[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3042762B2 - Device bonding method and device - Google Patents

Device bonding method and device

Info

Publication number
JP3042762B2
JP3042762B2 JP20618495A JP20618495A JP3042762B2 JP 3042762 B2 JP3042762 B2 JP 3042762B2 JP 20618495 A JP20618495 A JP 20618495A JP 20618495 A JP20618495 A JP 20618495A JP 3042762 B2 JP3042762 B2 JP 3042762B2
Authority
JP
Japan
Prior art keywords
reference end
face
joining
bonding
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20618495A
Other languages
Japanese (ja)
Other versions
JPH0955393A (en
Inventor
宏 中田
廉士 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20618495A priority Critical patent/JP3042762B2/en
Publication of JPH0955393A publication Critical patent/JPH0955393A/en
Application granted granted Critical
Publication of JP3042762B2 publication Critical patent/JP3042762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Die Bonding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザ等の
素子を光導波路基板等の接合対象物に対して高精度で位
置決めしてボンディングする素子のボンディング方法及
びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element bonding method and apparatus for positioning an element such as a semiconductor laser with respect to an object to be bonded such as an optical waveguide substrate with high precision.

【0002】[0002]

【従来の技術】従来、この種のボンディング装置におい
ては、エアピンセットで吸着保持した素子と接合対象物
との位置合わせを実体顕微鏡により斜め上方から目視し
て行っていたため、感覚的にその位置合わせが完了した
と判断して素子を実際に接合対象物に置いてみると、顕
微鏡の鏡筒が傾斜している方向に位置誤差が生じている
場合が多く、加えて作業者によるばらつきも大きかっ
た。このため、位置合わせの精度としては10μm程度
が限界であった。
2. Description of the Related Art Conventionally, in a bonding apparatus of this type, the position of an element to be bonded and an object held by suction with air tweezers has been visually checked obliquely from above by a stereoscopic microscope. When the device was judged to be completed and the element was actually placed on the object to be joined, there were many cases where a position error occurred in the direction in which the lens barrel of the microscope was inclined, and in addition, there was a large variation due to the operator. . For this reason, the accuracy of positioning was limited to about 10 μm.

【0003】そこで、例えば特開昭62−75411号
公報に記載されているオートフォーカス機構による計測
結果に基づいて微細な位置合わせを可能とする装置が知
られており、これを以下に説明する。即ち、図7はオー
トフォーカス機構を用いた従来のボンディング装置を示
すもので、図中、20は半導体レーザ等の素子、21は
素子20の接合される接合対象物である。
[0003] For this reason, there is known an apparatus capable of performing fine alignment based on a measurement result by an autofocus mechanism described in, for example, Japanese Patent Application Laid-Open No. 62-75411, which will be described below. That is, FIG. 7 shows a conventional bonding apparatus using an autofocus mechanism. In FIG. 7, reference numeral 20 denotes an element such as a semiconductor laser, and reference numeral 21 denotes a bonding target to which the element 20 is bonded.

