ビーム光A1は、車体前後方向Jを基準と
して車体横幅方向に前記所定角度以上の傾き角θ1であ
るので、受光部に入射できず受光情報は得られない。一
方、旋回動作をほぼ終了した図の(ハ)の位置で、その
左側の操向制御用光センサS1に入射する後の行程の誘
導用ビーム光A2は、車体前後方向Jを基準として車体
横幅方向に上記所定角度より小さい傾き角であるので受
光部に入射して受光情報は得られる。従って、その受光
した誘導用ビーム光A2の受光情報から検出される車体
横幅方向でのずれに基づいて操向手段を作動させて、他
方の走行行程に沿って自動走行する。尚、図の(ロ)で
二点鎖線で示すように、仮に、両方の誘導用ビーム光A
1,A2を同時受光した場合にも、上述のように後の行
程のビーム光A2のみ入射して受光情報が得られる。
Further, according to the characteristic configuration of the traveling control device for a light beam guided work vehicle according to the present invention, the work vehicle is detected from information received by the steering control light sensor for the guided light beam. The steering device is operated based on the deviation in the lateral width of the vehicle body to automatically travel along one of the two traveling processes provided in an intersecting state, and the steering device is operated at the intersection of the two traveling processes. The directional means is operated to make a turning movement in a set turning pattern from a state along the one traveling stroke. At this time, as shown in FIG. 18, for example, after the right steering control optical sensor S1 does not receive the guiding light beam A1 in the one traveling stroke, the used sensor is changed to the left steering control light. While switching to sensor S1,
When the guiding light beam received by the steering control optical sensor S1 on the left side is examined next, at the position (b) in the drawing in the middle of turning, the light before entering the steering control optical sensor S1 on the left side is shown. Since the guiding light beam A1 in the process has an inclination angle θ1 equal to or larger than the predetermined angle in the vehicle width direction with respect to the vehicle front-rear direction J, the light beam cannot be incident on the light receiving unit and light receiving information cannot be obtained. On the other hand, at the position (c) in the figure where the turning operation is almost completed, the guiding light beam A2 of the stroke after being incident on the steering control optical sensor S1 on the left side thereof is the vehicle width in the vehicle longitudinal direction J as a reference. Since the inclination angle in the direction is smaller than the predetermined angle, the light is incident on the light receiving section and light receiving information is obtained. Therefore, the steering device is operated based on the deviation in the vehicle width direction detected from the received light information of the received guiding light beam A2, and the vehicle automatically travels along the other traveling path. As shown by the two-dot chain line in (b) of FIG.
Even when the light beams A1 and A2 are received simultaneously, as described above, only the light beam A2 in the subsequent process is incident and light reception information is obtained.

【0017】[0017]

【発明の効果】従って、本発明によるビーム光誘導式作
業車用の受光装置の第1の特徴構成によれば、車体前後
方向を基準として車体横幅方向に所定角度よりも小さい
角度傾いた状態で入射する誘導用ビーム光だけが、操向
制御用光センサの受光部に入射して受光されるので、通
常、作業車の車体前後方向の両側所定角度以内に投射さ
れる誘導用ビーム光を受光できる一方で、作業車の車体
前後方向から車体横幅方向に大きく傾いた誘導用ビーム
光を誤って受光することがなくなって、操向制御用セン
サが適正な誘導用ビーム光を確実に受光でき、もって、
その受光情報に基づく誘導用ビーム光に対する作業車の
車体横幅方向でのずれ検出が適正にできるビーム光誘導
式作業車用の受光装置が得られる。
According to the first aspect of the light receiving device for a light beam guided work vehicle according to the present invention, the light receiving device is tilted at an angle smaller than a predetermined angle in the vehicle width direction with respect to the vehicle front-rear direction. Since only the incident guiding light beam enters the light receiving portion of the steering control optical sensor and is received, the guiding light beam that is normally projected within a predetermined angle on both sides in the longitudinal direction of the vehicle body of the work vehicle is received. On the other hand, the guiding beam light greatly inclined in the vehicle width direction from the vehicle front-rear direction of the working vehicle is not erroneously received, and the steering control sensor can reliably receive the appropriate guiding beam light, So,
A light receiving device for a light guide type work vehicle, which can appropriately detect a deviation of the work vehicle in the lateral width direction of the work vehicle with respect to the guide light beam based on the received light information.

【0018】又、第2の特徴構成によれば、誘導用ビー
ム光は操向制御用光センサの受光部に入射させながら、
誘導用ビーム光以外の太陽光等の外乱光は、操向制御用
光センサの受光部に入射させないので、誘導用ビーム光
のみを確実に受光でき、もって、上記第1の特徴構成に
よる効果を実現する際の好適な手段が得られる。
According to the second characteristic configuration, the guiding light beam is made incident on the light receiving portion of the steering control optical sensor,
Since disturbance light such as sunlight other than the guiding beam light is not made incident on the light receiving portion of the steering control optical sensor, only the guiding beam light can be reliably received, and the effect of the first characteristic configuration can be obtained. Suitable means for realization are obtained.

【0019】又、第3の特徴構成によれば、例えば、矩
形状の作業地の隣接する2辺夫々に平行な状態でビーム
光誘導式作業車を自動走行させる場合において、上記第
1の特徴構成による効果を実現する際の好適な手段が得
られる。
According to the third feature configuration, for example, in the case where the light beam guided work vehicle is automatically driven in a state parallel to each of two adjacent sides of a rectangular work place, the first feature is provided. Suitable means for realizing the effect of the configuration can be obtained.

【0020】又、第4の特徴構成によれば、第1又は第
2入射光制限手段が、例えば黒色の金属板や樹脂板等の
簡素な部材を構成要素として形成でき、もって、上記第
の特徴構成による効果を実現する際の好適な手段が得
られる。
Further, according to the fourth characteristic configuration, the first or second incident light restricting means can be formed as a simple member such as a black metal plate or a resin plate as a constituent element.
Suitable means for realizing the effect of the second characteristic configuration can be obtained.

【0021】又、第5の特徴構成によれば、第1又は第
2入射光制限手段を、例えば黒色の金属板や樹脂板等を
透明樹脂等の光透過性部材中に埋設保持させたフィルム
状体に形成して、そのフィルム状体を操向制御用光セン
サの受光部の前面に貼り付ける等の簡素な構造が実現で
き、もって、上記第4の特徴構成における一層好適な手
段が得られる。
According to the fifth characteristic configuration, the first or second incident light limiting means is a film in which, for example, a black metal plate or a resin plate is embedded and held in a light-transmitting member such as a transparent resin. A simple structure such as forming the film-like body and attaching the film-like body to the front surface of the light receiving portion of the steering control optical sensor can be realized, thereby obtaining more preferable means in the fourth characteristic configuration. Can be

【0022】又、本発明によるビーム光誘導式作業車用
の走行制御装置の特徴構成によれば、作業車が、2つの
走行行程の交差箇所において一方の走行行程に沿う状態
から隣接する次の走行行程に沿う状態に隣接する走行行
程間で旋回移動する場合に、操向制御用センサが旋回後
の次の走行行程の誘導用ビーム光を確実に受光し、その
受光情報に基づいて次の走行行程に沿って適正に自動走
行することができるビーム光誘導式作業車用の走行制御
装置が得られる。
Further, according to the characteristic configuration of the traveling control device for a beam-guided work vehicle according to the present invention, the work vehicle moves from the state along one traveling stroke at the intersection of the two traveling strokes to the next traveling vehicle. In the case of a turning movement between adjacent traveling steps in a state along the traveling step, the steering control sensor surely receives the guiding light beam of the next traveling step after the turning, and based on the received light information, the next A travel control device for a beam-guided work vehicle that can appropriately and automatically travel along the travel path is obtained.

【0023】[0023]

【実施例】以下、本発明をビーム光誘導式作業車として
の田植え用の作業車に適用した場合の実施例を図面に基
づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a rice planting work vehicle as a light beam guided work vehicle will be described below with reference to the drawings.

【0024】図1に示すように、矩形状の作業地(圃
場)Kを囲む複数辺のうちの一つの基準辺M1の一端
(図の上端)部に、その基準辺M1に隣接する隣接辺M
2,M3の長手方向に沿って走行して作業車Vが進入及
び退出する出入口Miを設け、そして、前記隣接辺M
2,M3の長手方向において、作業地Kの両端側夫々を
枕地部分K1,K2とし且つ中央側部分を作業対象部分
Ksとした状態で、前記隣接辺M2,M3の長手方向に
沿って作業車Vを往復走行させながら前記作業対象部分
Ksに対して作業する往復作業を行い、その後、両枕地
部分K1,K2において、作業車Vを基準辺M1の長手
方向に沿って往復走行させながら枕地部分K1,K2に
対して作業する枕地作業を行う。尚、前記作業対象部分
Ksと両枕地部分K1,K2とは、隣接辺M2,M3の
長手方向における作業対象部分Ksの両端位置に基準辺
M1に沿う状態で設けた右側及び左側の2本の境界線
Y,Yで区分けされている。
As shown in FIG. 1, one end (upper end in the figure) of one reference side M1 of a plurality of sides surrounding a rectangular work field (field) K, an adjacent side adjacent to the reference side M1 M
2, an entrance Mi through which the work vehicle V enters and exits while traveling along the longitudinal direction of M3, and the adjacent side M
In the longitudinal direction of M2 and M3, work is performed along the longitudinal direction of the adjacent sides M2 and M3, with both end sides of the work site K being headland portions K1 and K2 and the center portion being a work target portion Ks. A reciprocating operation for working on the work target portion Ks is performed while the vehicle V reciprocates, and then the work vehicle V is reciprocated along the longitudinal direction of the reference side M1 in both headland portions K1 and K2. Headland work is performed on the headland portions K1 and K2. The work target portion Ks and the headland portions K1 and K2 are two right and left sides provided along the reference side M1 at both end positions of the work target portion Ks in the longitudinal direction of the adjacent sides M2 and M3. Are separated by boundary lines Y, Y.