【0004】同図に示すボンディング装置は、真空吸引
手段によって素子20を着脱自在に保持するエアピンセ
ット22と、エアピンセット22を図中Z方向に移動さ
せたり、Z軸を中心に回転させるピンセット駆動機構2
3と、接合対象物21を固定する試料台24と、試料台
24を加熱するヒータ25と、試料台24を覆うハウジ
ング26と、ハウジング26内に不活性ガス或いは還元
性ガスを導入するガス供給ノズル27と、ハウジング2
6内に冷却用の低温ガスを導入する冷却用ガス供給ノズ
ル28と、位置合わせ空間にある素子20及び接合対象
物21を斜め上方から観察する実体顕微鏡29と、素子
20及び接合対象物21の基準端面に測定用ビーム光3
0を照射して基準端面までの距離を測定するオートフォ
ーカス機構31とを備え、エアピンセット22はハウジ
ング26の上面に設けた開口部26aにXY方向に微動
できるように挿入され、オートフォーカス機構31はハ
ウジング26の一側面に設けた主窓26bに外部から臨
んで配置されている。
The bonding apparatus shown in FIG. 1 includes an air tweezers 22 for detachably holding an element 20 by vacuum suction means, and a tweezers drive for moving the air tweezers 22 in the Z direction in the drawing and rotating the air tweezers 22 around the Z axis. Mechanism 2
3, a sample stage 24 for fixing the joining object 21, a heater 25 for heating the sample stage 24, a housing 26 covering the sample stage 24, and a gas supply for introducing an inert gas or a reducing gas into the housing 26. Nozzle 27 and housing 2
6, a cooling gas supply nozzle 28 for introducing a low-temperature gas for cooling, a stereoscopic microscope 29 for observing the element 20 and the object 21 in the alignment space from obliquely above, Measurement light beam 3 on the reference end face
An auto focus mechanism 31 for irradiating 0 and measuring the distance to the reference end face; the air tweezers 22 is inserted into an opening 26a provided on the upper surface of the housing 26 so as to be finely movable in the XY directions; Are disposed facing a main window 26b provided on one side surface of the housing 26 from the outside.

【0005】以上の構成においては、ハウジング26内
にガス供給ノズル27によりガスを充満させた雰囲気中
で素子20と接合対象物21とをオートフォーカス機構
31を用いて位置合わせ(後記詳述)した後、ピンセッ
ト駆動機構23を降下させて素子20を接合対象物21
上の薄膜ハンダ21aに接触させ、ヒータ25で試料台
24を薄膜ハンダ21aの溶融温度以上に加熱してハン
ダ接合する。この後、冷却用ガス供給ノズル28から試
料台24に多量の低温ガスを吹付け、高温状態にある素
子20及び接合対象物21を常温まで冷却する。
In the above configuration, the element 20 and the object 21 are aligned using the autofocus mechanism 31 in an atmosphere in which gas is filled in the housing 26 by the gas supply nozzle 27 (details will be described later). Thereafter, the tweezers drive mechanism 23 is lowered to move the element 20 to the object 21 to be joined.
The sample stage 24 is heated to a temperature equal to or higher than the melting temperature of the thin film solder 21a by a heater 25 so as to be soldered. Thereafter, a large amount of low-temperature gas is blown from the cooling gas supply nozzle 28 to the sample table 24, and the element 20 and the object 21 in the high-temperature state are cooled to room temperature.

【0006】前記ボンディングにおいて、オートフォー
カス機構31により素子20及び接合対象物21の位置
合わせを行うには、まず素子20の基準端面である前側
面20aの水平方向一端寄りにビーム光30を照射して
その反射戻り光によりオートフォーカシングし、検出系
により照射面までの距離を計測してその値を図示しない
表示部に表示する。この値を0(ゼロ)にリセットした
後、オートフォーカス機構31をY方向に移動し、前側
面20a内のビーム光30の照射位置を水平方向他端寄
りに移動させる。次に、前述と同様に反射した戻り光に
よりその面をオートフォーカシングするとともに、検出
系により照射面までの距離を計測し、先にリセットした
値との差分の値を表示部に表示する。更に、ピンセット
駆動機構23を駆動して表示された値の約1/2だけエ
アピンセット22を所定の方向に回転させて傾きを減少
させる。そして、前側面20a内でビーム光30を水平
方向に往復移動させて前述した操作を繰り返し行い、表
示される差分の値が0または所望の許容範囲内の値にな
るようにする。これにより、素子20の前側面20aが
ビーム光30と垂直をなす状態に調整される。
In the above-mentioned bonding, in order to position the element 20 and the object 21 to be joined by the auto-focus mechanism 31, first, a light beam 30 is irradiated to one end in the horizontal direction of the front side surface 20a which is the reference end surface of the element 20. Then, auto-focusing is performed by the reflected return light, the distance to the irradiation surface is measured by a detection system, and the value is displayed on a display unit (not shown). After resetting this value to 0 (zero), the autofocus mechanism 31 is moved in the Y direction, and the irradiation position of the light beam 30 in the front side surface 20a is moved toward the other end in the horizontal direction. Next, in the same manner as described above, the surface is auto-focused with the reflected return light, the distance to the irradiation surface is measured by the detection system, and the value of the difference from the previously reset value is displayed on the display unit. Further, the tweezers driving mechanism 23 is driven to rotate the air tweezers 22 in a predetermined direction by about 値 of the displayed value to reduce the inclination. Then, the above-described operation is repeated by reciprocating the light beam 30 in the horizontal direction within the front side surface 20a, so that the displayed difference value becomes 0 or a value within a desired allowable range. Thereby, the front side surface 20 a of the element 20 is adjusted to be in a state perpendicular to the light beam 30.

【0007】次に、オートフォーカス機構31を下方に
移動し、前述した素子20の場合と同様に接合対象物2
1の側面21bの水平方向一端寄りにビーム光30を照
射して反射した戻り光によりオートフォーカシングし、
検出系で照射面までの距離を計測してその値を表示部に
表示する。この値を0にリセットした後、オートフォー
カス機構31をY方向に移動させ、側面21b内のビー
ム光30の照射位置を水平方向他端寄りに移動させる。
次に、前述と同様に反射した戻り光によりその面をオー
トフォーカシングするとともに、検出系により照射面ま
での距離を計測し、先にリセットした値との差分の値を
表示部に表示する。更に、試料台24を図示しない駆動
機構によって表示値の約1/2だけ所定の方向に回転さ
せて傾きを減少させる。そして、側面21b内でビーム
光13を水平方向に往復移動させて前述した操作を繰り
返し、表示される差分の値が0または所望の許容範囲内
になるようにする。その結果、素子20の前側面20a
と接合対象物21の側面21bとは互いに平行をなす。
尚、上記の操作中、反射光によりオートフォーカシング
された照射面(反射面)の拡大画像が図示しないディス
プレイに常時表示される。
Next, the autofocus mechanism 31 is moved downward, and the object 2 to be bonded is moved in the same manner as in the case of the element 20 described above.
The first side surface 21b is irradiated with the beam light 30 near one end in the horizontal direction, and is auto-focused by the reflected return light.
The distance to the irradiation surface is measured by the detection system, and the value is displayed on the display unit. After resetting this value to 0, the autofocus mechanism 31 is moved in the Y direction, and the irradiation position of the light beam 30 in the side surface 21b is moved toward the other end in the horizontal direction.
Next, in the same manner as described above, the surface is auto-focused with the reflected return light, the distance to the irradiation surface is measured by the detection system, and the value of the difference from the previously reset value is displayed on the display unit. Further, the tilt is reduced by rotating the sample stage 24 in a predetermined direction by about の of the displayed value by a driving mechanism (not shown). Then, the light beam 13 is reciprocated in the horizontal direction within the side surface 21b, and the above-described operation is repeated so that the displayed difference value becomes 0 or within a desired allowable range. As a result, the front surface 20a of the element 20
And the side surface 21b of the joining object 21 are parallel to each other.
During the above operation, an enlarged image of the irradiation surface (reflection surface) auto-focused by the reflected light is always displayed on a display (not shown).