【0025】前記作業対象部分Ksにおいて基準辺M1
の長手方向に並ぶ複数の走行行程としての作業行程R1
の夫々に沿って作業車Vを誘導すべく、誘導用ビーム光
A1を作業行程R1の長手方向に沿って投射する第1ビ
ーム光投射装置B1が設けられ、又、一対の枕地部分K
1,K2のうちの基準辺M1に隣接する第一枕地部分K
1及び基準辺M1に対向する対向辺M4に隣接する第二
枕地部分K2の夫々において、隣接辺M2,M3の長手
方向に並ぶ複数の走行行程としての作業行程R2の夫々
に沿って作業車Vを誘導すべく、誘導用ビーム光A2を
作業行程R2の長手方向に沿って投射する第2ビーム光
投射装置B2が設けられている。即ち、作業車Vが交差
する(直交する)状態で設けた2つの走行行程R1,R
2の夫々に沿って自動走行するように、前記2つの走行
行程R1,R2夫々の長手方向に沿って、つまり基準辺
M1及び隣接辺M2の長手方向の夫々に沿って互いに直
交する状態で2つの誘導用ビーム光A1,A2を投射す
るビーム光投射手段としての2つのビーム光投射装置B
1,B2が、地上側に設けられている。
The reference side M1 in the work target portion Ks
Work process R1 as a plurality of traveling processes arranged in the longitudinal direction of the vehicle
And a first light beam projection device B1 for projecting the light beam A1 for guiding along the longitudinal direction of the work process R1 in order to guide the work vehicle V along each of the pair of headland portions K
First headland portion K adjacent to reference side M1 of K1 and K2
In each of the second headland portions K2 adjacent to the opposing side M4 opposing the reference side M1 and the reference side M1, the work vehicle moves along each of a plurality of operation steps R2 as a plurality of traveling steps arranged in the longitudinal direction of the adjacent sides M2 and M3. In order to guide V, a second light beam projection device B2 that projects the guiding light beam A2 along the longitudinal direction of the work process R2 is provided. That is, two traveling steps R1 and R provided in a state where the work vehicle V intersects (orthogonally).
2 along the longitudinal directions of the two traveling steps R1 and R2, that is, along the longitudinal directions of the reference side M1 and the adjacent side M2, respectively. Two light beam projection devices B as light beam projection means for projecting the two guiding light beams A1 and A2
1, B2 are provided on the ground side.

【0026】上記第1ビーム光投射装置B1は、基本的
に前記複数の作業行程R1のうちの隣接する2個の作業
行程に対して1個の割合でその両作業行程の境界位置に
設置されるが、図は作業行程R1の数が奇数の場合を示
しており、最上端の作業行程R1に対してのみ1個の第
1ビーム光投射装置B1が配置されている。又、第2ビ
ーム光投射装置B2は、前記複数の作業行程R2が2個
であるのでその作業行程の境界位置に設置される。又、
図には、隣接辺M2,M3の長手方向において第2ビー
ム光投射装置B2からの誘導用ビーム光A2の投射位置
よりも内側に、その誘導用ビーム光A2と平行にビーム
光A3を投射する第3ビーム光投射装置B3が設けられ
ている。尚、詳述はしないが、各ビーム光投射装置B
1,B2,B3はレーザー装置等にて構成され、各ビー
ム光A1,A2,A3は垂直方向の所定角度範囲に走査
される(図2参照)。
The first light beam projection device B1 is basically installed at a boundary position between two adjacent work steps of the plurality of work steps R1 at a ratio of one to the two work steps. However, the figure shows a case where the number of work steps R1 is an odd number, and one first light beam projection device B1 is arranged only for the uppermost work step R1. Further, the second light beam projection device B2 is installed at the boundary position of the work process because the plurality of work processes R2 are two. or,
In the figure, the light beam A3 is projected inside the projection position of the light beam A2 for guidance from the second light beam projection device B2 in the longitudinal direction of the adjacent sides M2 and M3 in parallel with the light beam A2 for guidance. A third light beam projection device B3 is provided. Although not described in detail, each beam light projection device B
Reference numerals 1, B2, and B3 are configured by a laser device or the like, and the light beams A1, A2, and A3 are scanned in a predetermined angle range in the vertical direction (see FIG. 2).

【0027】次に、図1に基づいて、作業車Vの走行経
路について説明する。先ず、隣接辺M2,M3の長手方
向に沿って出入口Miに連なる最終作業地部分R1a、
及び、出入口Miから離れて位置する方の隣接辺M3に
隣接する中継用作業地部分R1bを残して前記往復作業
を行う。ここで、最終作業地部分R1aは、基準辺M1
の長手方向に並ぶ複数の作業行程R1のうちの最上端の
作業行程に対応する作業地部分であり、中継用作業地部
分R1bは、上記複数の作業行程R1のうちの下端側の
2つの作業行程に対応する作業地部分である。
Next, the traveling route of the work vehicle V will be described with reference to FIG. First, a final work area portion R1a connected to the entrance Mi along the longitudinal direction of the adjacent sides M2 and M3,
In addition, the reciprocating operation is performed while leaving the relay work site portion R1b adjacent to the adjacent side M3 that is located away from the entrance Mi. Here, the final work place portion R1a is the reference side M1
Of the plurality of work steps R1 arranged in the longitudinal direction of the work area, the work place part corresponding to the uppermost work step, and the relay work place part R1b is the lower work side of the plurality of work steps R1. This is the work area corresponding to the process.

【0028】前記往復作業は、具体的には、前記中継用
作業地部分R1bを除いて出入口Miから一番遠い位置
の作業行程R1を、その始端部の作業開始位置を示す右
側の境界線Y上のPst点から図の左方向に向かって開
始される。そのため、図に示す経路に沿って、途中のN
h点で停止して最初の苗補給を行いながら、Pst点ま
で非作業状態で前走行させる。尚、この後も、作業車V
が各作業行程R1,R2の基準辺M1側の始端部に停止
したときに苗の消費状態に応じて適宜苗補給がなされ
る。Pst点に着いたら、植え付け装置6を駆動して植
え付け作業を開始し、以後、左右の枕地部分K1,K2
で180度旋回しながら各作業行程R1を往復走行し、
作業対象部分Ksの最終作業行程R1(図の上から2番
目の行程)において、右側の操向制御用光センサS1の
検出情報に基づいて誘導用ビーム光A1に誘導されなが
ら、右側境界線Y上の終端位置Penまで走行する。
In the reciprocating operation, specifically, the work route R1 farthest from the entrance Mi except for the relay work site portion R1b is defined by the right boundary line Y indicating the work start position at the start end thereof. It starts from the upper Pst point toward the left in the figure. Therefore, along the route shown in FIG.
While the vehicle is stopped at the point h and the first seedling replenishment is performed, the vehicle travels forward to the Pst point in a non-working state. After this, the work vehicle V
Is stopped at the start end of each of the work steps R1 and R2 on the reference side M1 side, seedling replenishment is appropriately performed according to the consumption state of the seedlings. Upon reaching the Pst point, the planting device 6 is driven to start planting work, and thereafter, the left and right headland portions K1, K2
Reciprocating in each work process R1 while turning 180 degrees,
In the final work process R1 (the second process from the top in the drawing) of the work target portion Ks, the right boundary line Y is guided by the guide light beam A1 based on the detection information of the right steering control optical sensor S1. The vehicle travels to the upper end position Pen.

【0029】この後、前記一対の枕地部分K1,K2の
うちの基準辺M1に隣接する第一枕地部分K1、及び、
基準辺M1に対向する対向辺M4に隣接する第二枕地部
分K2を作業する前記枕地作業を行い、且つ、その枕地
作業において、第一枕地部分K1と第二枕地部分K2間
の移行の際に前記中継用作業地部分R1bを走行させな
がらその中継用作業地部分R1bを作業し、最後に、第
二枕地部分K2から出入口Miに向けて最終作業地部分
R1aを走行させながら最終作業地部分R1aを作業す
るように設定されている。
Thereafter, a first headland portion K1 adjacent to the reference side M1 of the pair of headland portions K1 and K2, and
The headland work of working the second headland portion K2 adjacent to the opposite side M4 facing the reference side M1 is performed, and in the headland work, the headland work is performed between the first headland portion K1 and the second headland portion K2. In the case of the transition, the work area R1b for relay is operated while traveling the work area R1b for relay, and finally, the final work area R1a is run from the second headland portion K2 toward the entrance Mi. It is set so as to work on the final work place portion R1a.

【0030】具体的には、先ず、上記終端位置Penか
ら第二枕地部分K2の2つの作業行程R2のうちの内側
の作業行程R2の始端部に移動すべく、右側の操向制御
用光センサS1の検出情報に基づいて誘導用ビーム光A
1に誘導されながら、上記終端位置Penから図の一番
右側の誘導用ビーム光A2を前方側センサS2aが受光
する位置まで後進した後、前進状態に切り換えて90度
右旋回し、更に、受光用の操向制御用光センサS1を左
側の操向制御用光センサS1に切り換え、その左側の操
向制御用光センサS1の受光情報に基づいて誘導用ビー
ム光A2に誘導されながら、横から投射される誘導用ビ
ーム光A1をトリガー用の後方側センサS2bが受光し
た位置から所定距離の位置まで後進状態で走行して植付
開始位置に至る。そして、その作業行程R2を、前進状
態で左側の操向制御用光センサS1の検出情報に基づい
て誘導用ビーム光A2に誘導されながら自動走行する。
Specifically, first, the right steering control light is moved from the end position Pen to the start end of the inner work process R2 of the two work processes R2 of the second headland portion K2. Guiding light beam A based on the detection information of sensor S1
1, while traveling backward from the end position Pen to the position where the rightmost guiding light beam A2 in the figure is received by the front-side sensor S2a, switching to the forward state, turning right by 90 degrees, and further receiving light. Is switched to the left-side steering control optical sensor S1, and is guided from the side while being guided by the guiding beam light A2 based on the light reception information of the left-side steering control optical sensor S1. The vehicle travels in a reverse state from the position where the projected guiding light beam A1 is received by the trigger rear sensor S2b to a position at a predetermined distance to reach the planting start position. Then, the vehicle automatically travels in the work process R2 while being guided by the guiding light beam A2 based on the detection information of the left steering control optical sensor S1 in the forward state.

【0031】以後、第二枕地部分K2の内側の作業行程
R2、中継用作業地部分R1bの内側の行程R1b、第
一枕地部分K1の内側の作業行程R2、第一枕地部分K
1の外側の作業行程R2、中継用作業地部分R1bの外
側の行程R1b、及び、第二枕地部分K2の外側の作業
行程R2をその順序で、各行程の終端部で次の行程の始
端部へ旋回移動しながら自動走行し、最後に、最終作業
地部分R1aを前進状態で直進走行して出入口Miから
作業地外に退出する。
Thereafter, the work stroke R2 inside the second headland part K2, the work R1b inside the relay work land part R1b, the work stroke R2 inside the first headland part K1, and the first headland part K
1, the outer process R2, the outer process R1b outside the relay work site portion R1b, and the outer process R2 outside the second headland portion K2, in that order, at the end of each process at the beginning of the next process. The vehicle automatically travels while turning and moving to the section. Finally, the vehicle travels straight ahead in the final work place portion R1a in the forward state and exits the work place from the entrance Mi.

【0032】尚、前記往復作業及び前記枕地作業におけ
る各作業行程の夫々を前進状態で行わせるために、作業
車Vを一行程分前進走行させたのち、180度又は90
度向き変更させながら隣接する行程に移動させる旋回を
行わせている。即ち、前記往復作業における各作業行程
R1間及び前記枕地作業における各作業行程R2間の移
動のための旋回では、180度向き変更され、前記往復
作業の作業行程R1から前記枕地作業の作業行程R2へ
の移動、枕地作業の作業行程R2と前記中継用作業地部
分R1b間の移動及び枕地作業の作業行程R2から前記
最終作業地部分R1aへの移動のための旋回では、90
度向き変更される。
In order to carry out each of the work steps in the reciprocating work and the headland work in the forward state, the work vehicle V is moved forward by one stroke and then moved 180 degrees or 90 degrees.
A turn is made to move to an adjacent stroke while changing the direction. That is, in the turning for movement between the respective work processes R1 in the reciprocating work and between the respective work processes R2 in the headland work, the direction is changed by 180 degrees, and the work of the headland work is performed from the work process R1 of the reciprocating work. In the turning for the movement to the process R2, the work process R2 of the headland work and the relay work site portion R1b, and the turning for moving from the work process R2 of the headland work to the final work site portion R1a, 90
The direction is changed.

【0033】前記作業車Vの構成について説明すれば、
図2及び図3に示すように、左右一対の前輪3及び後輪
4を備えた車体5の後部に、対地作業状態と非作業状態
とに切換自在な苗植え付け装置6が、昇降自在で且つ駆
動停止自在に設けられている。つまり、下降状態で駆動
されているときが対地作業状態であり、これ以外の状態
は非作業状態となる。又、図4に示すように、前後輪
3,4は、左右を一対として各別に操向操作自在に構成
され、操向用の油圧シリンダ7,8と、それらに対する
電磁操作式の制御弁9,10とが設けられている。つま
り、前輪3又は後輪4の一方のみを操向する2輪ステア
リング形式、前後輪3,4を逆位相で且つ同角度に操向
する4輪ステアリング形式、前後輪3,4を同位相で且
つ同角度に操向する平行ステアリング形式の3種類のス
テアリング形式を選択使用できるようになっている。以
上より、両油圧シリンダ7,8及び両制御弁9,10に
よって、作業車Vの操向を司る操向手段7〜10が構成
される。
The construction of the working vehicle V will be described.
As shown in FIGS. 2 and 3, a seedling planting device 6 that can be switched between a ground working state and a non-working state is provided at a rear portion of a vehicle body 5 having a pair of left and right front wheels 3 and a rear wheel 4 so as to be able to move up and down and The drive is provided so as to be freely stopped. That is, when the vehicle is driven in the lowered state, it is the ground work state, and other states are the non-work state. As shown in FIG. 4, the front and rear wheels 3, 4 are configured so that the left and right wheels can be individually steered, and the steering hydraulic cylinders 7, 8 and the electromagnetically operated control valves 9 for them are controlled. , 10 are provided. That is, a two-wheel steering system in which only one of the front wheel 3 or the rear wheel 4 is steered, a four-wheel steering system in which the front and rear wheels 3, 4 are steered in the opposite phase and at the same angle, and the front and rear wheels 3, 4 in the same phase In addition, three types of steering systems, that is, a parallel steering system that is steered at the same angle, can be selectively used. As described above, the two hydraulic cylinders 7 and 8 and the two control valves 9 and 10 constitute steering means 7 to 10 for steering the work vehicle V.

【0034】図4中、11はエンジンEからの出力を変
速して前後輪3,4の夫々を同時に駆動する油圧式無段
変速装置、12はその変速操作用の電動モータ、13は
植え付け装置6の昇降用油圧シリンダ、14はその制御
弁、15はエンジンEによる植え付け装置6の駆動を断
続する電磁操作式の植え付けクラッチ、16は作業車V
の走行並びに植え付け装置6の作動を制御するためのマ
イクロコンピュータ利用の制御装置であって、後述の各
種センサによる検出情報及び予め記憶された作業データ
に基づいて、変速用モータ12、各制御弁9,10,1
4、及び、植え付けクラッチ15の夫々を制御するよう
に構成されている。
In FIG. 4, reference numeral 11 denotes a hydraulic stepless transmission for shifting the output from the engine E to simultaneously drive each of the front and rear wheels 3, 4; 12, an electric motor for the shift operation; and 13, a planting device. 6, a hydraulic cylinder for raising and lowering, 14 a control valve thereof, 15 an electromagnetically operated planting clutch for intermittently driving the planting device 6 by the engine E, and 16 a work vehicle V
A control device using a microcomputer for controlling the running of the plant and the operation of the planting device 6, based on information detected by various sensors described later and work data stored in advance, the shift motor 12, the control valves 9 , 10,1
4, and each of the planting clutches 15 is configured to be controlled.

【0035】作業車Vに装備されるセンサ類について説
明すれば、図4に示すように、前後輪3,4夫々の操向
角を検出するポテンショメータ利用の操向角検出センサ
R1,R2と、変速装置11の変速状態に基づいて間接
的に前後進状態及び車速を検出するポテンショメータ利
用の車速センサR3と、変速装置11の出力軸の回転数
を計数して走行距離を検出するためのエンコーダS3
と、作業車Vの車体方位を検出する地磁気利用の方位セ
ンサS4と、植え付け装置6に設置されてその車体左右
方向での傾斜角を検出する傾斜センサS6と、植え付け
装置6の車体5への接続箇所に設置される後述のポテン
ショメータS5とが設けられている。
The sensors mounted on the work vehicle V will be described. As shown in FIG. 4, steering angle detection sensors R1 and R2 using potentiometers for detecting the steering angles of the front and rear wheels 3 and 4 respectively. A vehicle speed sensor R3 using a potentiometer for indirectly detecting the forward / backward traveling state and the vehicle speed based on the shift state of the transmission 11, and an encoder S3 for counting the number of revolutions of the output shaft of the transmission 11 and detecting the traveling distance.
An orientation sensor S4 for detecting the body direction of the work vehicle V, a tilt sensor S6 installed on the planting device 6 to detect a tilt angle in the lateral direction of the vehicle body, A potentiometer S5 to be described later, which is installed at the connection point, is provided.

【0036】又、図2及び図3にも示すように、作業車
Vには、第1ビーム光投射装置B1及び第2ビーム光投
射装置B2にて投射される誘導用ビーム光A1,A2夫
々に対する車体横幅方向でのずれを検出すべく、その誘
導用ビーム光A1,A2を受光する操向制御用光センサ
S1と、作業車Vが第1ビーム光投射装置B1又は第2
ビーム光投射装置B2からの誘導用ビーム光A1,A2
に沿って自動走行しているときに、その誘導用ビーム光
A1,A2に交差する第2ビーム光投射装置B2又は第
1ビーム光投射装置B1からの誘導用ビーム光A2,A
1並びに第3ビーム光投射装置B3からのビーム光A3
を受光するトリガー用光センサS2とが設けられてい
る。尚、上記操向制御用光センサS1は、車体左右何れ
の側の誘導用ビーム光A1,A2も受光できるように、
車体前部の左右両側部に、平面視において前輪3の両軸
芯を結ぶ線上に位置させて左右一対設けられ、トリガー
用光センサS2は、平面視において車体左右中央の上部
に位置する前後一対のセンサS2a,S2bからなり、
その前方側センサS2aは前輪3の両軸芯を結ぶ線上よ
りも所定距離前方に位置し、後方側センサS2bは後輪
4の両軸芯を結ぶ線上に位置している。尚、トリガー用
光センサS2は、車体左右両側からのビーム光A1,A
2,A3に対する受光の有無のみを検出し、受光位置は
検出できないようになっている。
As shown in FIGS. 2 and 3, the work vehicle V is provided with guiding light beams A1 and A2 projected by the first beam light projecting device B1 and the second beam light projecting device B2, respectively. In order to detect a shift in the lateral direction of the vehicle body with respect to the vehicle, the steering control optical sensor S1 that receives the guiding light beams A1 and A2, and the work vehicle V includes the first beam light projecting device B1 or the second
Guiding light beams A1, A2 from the light beam projecting device B2
When the vehicle is automatically traveling along, the guiding light beams A2, A from the second light beam projecting device B2 or the first light beam projecting device B1 intersecting the guiding light beams A1, A2.
1 and the light beam A3 from the third light beam projection device B3
And a trigger optical sensor S2 for receiving light. Note that the steering control optical sensor S1 can receive the guiding light beams A1 and A2 on either side of the vehicle body.
A pair of left and right optical sensors for trigger S2 are provided on both left and right sides of the front part of the vehicle body on a line connecting both axes of the front wheel 3 in plan view. Sensors S2a and S2b,
The front sensor S2a is located a predetermined distance ahead of a line connecting both axes of the front wheel 3, and the rear sensor S2b is located on a line connecting both axes of the rear wheel 4. Incidentally, the trigger optical sensor S2 is provided with light beams A1, A
Only the presence or absence of light reception for A2 and A3 is detected, and the light reception position cannot be detected.