【0008】次に、平行をなした素子20と接合対象物
21のX方向の相対変位量(段差)を調整するために、
前述の工程で接合対象物21の側面21bへ照射されて
いるビーム光30を側面21bの任意の位置でオートフ
ォーカシングし、検出系で照射面までの距離を計測して
表示部に表示された値を0にリセットした後、オートフ
ォーカス機構31を上方へ移動し、素子20の前側面2
0aにビーム光30を照射して反射した戻り光によりオ
ートフォーカシングするとともに、検出系で照射面まで
の距離を計測し、先にリセットした値との差分の値を表
示部に表示する。この値が素子20の前側面20aと接
合対象物21の側面21bとの相対変位量(段差)であ
る。この場合、エアピンセット22側の図示しない搬送
機構または試料台25側の周知のスライド機構を駆動す
ることにより、相対変位量を0(ゼロ)、或いは任意の
相対変位量を有して素子20と接合対象物21との位置
合わせができる。
Next, in order to adjust the relative displacement (step) in the X direction between the parallel element 20 and the object 21 to be joined,
In the above-described process, the beam light 30 radiated to the side surface 21b of the bonding object 21 is auto-focused at an arbitrary position on the side surface 21b, the distance to the irradiation surface is measured by the detection system, and the value displayed on the display unit. Is reset to 0, the autofocus mechanism 31 is moved upward, and the front side surface 2 of the element 20 is moved.
The light beam 30a is irradiated with the beam light 30 to perform auto-focusing with the reflected light, and the distance to the irradiation surface is measured by the detection system, and the value of the difference from the previously reset value is displayed on the display unit. This value is the relative displacement (step) between the front side surface 20a of the element 20 and the side surface 21b of the bonding object 21. In this case, by driving a not-shown transport mechanism on the side of the air tweezers 22 or a well-known slide mechanism on the side of the sample table 25, the relative displacement amount is 0 (zero), or the element 20 has an arbitrary relative displacement amount. Positioning with the joining object 21 can be performed.

【0009】以上説明したように、オートフォーカス機
構31を用いての位置合わせでは、素子20の前側面2
0aと接合対象物21の側面21bにそれぞれビーム光
30を照射することにより、オートフォーカシングによ
る両者の平行度と段差を計測し、その計測結果に基づい
て姿勢及び位置を修正した後、ハンダ接合するようにし
ているので、位置合わせ精度が向上し、ミクロン精度で
の接合を行うことができる。
As described above, in positioning using the autofocus mechanism 31, the front surface 2
By irradiating the light beam 30 onto the side surface 21b of the object 21a and the joint 21a, the parallelism and the level difference between the two are measured by auto-focusing, and after correcting the posture and the position based on the measurement result, soldering is performed. As a result, the alignment accuracy is improved, and bonding with micron accuracy can be performed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前述の
オートフォーカス機構を用いたボンディング装置におい
ては、測定用のビーム光30を一本しか照射していない
ため、平行度出しの作業においては、傾き(左右の出入
り)の表示を見て修正の具合を確かめながら素子20ま
たは接合対象物21の各計測面内でビーム光30を左右
に何回も移動させる必要があり、また素子20と接合対
象物21との段差修正でも同様にビーム光30を両者間
で繰り返し往復移動させなければならず、位置合わせ作
業が極めて煩雑になるという問題点があった。また、ビ
ーム光30を移動させながら計測するため、各照射位置
での値が計測するたびに刻々変化してしまい、計測の時
間的なずれがサブミクロン単位の計測精度に悪影響を与
えていた。更に、最近では高精度なボンディングを可能
とするために、両者の接合面に予め位置合わせ用のマー
クを形成しておく場合があるが、従来の装置ではマーク
を用いて位置合わせのできる構成にはなっておらず、こ
のようなボンディング方法には対応できないという問題
点があった。
However, in the bonding apparatus using the above-described auto-focus mechanism, since only one beam 30 for measurement is irradiated, the inclination ( It is necessary to move the beam light 30 left and right many times within each measurement plane of the element 20 or the object 21 while checking the state of the correction by looking at the display of “left and right in / out”. Even in the case of correcting a step with the light source 21, the light beam 30 must be reciprocally moved between the two in the same manner, and there has been a problem that the alignment work becomes extremely complicated. In addition, since the measurement is performed while moving the light beam 30, the value at each irradiation position changes every time the measurement is performed, and a time lag in the measurement adversely affects the measurement accuracy in submicron units. Furthermore, recently, in order to enable high-precision bonding, a mark for positioning is sometimes formed in advance on a joining surface of the two. However, in a conventional apparatus, the mark can be aligned using a mark. Therefore, there is a problem that such a bonding method cannot be coped with.