【0037】前記操向制御用光センサS1について説明
を加えれば、図5にも示すように、車体前後方向に間隔
dを置いて且つ上下方向にも間隔を隔てる状態で並置さ
れた前後一対の受光部としての光センサS1a,S1b
から構成され、前後一対の光センサS1a,S1bの夫
々は、複数個の受光素子Dを車体横幅方向に並設したも
のであって、横幅方向でのセンサ中心に位置する受光素
子D0の位置を基準として、誘導用ビーム光A1,A2
の車体横幅方向での受光位置即ち受光素子Dの位置X
1,X2夫々を検出できるように構成されている。又、
誘導用ビーム光A1,A2が車体前後の何れの方向から
入射される場合でも差のない状態で受光できるようにす
るために、車体前後の各方向からの入射光を両光センサ
S1a,S1b夫々の受光面に向けて反射する反射鏡1
8を備えている。
The steering control optical sensor S1 will be further described with reference to FIG. 5. As shown in FIG. 5, a pair of front and rear optical sensors S1 are arranged side by side at an interval d in the vehicle longitudinal direction and at intervals in the vertical direction. Optical sensors S1a and S1b as light receiving units
Each of the pair of front and rear optical sensors S1a and S1b has a plurality of light receiving elements D arranged side by side in the vehicle width direction, and determines the position of the light receiving element D0 located at the sensor center in the width direction. As a reference, the guiding light beams A1, A2
Light receiving position in the vehicle body width direction, that is, the position X of the light receiving element D
1 and X2 can be detected. or,
In order to be able to receive the light beams A1 and A2 for guiding without any difference even when the light beams A1 and A2 are incident from any direction of the front and rear of the vehicle body, the light sensors S1a and S1b respectively receive the incident light from each of the front and rear directions of the vehicle body. Mirror 1 that reflects toward the light receiving surface
8 is provided.

【0038】図7〜図9に示すように、前記各光センサ
S1a,S1bの前方側に、車体前後方向Jを基準とし
て車体横幅方向に所定角度(具体的には45度)以上傾
いた状態で入射する前記誘導用ビーム光A1,A2を光
センサS1a,S1bに入射させないように制限する第
1入射光制限手段20と、車体前後方向Jを基準として
車体上下方向に所定角度以上傾いた状態で入射する光を
光センサS1a,S1bに入射させないように制限する
第2入射光制限手段21とが設けられている。具体的に
は、第1入射光制限手段20が、垂直面内に沿う状態で
車体横幅方向に所定間隔を隔てて多数並置された縦壁状
の第1遮光体20aから構成されるとともに、前記第2
入射光制限手段21が、水平面内に沿う状態で車体上下
方向に所定間隔を隔てて多数並置された横壁状の第2遮
光体21aから構成されている。第1遮光体20aは、
車体前後方向の長さaと車体横幅方向の設置間隔bとを
略同一に形成して、車体前後方向Jを基準にして車体横
幅方向への誘導用ビーム光A1,A2の傾き角θ1が4
5度より小さいときには光センサS1a,S1bに入射
させるが、傾き角θ1が45度以上のときには光センサ
S1a,S1bに入射させないようにしている(図8参
照)。又、第2遮光体21aは、車体前後方向の長さ
a’を車体上下方向の設置間隔b’よりも長く形成し
て、車体上下方向に傾き角θ2で入射する太陽光等の外
乱光を光センサS1a,S1bに極力入射させないよう
にしている(図9参照)。さらに、第1及び第2入射光
制限手段20,21は、第1及び第2遮光体20a,2
1aを透明樹脂等の光透過性部材22中に埋設保持する
フィルム状体Fに形成され、そのフィルム状体Fが、光
センサS1a,S1bの前面側に貼り付けられている
(図9参照)。
As shown in FIG. 7 to FIG. 9, a state in which the optical sensors S1a and S1b are inclined at a predetermined angle (specifically, 45 degrees) in the vehicle width direction with respect to the vehicle front-back direction J as a reference. A first incident light restricting means 20 for restricting the guiding light beams A1 and A2 incident on the optical sensors S1a and S1b so as not to enter the optical sensors S1a and S1b; And second incident light restricting means 21 for restricting the light incident on the optical sensors S1a and S1b so as not to enter the optical sensors S1a and S1b. Specifically, the first incident light restricting means 20 is composed of a large number of vertical wall-shaped first light shields 20a juxtaposed at predetermined intervals in the vehicle body width direction along the vertical plane, and Second
The incident light restricting means 21 is composed of a large number of side wall-shaped second light shields 21a which are juxtaposed at predetermined intervals in the vehicle body vertical direction along the horizontal plane. The first light shield 20a is
The length a of the vehicle body front-back direction and the installation interval b in the vehicle body width direction are substantially the same, and the inclination angle θ1 of the guiding light beams A1, A2 in the vehicle body width direction with respect to the vehicle body front-back direction J is 4
When the angle is smaller than 5 degrees, the light is incident on the optical sensors S1a and S1b, but when the inclination angle θ1 is 45 degrees or more, the light is not incident on the optical sensors S1a and S1b (see FIG. 8). Further, the second light-shielding body 21a is formed such that the length a 'in the vehicle front-rear direction is longer than the installation interval b' in the vehicle vertical direction, and disturbs external light such as sunlight entering the vehicle vertical direction at an inclination angle θ2. The light is prevented from entering the optical sensors S1a and S1b as much as possible (see FIG. 9). Further, the first and second incident light limiting means 20 and 21 are provided with first and second light shields 20a and 20a.
1a is formed in a film-like body F embedded and held in a light-transmissive member 22 such as a transparent resin, and the film-like body F is attached to the front side of the optical sensors S1a and S1b (see FIG. 9). .

【0039】前記操向制御用光センサS1による車体横
幅方向での車体5のずれ検出の制御構成について説明す
れば、操向制御用光センサS1の前後一対の光センサS
1a,S1bの夫々の受光素子の位置X1,X2とその
車体前後方向での間隔dとに基づいて、下式から、誘導
用ビーム光A1,A2の投射方向に対する車体5の傾き
φと横幅方向における位置の偏位xとを求める。
The control structure for detecting the displacement of the vehicle body 5 in the lateral direction of the vehicle body by the steering control optical sensor S1 will be described. A pair of optical sensors S before and after the steering control optical sensor S1 will be described.
On the basis of the positions X1 and X2 of the light receiving elements 1a and S1b and the distance d in the longitudinal direction of the vehicle body, the inclination φ of the vehicle body 5 with respect to the projection direction of the guiding light beams A1 and A2 and the lateral width direction are obtained from the following equations. And the deviation x of the position at.

【0040】[0040]

【数1】φ=tan-1(|X1−X2|/d) x=X1## EQU1 ## φ = tan -1 (| X1-X2 | / d) x = X1

【0041】但し、この横幅方向の偏位xは、車体が傾
いていない状態のものであり、車体がローリングして傾
いているときには、その傾きによる誤差を除く補正を行
う必要がある。以下、この補正量を求めるための構成に
ついて説明すると、図2に示すように、植え付け装置6
は、車体5に対する接続箇所において車体前後方向に沿
う横軸芯周りに回転自在な状態で接続され、その接続箇
所に、植え付け装置6と車体5の上記横軸芯周りの回動
角を検出するためのポテンショメータS5が設置される
とともに、植え付け装置6が車体左右方向に水平姿勢に
なるように、前記制御装置16が、前記傾斜センサS6
の検出情報に基づいて図示しないリンク機構及び駆動用
の電動モータ等からなる傾斜手段Mを作動させている
(図4参照)。従って、前記ポテンショメータS5及び
前記傾斜センサS6の両検出角度を加減算することによ
って車体5のローリング角が求められる。そして、図6
に示すように、上記接続箇所と操向制御用光センサS1
の車体上での高さの差がL1、上記接続箇所(車体左右
中央)から操向制御用光センサS1の受光部中央までの
車体上での横方向の距離がL2で、車体のローリング角
をθとして、車体が傾いている状態における上記接続箇
所から操向制御用光センサS1の受光部中央までの横方
向の距離L3が求まり、このL3から車体5が傾いてい
ないときの横方向の距離L2を引いた量ΔLが補正量に
なる。従って、傾斜補正後の偏位x’は、上記偏位xに
補正量ΔLを加えた値x’として求められる。因みに、
θ=0のときはΔL=L2−L2=0であって、x’=
xとなる。
However, the deviation x in the lateral width direction is a state in which the vehicle body is not tilted, and when the vehicle body is rolling and tilting, it is necessary to perform correction excluding an error due to the tilt. Hereinafter, a configuration for obtaining the correction amount will be described. As shown in FIG.
Is rotatably connected around a horizontal axis along the vehicle body front-rear direction at a connection point to the vehicle body 5, and detects a rotation angle of the planting apparatus 6 and the vehicle body 5 around the horizontal axis at the connection point. The control device 16 controls the tilt sensor S6 so that a potentiometer S5 is installed and the planting device 6 is oriented horizontally in the lateral direction of the vehicle body.
Based on the detection information, the tilting means M including a link mechanism and a driving electric motor (not shown) is operated (see FIG. 4). Therefore, the rolling angle of the vehicle body 5 is obtained by adding and subtracting both the detection angles of the potentiometer S5 and the inclination sensor S6. And FIG.
As shown in the figure, the connection point and the steering control optical sensor S1
The height difference on the vehicle body is L1, the lateral distance on the vehicle body from the connection point (the center of the vehicle body left and right) to the center of the light receiving section of the steering control optical sensor S1 is L2, and the rolling angle of the vehicle body is L2. Is set to θ, a lateral distance L3 from the connection point in the state where the vehicle body is inclined to the center of the light receiving portion of the steering control optical sensor S1 is determined, and from this L3, a lateral distance L3 when the vehicle body 5 is not inclined is determined. The amount ΔL obtained by subtracting the distance L2 is the correction amount. Accordingly, the deviation x ′ after the inclination correction is obtained as a value x ′ obtained by adding the correction amount ΔL to the deviation x. By the way,
When θ = 0, ΔL = L2−L2 = 0, and x ′ =
x.

【0042】[0042]

【数2】L3=L1×sinθ+L2×cosθ ΔL=(L3−L2) x’=x+ΔLL3 = L1 × sin θ + L2 × cos θ ΔL = (L3−L2) x ′ = x + ΔL

【0043】尚、この例では、前記横幅方向における位
置の偏位xは、前記一対の光センサS1a,S1bの一
方(S1a)の受光位置としているが、前記傾きφによ
る誤差が生じないようにするために、前記一対の光セン
サS1a,S1b夫々の受光位置X1,X2の平均値を
用いるようにしてもよい。そして、前記作業車Vは、前
記傾きφと前記偏位x’とが共に零となるように、目標
操向角を設定して操向制御されることになる。但し、本
実施例では、各作業行程における直進走行時には、前輪
3のみを操向する2輪ステアリング形式で操向制御す
る。
In this example, the deviation x of the position in the width direction is the light receiving position of one of the pair of optical sensors S1a and S1b (S1a). In order to do so, an average value of the light receiving positions X1 and X2 of the pair of optical sensors S1a and S1b may be used. Then, the work vehicle V is subjected to steering control by setting a target steering angle such that both the inclination φ and the deviation x ′ become zero. However, in the present embodiment, during straight running in each work process, steering control is performed in a two-wheel steering mode in which only the front wheels 3 are steered.

【0044】前記制御装置16は、前記操向制御用光セ
ンサS1等の各種センサの検出情報及び予め設定された
作業予定情報に基づいて、前記操向手段7〜10及び前
記植え付け部6等の各種装置の作動を制御するように構
成されている。そして、前記制御装置16を利用して、
前記操向制御用光センサS1の受光情報に基づいて作業
車Vが前記交差状態で設けた2つの作業行程R1,R2
の夫々に沿って自動走行するように前記操向手段7〜1
0の作動を制御し、且つ、前記2つの作業行程R1,R
2の交差箇所において作業車Vが2つの作業行程R1,
R2の一方の作業行程R1,R2に沿う状態から設定旋
回パターンで旋回移動して、前記操向制御用光センサS
1が前記一方の走行行程における誘導用ビーム光A1,
A2を受光しなくなってから次に誘導用ビーム光A1,
A2を受光するに伴い、その受光した誘導用ビーム光A
1,A2の受光情報に基づいて作業車Vが前記2つの走
行行程の他方の走行行程に沿って自動走行するように前
記操向手段7〜10の作動を制御する制御手段100が
構成されている。
The control unit 16 controls the steering units 7 to 10 and the planting section 6 based on the detection information of various sensors such as the steering control optical sensor S1 and the preset work schedule information. It is configured to control the operation of various devices. Then, using the control device 16,
Based on the light reception information of the steering control optical sensor S1, the work vehicle V has two work processes R1, R2
The steering means 7 to 1 so as to automatically travel along each of
0, and the two work steps R1, R
The work vehicle V has two work steps R1,
R2 is turned in a set turning pattern from a state along one of the work steps R1 and R2 of R2, and the steering control optical sensor S
1 is the guiding light beam A1, in the one traveling process.
After no longer receiving A2, the guiding light beam A1,
A2 is received, and the received guiding beam light A is received.
The control means 100 controls the operation of the steering means 7 to 10 so that the work vehicle V automatically travels along the other one of the two traveling steps based on the received light information of A1 and A2. I have.

【0045】又、前記制御装置16は、作業車Vが前記
往復作業及び前記枕地作業における各作業行程の夫々を
前進状態で行うように作業車Vを一行程分前進走行させ
たのち、前記作業車Vが第1ビーム光投射装置B1又は
第2ビーム光投射装置B2からの誘導用ビーム光A1,
A2に沿って自動走行しているときに、その誘導用ビー
ム光A1,A2に交差する第2ビーム光投射装置B2又
は第1ビーム光投射装置B1からの誘導用ビーム光A
2,A1を受光するトリガー用光センサS2の受光情報
に基づいて、各行程の終端部からそれに隣接する次の行
程の始端部に向けての180度又は90度の旋回動作の
開始位置、即ち、2つの作業行程R1,R2の交差箇所
における一方の作業行程R1,R2から他方の作業行程
R1,R2への旋回動作の開始位置を設定するように構
成されている。
Further, the control device 16 moves the work vehicle V forward by one stroke so that the work vehicle V performs each work process in the reciprocating work and the headland work in the forward state, and then, The work vehicle V receives the guiding light beams A1, from the first light beam projector B1 or the second light beam projector B2.
When the vehicle is automatically traveling along A2, the guiding beam light A from the second beam light projecting device B2 or the first beam light projecting device B1 crossing the guiding light beams A1 and A2.
2, the start position of the 180-degree or 90-degree turning operation from the end of each stroke to the start of the next stroke adjacent to it, based on the light-receiving information of the trigger optical sensor S2 that receives A1, It is configured to set the starting position of the turning operation from one work process R1, R2 to the other work process R1, R2 at the intersection of the two work processes R1, R2.

【0046】次に、図10及至図17に示すフローチャ
ートに基づいて、前記制御装置16の動作について説明
する。全体の処理フローは、図10に示すように、図示
しないRS232C等の通信部やアクチュエータ類(前
記変速用モータ12、各制御弁9,10,14、及び、
植え付けクラッチ15等)に対する初期化処理を行った
後、作業プランをセットする作業プランセット処理を行
う。次に、上記作業プランセット処理にてセットされた
作業プランに基づいて対応する制御データを読み込み、
且つ、その制御データに基づいて実際に車体制御を実行
する車体制御処理を行う。上記車体制御処理による作業
プランの実行状態が、作業プランチェック処理にてチェ
ックされ、1つの作業プランの終了が確認されると、地
上側等に対する必要な通信処理を行った後、作業終了の
指示があれば終了処理を行い、それ以外のときは、上記
作業プランセット処理からのフローを繰り返す。尚、上
記フローの進行を制御するために、上記作業プランセッ
ト処理にて新しい作業プランがセットされると、プラン
フラグがセットされ、作業プランチェック処理にて作業
プランの終了が確認されると、プランフラグがリセット
される。
Next, the operation of the control unit 16 will be described with reference to the flowcharts shown in FIGS. As shown in FIG. 10, the entire processing flow includes communication units and actuators (not shown) such as RS232C (the speed change motor 12, the control valves 9, 10, and 14, and
After the initialization process for the planting clutch 15) is performed, a work plan setting process for setting a work plan is performed. Next, read the corresponding control data based on the work plan set in the work plan set process,
In addition, a vehicle control process for actually executing the vehicle control based on the control data is performed. The execution state of the work plan by the vehicle body control processing is checked by the work plan check processing, and when the end of one work plan is confirmed, necessary communication processing to the ground side or the like is performed, and then the work end instruction is issued. If there is, end processing is performed, otherwise, the flow from the work plan set processing is repeated. In order to control the progress of the flow, when a new work plan is set in the work plan set processing, a plan flag is set, and when the end of the work plan is confirmed in the work plan check processing, The plan flag is reset.

【0047】上記車体制御処理では、図11に示すよう
に、先ず、プランフラグがセットされているか否かを調
べ、プランフラグがリセットのときは処理を行わない。
プランフラグがセット状態のときは、上記作業プランセ
ット処理でセットしたコントロール内容を読み出し、そ
れに該当する処理が実際にあるか否かを調べる。上記コ
ントロール内容に該当する処理としては、図に示すよう
に、作業車Vを停止させる停止処理、作業車Vを前進又
は後進状態で前記エンコーダS3による距離計測情報に
基づいて設定距離直進させる直進(距離計測で終了)処
理、作業車Vを前進又は後進状態でトリガー用センサS
2が誘導用ビーム光A1,A2を設定回数検出する位置
まで直進させる直進(光源計測で終了)処理、各作業行
程R1,R2の終端部から次の行程の始端部に旋回移動
させる旋回処理、誘導用ビーム光A1,A2を操向制御
用センサS1が適正に受光する状態にするための軌道収
束処理、及び、苗補給の指示や植付け装置6の駆動制御
を行う苗供給装置処理の各処理が用意されている。尚、
上記旋回処理及び軌道収束処理では、車体は4輪ステリ
ングにて操向制御される。
In the vehicle body control processing, as shown in FIG. 11, first, it is checked whether or not the plan flag is set. If the plan flag is reset, no processing is performed.
When the plan flag is in the set state, the control contents set in the work plan set processing are read out, and it is checked whether or not the corresponding processing actually exists. As shown in the figure, the processing corresponding to the above-mentioned control contents includes a stop processing for stopping the work vehicle V, and a straight movement for moving the work vehicle V straight forward a set distance based on the distance measurement information by the encoder S3 in the forward or backward state. Processing at the distance measurement), the trigger sensor S when the work vehicle V is moving forward or backward.
2 is a straight-ahead process (ending with light source measurement) in which the guide light beams A1 and A2 travel straight to a position where the set number of times is detected, a turning process of turning from the end of each work process R1 and R2 to the start of the next process, Trajectory convergence processing for making the steering control sensor S1 properly receive the guiding light beams A1 and A2, and seedling supply apparatus processing for instructing seedling replenishment and driving control of the planting apparatus 6. Is prepared. still,
In the turning processing and the track convergence processing, the steering of the vehicle body is controlled by four-wheel steering.

【0048】次に、前記旋回処理のフローについて詳述
すると、図12〜図16に示すように、先ず、方位セン
サS4から車体方位データを入手してから(ステップ
0)、ステップ1で、現在の車体方位に旋回角度(90
度又は180度)を加減算して反転方位即ち目標方位を
算出するとともに、次の行程の誘導用ビーム光の受光判
定を行う受光判定領域(尚、この領域では車速を減速す
るので、減速エリアとも呼ぶ)を上記目標方位を中心と
して両側の所定角度(45度)範囲に設定し、更に、目
標方位を超えて旋回することを許容する旋回可能領域を
上記目標方位に所定角度を加えた角度として設定し、ブ
レーキを作動解除させるためのソレノイドのセットを行
う。そして、エンコーダS3からの距離データのリセッ
ト(ステップ2)、設定旋回パターンで旋回するための
ステアリング角のセット(ステップ3)を行った後、変
速装置11を所定変速状態にセットし、植付け装置6を
上昇させて駆動停止する(ステップ4)と共に、ステア
リングの切れ角度データを入力して(ステップ5)か
ら、ステップ6に進む。
Next, the flow of the turning process will be described in detail. As shown in FIGS. 12 to 16, first, the vehicle body direction data is obtained from the direction sensor S4 (step 0). The turning angle (90
In addition, the inversion azimuth, ie, the target azimuth, is calculated by adding / subtracting the rotation angle or 180 °), and the light receiving determination region for determining the reception of the guiding light beam in the next process (the vehicle speed is reduced in this region. ) Is set within a range of a predetermined angle (45 degrees) on both sides of the target azimuth as a center, and a turnable area that allows turning beyond the target azimuth is defined as an angle obtained by adding a predetermined angle to the target azimuth. Set and set the solenoid to release the brake. Then, after resetting the distance data from the encoder S3 (step 2) and setting the steering angle for turning in the set turning pattern (step 3), the transmission 11 is set to a predetermined shift state, and the planting device 6 is set. Is raised to stop the drive (step 4), and the steering angle data is input (step 5).