【0011】本発明は前記問題点に鑑みてなされたもの
であり、その目的とするところは、素子と接合対象物と
の高精度な平行度調整を容易に行うことができ、しかも
測定用ビーム光の移動による測定誤差を解消することの
できる素子のボンディング方法及びその装置を提供する
ことにある。また、他の目的とするところは、前記目的
に加え、マークを用いて高精度な位置合わせを可能とす
るボンディング方法にも対応することのできる素子のボ
ンディング方法及びその装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to make it possible to easily perform high-precision parallelism adjustment between an element and an object to be joined, and to provide a measuring beam. An object of the present invention is to provide an element bonding method and an apparatus capable of eliminating a measurement error due to light movement. Another object of the present invention is to provide a device bonding method and a device capable of coping with a bonding method that enables high-accuracy alignment using a mark, in addition to the above objects. .

【0012】[0012]

【課題を解決するための手段】本発明は前記目的を達成
するために、請求項1では、接合面に対して垂直な基準
端面を有する素子を、接合面に対して垂直な基準端面を
有する接合対象物の近傍に保持し、素子及び接合対象物
を接合面に垂直な軸を中心に相対的に回転させて素子の
基準端面と接合対象物の基準端面とを互いに平行にした
後、素子及び接合対象物の少なくとも一方を接合面に対
して平行に移動して両者の相対的な位置決めをし、素子
と接合対象物を接合する素子のボンディング方法におい
て、前記素子の基準端面の少なくとも二箇所に測定用ビ
ーム光を同時に照射し、各ビーム光の反射光により測定
される基準端面までの距離が各照射位置において互いに
等しくなるように素子を回転させる工程と、前記接合対
象物の基準端面の少なくとも二箇所に測定用ビーム光を
同時に照射し、各ビーム光の反射光により測定される基
準端面までの距離が各照射位置において互いに等しくな
るように接合対象物を回転させる工程とを含むようにし
ている。
In order to achieve the above object, according to the present invention, there is provided an element having a reference end face perpendicular to a bonding face, and an element having a reference end face perpendicular to the bonding face. After holding the element and the object to be joined near the object to be joined and rotating the element and the object to be joined relatively around an axis perpendicular to the joint surface, the reference end face of the element and the reference end face of the object to be joined are made parallel to each other. And moving at least one of the objects to be joined in parallel with respect to the joining surface to position them relative to each other and joining the element and the object to be joined. Simultaneously irradiating the measurement beam light, the step of rotating the element so that the distance to the reference end face measured by the reflected light of each beam light is equal to each other at each irradiation position, and the reference end face of the object to be joined At least simultaneously irradiating the measurement beam light at two locations, the step of rotating the joining object so that the distance to the reference end surface measured by the reflected light of each beam light is equal to each other at each irradiation position I have.