【0049】ステップ6では、上記ステアリングの切れ
角度から倍速作動の必要性を判断し、倍速作動の必要が
なければ、車体方位データを入手し、ステップ7にて、
受光判定領域に達したか否かを調べる。ここで、受光判
定領域に達している場合は、変速装置11を中立状態に
し、異常終了処理を行って(ステップ16)処理を終え
る。受光判定領域に達していなければ、エンコーダS3
から距離データを入手し、それに基づいて旋回移動での
限界距離をオーバーしていると判断されると、異常停止
処理を行った後、異常終了処理を行って(ステップ1
6)処理を終えるが、オーバーしていなければ、植付け
装置6を上昇させて駆動停止しながら、ステップ5から
のフローを繰り返す。一方、倍速作動の必要があれば、
倍速作動装置(図示しない)をオンし、車体方位データ
を入手(ステップ9)してから、ステップ10に進む。
In step 6, the necessity of double-speed operation is determined based on the steering angle, and if the double-speed operation is not necessary, vehicle azimuth data is obtained.
It is checked whether or not it has reached the light receiving determination area. Here, if it has reached the light receiving determination area, the transmission 11 is brought into the neutral state, abnormal termination processing is performed (step 16), and the processing is terminated. If it has not reached the light receiving determination area, the encoder S3
And if it is determined that the distance exceeds the limit distance in the turning movement based on the distance data, abnormal stop processing is performed, and then abnormal end processing is performed (step 1).
6) Finish the process, but if it is not over, repeat the flow from step 5 while raising the planting device 6 and stopping the driving. On the other hand, if you need double speed operation,
A double-speed operation device (not shown) is turned on to obtain vehicle body direction data (step 9), and then the process proceeds to step 10.

【0050】ステップ10では、車体方位より、減速エ
リア内即ち受光判定領域内であるか否かを判断する。そ
して、減速エリア内でなければ、エンコーダS3から距
離データを入手し、それに基づいてステップ11にてオ
ーバーランしていると判断されると、異常停止処理を行
った後、異常終了処理を行って(ステップ16)処理を
終えるが、オーバーランしていなければ、ステップ9か
らのフローを繰り返す。一方、減速エリア内であれば、
車速を減速させてから、次の行程で使用する左又は右側
の操向制御用光センサS1の受光データを取り込み(ス
テップ12)、ステップ13にて、次の行程の誘導用ビ
ーム光即ちレーザー軌道の受光状態を調べる。ここで、
非受光状態であれば、車体方位データを入手してから、
ステップ14にて、旋回可能領域にあるか否かを調べ、
旋回可能領域を超えているときは、異常停止処理を行っ
た後、異常終了処理を行って(ステップ16)処理を終
える。旋回可能領域を超えていないときは、距離データ
を入手して、ステップ15にて、オーバーランの有無を
調べ、オーバーランしていれば、異常停止処理を行った
後、異常終了処理を行って(ステップ16)処理を終え
るが、オーバーランしていなければ、ステップ12から
のフローを繰り返す。一方、受光状態であれば、停止処
理を行った後、ステップ17にて、車体の停止を確認し
てから、操向制御用光センサS1の受光データを取り込
み、ステップ18に進む。
In step 10, it is determined whether or not the vehicle is in the deceleration area, that is, in the light receiving determination region, based on the body direction. If the distance is not within the deceleration area, the distance data is obtained from the encoder S3. If it is determined in step 11 that the overrun has occurred, the abnormal stop processing is performed, and then the abnormal end processing is performed. (Step 16) The process ends, but if no overrun has occurred, the flow from step 9 is repeated. On the other hand, if it is within the deceleration area,
After decelerating the vehicle speed, the received light data of the left or right steering control optical sensor S1 to be used in the next step is fetched (step 12). Check the light receiving condition of here,
If it is in the non-light-receiving state, after obtaining the vehicle orientation data,
In step 14, it is checked whether or not the vehicle is in the turnable area,
If it exceeds the turnable area, after performing an abnormal stop process, an abnormal end process is performed (step 16), and the process ends. If it does not exceed the turnable area, distance data is obtained, and at step 15, the presence or absence of overrun is checked. If overrun, abnormal stop processing is performed, and then abnormal end processing is performed. (Step 16) The process ends, but if no overrun has occurred, the flow from step 12 is repeated. On the other hand, if it is in the light receiving state, after the stop processing is performed, the stop of the vehicle body is confirmed in step 17, the light receiving data of the steering control optical sensor S 1 is fetched, and the process proceeds to step 18.

【0051】ステップ18では、操向制御用光センサS
1の受光位置が中心位置D0であるか否かを調べ、受光
位置が中心位置であれば、ステアリングの中立セット
(ステップ23)、ブレーキ作動のためのソレノイドの
セット(ステップ24)、及び、クラッチ切り操作のた
めのソレノイドのセット(ステップ25)を行って、処
理を終了する。一方、受光位置が中心位置にないとき
は、さらに受光位置がどちらにずれているかどうかを調
べ、手前側つまり旋回前の行程側に寄っているときはそ
のままの旋回方向で、又、手前側でないつまり旋回後の
行程側に寄っているときは旋回方向を逆にして、夫々低
速で旋回走行を行う。そして、距離データをリセットす
るとともに、上記旋回走行での移動距離の限界値(例え
ば1m)をセットし(ステップ19)、操向制御用光セ
ンサS1の受光データを取り込んで(ステップ20)、
ステップ21で、その受光位置が中心位置D0であるか
否かを調べる。ここで、受光位置が中心位置でなけれ
ば、距離データを入手してから、ステップ22にて、上
記移動距離の限界値を超えてオーバーランしているかど
うかを調べ、オーバーランしていれば、異常停止処理を
行った後、異常終了処理を行って(ステップ16)処理
を終えるが、オーバーランしていなければ、操向制御用
光センサS1の受光データを取り込んでから、ステップ
21からのフローを繰り返す。ステップ21で、受光位
置が中心位置であれば、停止処理を行った後、ステップ
23からのフローを行って処理を終える。
In step 18, the steering control optical sensor S
It is checked whether the light receiving position of No. 1 is the center position D0. If the light receiving position is the center position, the neutral setting of the steering (step 23), the setting of the solenoid for brake operation (step 24), and the clutch The solenoid is set for the cutting operation (step 25), and the process is terminated. On the other hand, when the light receiving position is not at the center position, it is further checked whether the light receiving position is deviated to which side.If the light receiving position is closer to the front side, that is, the stroke side before turning, the turning direction is the same, and it is not the front side. In other words, when the vehicle is approaching the stroke side after turning, the turning direction is reversed, and the turning traveling is performed at a low speed. Then, while resetting the distance data, the limit value (for example, 1 m) of the moving distance in the turning travel is set (step 19), and the light receiving data of the steering control optical sensor S1 is taken in (step 20).
In step 21, it is checked whether the light receiving position is the center position D0. Here, if the light receiving position is not the center position, after obtaining the distance data, it is checked in step 22 whether or not the overrun has exceeded the limit value of the moving distance. After the abnormal stop processing, the abnormal end processing is performed (step 16), and the processing is finished. If the overrun is not detected, the light reception data of the steering control optical sensor S1 is fetched, and the flow from step 21 is started. repeat. In step 21, if the light receiving position is the center position, a stop process is performed, and then the flow from step 23 is performed to end the process.

【0052】次に、前記直進処理及び軌道収束処理等に
おいて、誘導用ビーム光A1,A2に沿って自動走行さ
せるためのステアリング制御のフローについて説明する
と、図17に示すように、先ず、4輪ステアリング(4
WS)状態か否かを判断し、4輪ステアリングの場合
は、操向制御用光センサS1の受光データに基づいて前
述のように検出した車体5の傾きφと横幅方向の偏位
x’(検出した偏位xを車体の傾斜による補正後の偏位
を使う)とから後輪4及び前輪3の切れ角を計算して、
その切れ角になるように後輪4及び前輪3をセットする
が、4輪ステアリングでない即ち2輪ステアリングの場
合は、上記傾きφと横幅方向の偏位xとから前輪3の切
れ角を計算してその切れ角になるように前輪4をセット
し、後輪4は中立状態にセットする。
Next, the flow of the steering control for automatically traveling along the guiding light beams A1 and A2 in the straight traveling process and the trajectory convergence process will be described. First, as shown in FIG. Steering (4
WS) state, and in the case of four-wheel steering, the inclination φ of the vehicle body 5 and the deviation x ′ (in the width direction) detected as described above based on the light reception data of the steering control optical sensor S1. Using the detected deviation x using the deviation corrected by the inclination of the vehicle body), the steering angles of the rear wheels 4 and the front wheels 3 are calculated,
The rear wheel 4 and the front wheel 3 are set so as to have such a turning angle. In the case of non-four-wheel steering, that is, two-wheel steering, the turning angle of the front wheel 3 is calculated from the inclination φ and the deviation x in the lateral width direction. The front wheel 4 is set so as to have the steering angle, and the rear wheel 4 is set in a neutral state.

【0053】〔別実施例〕上記実施例では、作業車V
を、矩形状の作業地Kの隣接する2辺M1,M2の夫々
に平行な状態で自動走行させるように、直交する即ち互
いに90度をなす状態で交差する2つの走行行程(上記
2辺M1,M2の夫々に平行な作業行程R1,R2)の
交差箇所において、車体方位を90度角度変更しながら
旋回移動させる場合について説明したが、例えば矩形状
でない台形形状等の作業地Kの隣接する2辺の夫々に平
行な状態で自動走行させるように、直交状態以外の所定
角度で交差する2つの走行行程の交差箇所において、車
体方位を上記所定角度変更しながら旋回移動させる場合
にも適用できる。この場合、ビーム光投射手段B1,B
2からの2つの誘導用ビーム光は、上記所定角度をなす
状態で2つの走行行程の夫々の長手方向に沿って投射さ
れる。
[Another Embodiment] In the above embodiment, the working vehicle V
To travel automatically in a state parallel to each of the two sides M1 and M2 adjacent to each other on the rectangular work site K, so that the two traveling paths (the two sides M1) intersect at right angles, that is, at 90 degrees to each other. , M2, at the intersection of the work steps R1, R2) parallel to each other, the vehicle is turned while changing the azimuth of the vehicle body by an angle of 90 degrees. The present invention can also be applied to a case where a vehicle is turned while changing the vehicle body azimuth at the above-mentioned predetermined angle at an intersection of two traveling steps intersecting at a predetermined angle other than the orthogonal state so that the vehicle automatically travels in a state parallel to each of the two sides. . In this case, the light beam projecting means B1, B
The two guiding light beams from No. 2 are projected along the respective longitudinal directions of the two traveling strokes at the predetermined angle.

【0054】又、上記実施例では、作業車Vが走行行程
としての作業行程R1,R2に沿って作業(圃場に対す
る苗植付け作業)を行いながら自動走行する場合につい
て説明したが、例えば、図19に示すように、複数の誘
導用ビーム光Anを適宜交差させながら作業車走行用の
誘導経路を設定し、その誘導経路の走行行程Rn夫々に
沿って作業車Vを誘導用ビーム光Anに誘導される状態
で作業を行わずに単に自動走行させ、且つ、走行行程R
nの交差箇所において隣接する次の走行行程Rnへ旋回
移動させる場合にも適用できる。
In the above-described embodiment, the case where the work vehicle V automatically travels while performing work (planting of seedlings on a field) along the work steps R1 and R2 as a travel step has been described. As shown in the figure, a guide route for the traveling of the work vehicle is set while appropriately intersecting the plurality of guide light beams An, and the work vehicle V is guided to the guide beam light An along each traveling path Rn of the guide route. The vehicle travels automatically without performing any work in a state where
The present invention can also be applied to the case where the vehicle is turned to the next traveling stroke Rn adjacent at the intersection of n.

【0055】又、上記実施例では、作業車Vを往復作業
及び枕地作業等における走行行程としての各作業行程R
1,R2において、各走行行程の終端部から隣接する走
行行程の始端部へ旋回移動させるようにしながら前進状
態で走行させる場合について説明したが、すべての走行
行程R1,R2を前進状態で走行させる必要はなく、例
えば、枕地作業において一部の行程を後進状態で走行さ
せてもよい。
Further, in the above embodiment, the work vehicle V is used for each work process R as a travel process in reciprocating work, headland work and the like.
In the first and the R2, the case where the vehicle travels in the forward state while making a turning movement from the end portion of each traveling process to the start end of the adjacent traveling process has been described. However, all the traveling processes R1 and R2 travel in the forward state. It is not necessary, and for example, in the headland work, a part of the stroke may be run in reverse.

【0056】又、上記実施例では、誘導用の各ビーム光
A1,A2,A3を投射する各ビーム光投射手段B1,
B2,B3をレーザー光発生装置で構成したが、レーザ
ー光発生装置以外のビーム光発生装置でもよい。
Further, in the above embodiment, each light beam projecting means B1, which projects each light beam A1, A2, A3 for guiding,
Although B2 and B3 are configured by laser light generators, beam light generators other than laser light generators may be used.

【0057】又、上記実施例では、操向制御用光センサ
S1の受光部を、車体前後方向に間隔を置いて並置され
て誘導用ビーム光A1,A2の車体横幅方向での受光位
置を夫々検出する前後一対の光センサS1a,S1bに
て構成し、この一対の光センサS1a,S1bの一方
(S1a)の受光位置X1によって車体横幅方向におけ
る位置偏位xを、一対の光センサS1a,S1bの車体
横幅方向での受光位置X1,X2の差及び車体前後方向
での間隔情報dに基づいて車体の傾きφを夫々求めて、
この位置偏位x及び傾きφを誘導用ビーム光A1,A2
に対する車体横幅方向でのずれ情報としているが、操向
制御用光センサS1の構成はこれに限るものではない。
例えば、受光部として一対の光センサではなく1個の光
センサで構成し、その受光位置によって求めた車体横幅
方向での位置偏位xを誘導用ビーム光A1,A2に対す
る車体横幅方向でのずれ情報としてもよい。
In the above embodiment, the light receiving portions of the steering control optical sensor S1 are juxtaposed at intervals in the longitudinal direction of the vehicle body to determine the light receiving positions of the guiding light beams A1 and A2 in the vehicle width direction. A pair of optical sensors S1a and S1b are used to detect the position deviation x in the vehicle width direction by the light receiving position X1 of one (S1a) of the pair of optical sensors S1a and S1b. The inclination φ of the vehicle body based on the difference between the light receiving positions X1 and X2 in the vehicle body width direction and the distance information d in the vehicle front-rear direction.
The position deviation x and the inclination φ are determined by using the guiding light beams A1 and A2.
, But the configuration of the steering control optical sensor S1 is not limited to this.
For example, the light receiving unit is constituted by one optical sensor instead of a pair of optical sensors, and the position deviation x in the vehicle width direction obtained from the light receiving position is shifted from the guiding light beams A1 and A2 in the vehicle width direction. It may be information.

【0058】又、上記実施例では、第1入射光制限手段
20と第2入射光制限手段21の両方を設けたものを示
したが、例えば、誘導用ビーム光A1,A2以外の外乱
光が問題にならないような条件においては、第1入射光
制限手段20のみ設けるものでもよい。
Further, in the above embodiment, both the first incident light restricting means 20 and the second incident light restricting means 21 are provided. However, for example, disturbance light other than the guiding light beams A1 and A2 is used. Under conditions that do not cause a problem, only the first incident light limiting means 20 may be provided.

【0059】又、上記実施例では、第1入射光制限手段
20又は第2入射光制限手段21を、夫々縦壁状の第1
遮光体20a又は横壁状の第2遮光体21aを多数並置
したもので構成したが、このような壁状の遮光体で構成
するものに限らない。
In the above embodiment, the first incident light restricting means 20 and the second incident light restricting means 21 are each provided with a vertical wall-shaped first light restricting means.
Although the light-shielding body 20a or the horizontal wall-shaped second light-shielding body 21a is constituted by a large number of juxtaposed members, the invention is not limited to such a wall-shaped light-shielding body.

【0060】又、上記実施例では、第1入射光制限手段
20又は第2入射光制限手段21を、夫々縦壁状の第1
遮光体20a又は横壁状の第2遮光体21aを多数並置
したものを光透過性部材22中に埋設保持させてフィル
ム状体Fに形成したが、必ずしも、このようなフィルム
状体Fに形成する必要はなく、例えば、それ自体で壁形
状を保持できるような剛性を備えた遮光体20a,21
aを前記所定間隔で板状又は線状の連結部材にて連結構
成するようにしたり、あるいは、第1入射光制限手段2
0と第2入射光制限手段21の両方を設ける場合等にお
いては、両方の遮光体20a,21aに他方の遮光体2
0a,21aを差し込む溝を形成して、その溝にて互い
に保持し合うようにすることもできる。
In the above embodiment, the first incident light restricting means 20 and the second incident light restricting means 21 are each provided with a vertical wall-shaped first light restricting means.
A plurality of light shields 20a or a plurality of side wall-shaped second light shields 21a are buried and held in the light transmissive member 22 to form the film F, but it is not necessarily formed in such a film F. There is no necessity. For example, the light-shielding members 20a and 21 having rigidity so that the wall shape can be maintained by itself.
a is connected by a plate-like or linear connecting member at the predetermined interval, or the first incident light limiting means 2
For example, when both the light blocking member 20a and the second light blocking member 21 are provided, the other light blocking member 2
It is also possible to form a groove into which 0a and 21a are inserted, and to hold each other in the groove.

【0061】又、上記実施例では、作業車Vのステアリ
ングを4輪ステアリング可能に構成して、操向手段7〜
10を、前輪3及び後輪4を各別に操向操作するための
油圧シリンダ及びその制御弁で構成したが、操向手段7
〜10はこれに限るものではなく、種々の手段が可能で
ある。
In the above embodiment, the steering of the work vehicle V is configured to be capable of four-wheel steering, and the steering means 7 to
10 is constituted by a hydraulic cylinder for steering the front wheel 3 and the rear wheel 4 separately and a control valve thereof.
10 to 10 are not limited to these, and various means are possible.

【0062】又、上記実施例では、本発明をビーム光誘
導式作業車としての田植え用の作業車に適用したものを
例示したが、田植え用以外の農作業用の作業車及び農作
業用以外の各種作業車等にも適用できるものであって、
その際の各部の具体構成は、作業車の目的や作業条件等
に合わせて種々変更される。
In the above embodiment, the present invention is applied to a rice planting work vehicle as a beam light guiding type work vehicle. However, the present invention is applied to a work vehicle for agricultural work other than for rice planting and various kinds of vehicles for non-farm work. It can be applied to work vehicles, etc.
The specific configuration of each part at that time is variously changed according to the purpose of the work vehicle, work conditions, and the like.

【0063】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【0064】[0064]

【図面の簡単な説明】[Brief description of the drawings]

【図1】走行経路の全体及び誘導用ビーム光の投射位置
を示す平面図
FIG. 1 is a plan view showing an entire travel route and a projection position of a guiding light beam.

【図2】作業車及び誘導用ビーム光投射手段の概略側面
FIG. 2 is a schematic side view of a work vehicle and a guiding light beam projecting unit.

【図3】作業車及び誘導用ビーム光検出センサを示す概
略平面図
FIG. 3 is a schematic plan view showing a work vehicle and a beam light detection sensor for guidance.

【図4】制御構成のブロック図FIG. 4 is a block diagram of a control configuration.

【図5】操向制御用光センサの受光位置の説明図FIG. 5 is an explanatory diagram of a light receiving position of a steering control optical sensor.

【図6】車体横方向での偏位検出値を傾斜補正する説明
FIG. 6 is an explanatory diagram for correcting the inclination of the deviation detected value in the lateral direction of the vehicle body.

【図7】第1及び第2入射光制限手段を示す概略斜視図FIG. 7 is a schematic perspective view showing first and second incident light limiting means.

【図8】第1入射光制限手段を示す正面図FIG. 8 is a front view showing a first incident light limiting unit.

【図9】操向制御用光センサ及び第2入射光制限手段を
示す側面図
FIG. 9 is a side view showing a steering control optical sensor and a second incident light limiting unit.

【図10】制御作動のフローチャートFIG. 10 is a flowchart of a control operation.

【図11】制御作動のフローチャートFIG. 11 is a flowchart of a control operation.

【図12】制御作動のフローチャートFIG. 12 is a flowchart of a control operation.

【図13】制御作動のフローチャートFIG. 13 is a flowchart of a control operation.

【図14】制御作動のフローチャートFIG. 14 is a flowchart of a control operation.

【図15】制御作動のフローチャートFIG. 15 is a flowchart of a control operation.

【図16】制御作動のフローチャートFIG. 16 is a flowchart of a control operation.

【図17】制御作動のフローチャートFIG. 17 is a flowchart of a control operation.