【0013】また、請求項2では、接合面に対して垂直
な基準端面を有する素子を、接合面に対して垂直な基準
端面を有する接合対象物の近傍に保持し、素子及び接合
対象物を接合面に垂直な軸を中心に相対的に回転させて
素子の基準端面と接合対象物の基準端面とを互いに平行
にした後、素子及び接合対象物の少なくとも一方を接合
面に対して平行に移動して両者の相対的な位置決めを
し、素子と接合対象物を接合する素子のボンディング方
法において、前記素子の基準端面及び接合対象物の基準
端面にそれぞれ測定用ビーム光を同時に照射し、各ビー
ム光の反射光により測定される各基準端面までの距離に
基づいて各基準端面間が所定の距離になるように素子及
び接合対象物の少なくとも一方を接合面に対して平行に
移動する工程と、素子の基準端面及び接合対象物の基準
端面にそれぞれ測定用ビーム光を同時に照射するととも
に、その反射光によって焦点を合わせた各基準端面像を
同一視野内に表示し、各基準端面が所定の相対位置にな
るように素子及び接合対象物の少なくとも一方を接合面
に対して平行に移動する工程とを含むようにしている。
According to a second aspect of the present invention, an element having a reference end face perpendicular to the joining surface is held near a joining object having a reference end face perpendicular to the joining face, and the element and the joining object are held. After rotating the reference end face of the element and the reference end face of the object to be joined parallel to each other about an axis perpendicular to the joining surface, at least one of the element and the joining object is parallel to the joining face. In the bonding method of the element for moving and performing relative positioning of the two and bonding the element and the object to be bonded, the reference end surface of the element and the reference end surface of the object to be bonded are simultaneously irradiated with the measuring beam light, respectively. A step of moving at least one of the element and the object to be bonded in parallel to the bonding surface so that the distance between the respective reference end surfaces is a predetermined distance based on the distance to each of the reference end surfaces measured by the reflected light of the beam light; and , Element Simultaneously irradiating the reference end face of the target object and the reference end face of the object to be joined with the measuring beam light, and displaying each reference end face image focused by the reflected light in the same field of view, and each reference end face is in a predetermined relative position. And moving at least one of the element and the object to be bonded in parallel with the bonding surface.

【0014】また、請求項3では、接合面に対して垂直
な基準端面を有する素子を、接合面に対して垂直な基準
端面を有する接合対象物の近傍に保持し、素子及び接合
対象物を接合面に垂直な軸を中心に相対的に回転させて
素子の基準端面と接合対象物の基準端面とを互いに平行
にした後、素子及び接合対象物の少なくとも一方を接合
面に対して平行に移動して両者の相対的な位置決めを
し、素子と接合対象物を接合する素子のボンディング方
法において、前記素子の基準端面の少なくとも二箇所に
測定用ビーム光を同時に照射し、各ビーム光の反射光に
より測定される基準端面までの距離が各照射位置におい
て互いに等しくなるように素子を回転させる工程と、前
記接合対象物の基準端面の少なくとも二箇所に測定用ビ
ーム光を同時に照射し、各ビーム光の反射光により測定
される基準端面までの距離が各照射位置において互いに
等しくなるように接合対象物を回転させる工程と、素子
の基準端面及び接合対象物の基準端面にそれぞれ測定用
ビーム光を同時に照射し、各ビーム光の反射光により測
定される各基準端面までの距離に基づいて各基準端面間
が所定の距離になるように素子及び接合対象物の少なく
とも一方を接合面に対して平行に移動する工程と、素子
の基準端面及び接合対象物の基準端面にそれぞれ測定用
ビーム光を同時に照射するとともに、その反射光によっ
て焦点を合わせた各基準端面像を同一視野内に表示し、
各基準端面が所定の相対位置になるように素子及び接合
対象物の少なくとも一方を接合面に対して平行に移動す
る工程とを含むようにしている。
According to a third aspect of the present invention, an element having a reference end surface perpendicular to the joining surface is held near a joining object having a reference end surface perpendicular to the joining surface, and the element and the joining object are held. After rotating the reference end face of the element and the reference end face of the object to be joined parallel to each other about an axis perpendicular to the joining surface, at least one of the element and the joining object is parallel to the joining face. In a bonding method of an element for moving and relative positioning of both elements and bonding the element and an object to be bonded, at least two points on a reference end surface of the element are simultaneously irradiated with a measuring beam light, and the reflection of each beam light is performed. Rotating the element so that the distance to the reference end face measured by light is equal to each other at each irradiation position, and simultaneously irradiating at least two points of the reference end face of the object to be joined with measurement beam light Rotating the object to be joined so that the distance to the reference end face measured by the reflected light of each beam light is equal to each other at each irradiation position; and measuring the reference end face of the element and the reference end face of the object to be joined, respectively. Simultaneously irradiate the light beams, and at least one of the element and the object to be bonded to the bonding surface