【図18】本発明の受光装置の作用を説明する平面図FIG. 18 is a plan view illustrating the operation of the light receiving device of the present invention.

【図19】別実施例のビーム光誘導式作業車の走行制御
を説明する平面図
FIG. 19 is a plan view illustrating traveling control of a light beam guided work vehicle according to another embodiment.

【図20】従来例のビーム光誘導式作業車の受光装置に
ついて説明する平面図
FIG. 20 is a plan view illustrating a light receiving device of a conventional light beam guidance type working vehicle.

【符号の説明】[Explanation of symbols]

B1,B2 ビーム光投射手段 S1 操向制御用光センサ V 作業車 S1a,S1b 受光部 20 第1入射光制限手段 21 第2入射光制限手段 20a 第1遮光体 21a 第2遮光体 22 光透過性部材 F フィルム状体 7〜10 操向手段 100 制御手段 B1, B2 Beam light projecting means S1 Steering control light sensor V Work vehicle S1a, S1b Light receiving unit 20 First incident light restricting means 21 Second incident light restricting means 20a First light shield 21a Second light shield 22 Light transmissivity Member F Film-shaped body 7 to 10 Steering means 100 Control means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−61705(JP,A) 実開 昭58−15208(JP,U) (58)調査した分野(Int.Cl.7,DB名) G05D 1/02 A01B 69/00 303 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-61705 (JP, A) JP-A-58-15208 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G05D 1/02 A01B 69/00 303

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地上側に設けられたビーム光投射手段
(B1,B2)にて投射される誘導用ビーム光に対する
車体横幅方向でのずれを検出すべく、その誘導用ビーム
光を受光する操向制御用光センサ(S1)が、作業車
(V)に設けられたビーム光誘導式作業車用の受光装置
であって、 前記操向制御用光センサ(S1)の受光部(S1a,S
1b)の前方側に、車体前後方向を基準として車体横幅
方向に所定角度以上傾いた状態で入射する前記誘導用ビ
ーム光を前記受光部(S1a,S1b)に入射させない
ように制限する第1入射光制限手段(20)が設けられ
ているビーム光誘導式作業車用の受光装置。
An operation for receiving a light beam for guiding in order to detect a deviation in a lateral width direction of the light beam for guiding projected by light beam projecting means (B1, B2) provided on the ground side. A direction control optical sensor (S1) is a light receiving device for a beam light guiding type work vehicle provided in a work vehicle (V), and a light receiving unit (S1a, S1) of the steering control optical sensor (S1).
1b) a first incidence that restricts the guide light beam that is incident on the front side of 1b) in a state of being inclined at a predetermined angle or more in the vehicle width direction with respect to the vehicle longitudinal direction as a reference so as not to enter the light receiving units (S1a, S1b). A light receiving device for a light beam guided work vehicle provided with a light limiting means (20).
【請求項2】 前記操向制御用光センサ(S1)の受光
部(S1a,S1b)の前方側に、車体前後方向を基準
として車体上下方向に所定角度以上傾いた状態で入射す
る光を前記受光部(S1a,S1b)に入射させないよ
うに制限する第2入射光制限手段(21)が設けられて
いる請求項1記載のビーム光誘導式作業車用の受光装
置。
2. Light incident on a front side of a light receiving section (S1a, S1b) of the steering control optical sensor (S1) in a state of being inclined by a predetermined angle or more in a vehicle vertical direction with respect to a vehicle longitudinal direction as a reference. 2. A light receiving device for a light beam guided work vehicle according to claim 1, further comprising a second incident light limiting means (21) for limiting light from entering the light receiving portions (S1a, S1b).
【請求項3】 前記ビーム光投射手段(B1,B2)か
らの2つの誘導用ビーム光が互いに直交する状態で投射
され、前記第1入射光制限手段(20)が、車体前後方
向を基準として車体横幅方向に45度以上傾いた状態で
入射する前記誘導用ビーム光を前記受光部(S1a,S
1b)に入射させないように構成されている請求項1又
は2記載のビーム光誘導式作業車用の受光装置。
3. The two guiding light beams from the light beam projecting means (B1, B2) are projected in a state of being orthogonal to each other, and the first incident light limiting means (20) is set based on the longitudinal direction of the vehicle body. The guiding light beam incident at an angle of 45 degrees or more in the vehicle width direction is received by the light receiving sections (S1a, S1a).
3. The light receiving device according to claim 1, wherein the light receiving device is configured not to be incident on 1b).
【請求項4】 前記第1入射光制限手段(20)が、垂
直面内に沿う状態で車体横幅方向に所定間隔を隔てて多
数並置された縦壁状の第1遮光体(20a)から構成さ
れ、前記第2入射光制限手段(21)が、水平面内に沿
う状態で車体上下方向に所定間隔を隔てて多数並置され
た横壁状の第2遮光体(21a)から構成されている請
求項又は3記載のビーム光誘導式作業車用の受光装
置。
4. The first incident light restricting means (20) comprises a plurality of vertical wall-shaped first light shields (20a) juxtaposed at predetermined intervals in a vehicle width direction along a vertical plane. The second incident light restricting means (21) is composed of a large number of side wall-shaped second light shields (21a) juxtaposed at predetermined intervals in the vehicle body vertical direction along a horizontal plane. 4. A light receiving device for a light beam guided work vehicle according to 2 or 3.
【請求項5】 前記第1又は第2入射光制限手段(2
0,21)が、前記第1遮光体(20a)又は前記第2
遮光体(21a)を光透過性部材(22)中に埋設保持
するフィルム状体(F)に形成されている請求項4記載
のビーム光誘導式作業車用の受光装置。
5. The first or second incident light limiting means (2)
0, 21) is the first light shield (20a) or the second light shield (20a).
5. The light receiving device for a beam-guided work vehicle according to claim 4, wherein the light shielding body is formed in a film-like body which is embedded and held in a light transmissive member.
【請求項6】 請求項1〜5に記載の受光装置を備えた
前記作業車(V)が交差する状態で設けた2つの走行行
程の夫々に沿って自動走行するように、前記ビーム光投
射手段(B1,B2)が、前記2つの走行行程夫々の長
手方向に沿って誘導用ビーム光を投射するように設けら
れ、 前記作業車(V)に、前記作業車(V)の操向を司る操
向手段(7〜10)と、 前記操向制御用光センサ(S1)の受光情報に基づいて
前記作業車(V)が前記2つの走行行程の夫々に沿って
自動走行するように前記操向手段(7〜10)の作動を
制御し、且つ、前記2つの走行行程の交差箇所において
前記作業車(V)が前記2つの走行行程の一方の走行行
程に沿う状態から設定旋回パターンで旋回移動して、前
記操向制御用光センサ(S1)が前記一方の走行行程に
おける誘導用ビーム光を受光しなくなってから次に誘導
用ビーム光を受光するに伴い、その受光した誘導用ビー
ム光の受光情報に基づいて前記作業車(V)が前記2つ
の走行行程の他方の走行行程に沿って自動走行するよう
に前記操向手段(7〜10)の作動を制御する制御手段
(100)とが設けられているビーム光誘導式作業車用
の走行制御装置。
6. The beam light projection so that the work vehicle (V) provided with the light receiving device according to claim 1 automatically travels along each of two traveling processes provided in an intersecting state. Means (B1, B2) are provided so as to project the guiding light beam along the longitudinal direction of each of the two traveling steps, and control the work vehicle (V) to steer the work vehicle (V). The steering vehicle (7-10) and the steering vehicle based on light reception information of the steering control optical sensor (S1) so that the work vehicle (V) automatically travels along each of the two traveling processes. The operation of the steering means (7 to 10) is controlled, and at a crossing point of the two traveling steps, the work vehicle (V) is set in a set turning pattern from a state along one of the two traveling steps. After turning, the steering control optical sensor (S1) is turned to the one side. After the guide beam light is no longer received in the travel process, the work vehicle (V) is driven by the work vehicle (V) based on the received light information of the received guide beam light after the guide beam light is received next. And a control means (100) for controlling the operation of the steering means (7 to 10) so as to automatically travel along the other travel path of the vehicle.
JP6068279A 1994-04-06 1994-04-06 Light receiving device and traveling control device for beam light guided work vehicle Expired - Fee Related JP3044160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6068279A JP3044160B2 (en) 1994-04-06 1994-04-06 Light receiving device and traveling control device for beam light guided work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6068279A JP3044160B2 (en) 1994-04-06 1994-04-06 Light receiving device and traveling control device for beam light guided work vehicle

Publications (2)

Publication Number Publication Date
JPH07281744A JPH07281744A (en) 1995-10-27
JP3044160B2 true JP3044160B2 (en) 2000-05-22

Family

ID=13369171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6068279A Expired - Fee Related JP3044160B2 (en) 1994-04-06 1994-04-06 Light receiving device and traveling control device for beam light guided work vehicle

Country Status (1)

Country Link
JP (1) JP3044160B2 (en)

Also Published As

Publication number Publication date
JPH07281744A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
JPH07281742A (en) Traveling controller for beam light guided work vehicle
JPH0944240A (en) Guide device for moving vehicle
JP3044160B2 (en) Light receiving device and traveling control device for beam light guided work vehicle
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JPH0876843A (en) Light receiving device and travel controller for beam light guide type working vehicle
JPH07281743A (en) Method for traveling work vehicle for ground work and controller therefor
JP3005151B2 (en) Traveling control device for beam-guided work vehicle
JPH06149371A (en) Traveling controller for automatic traveling working vehicle
JPH07291140A (en) Steering controller for working vehicle
JPH0944241A (en) Beam light guidance device for moving object
JP3046718B2 (en) Beam light guiding device for work vehicles
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JPS63308609A (en) Working vehicle guide device using beam light
JPH07281745A (en) Traveling controller for light beam guided work vehicle
JPH0216607A (en) Working vehicle guiding device for beam light utilization
JPH075915A (en) Traveling controller for beam light guided work vehicle
JPH07281746A (en) Traveling controller for light beam guided work vehicle
JPH0876842A (en) Light receiving device for beam light guide type working vehicle
JPH06161546A (en) Controller for traveling of light-guided work wagon
JPH07295631A (en) Beam light projection device for work vehicle guidance
JP3113457B2 (en) Work vehicle travel control device
JP2612389B2 (en) Body direction detection device
JPH08178650A (en) Position detecting device for work vehicle
JPH06149352A (en) Traveling controller for beam light guidance type working car
JPS63311413A (en) Guiding device using beam light for working vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees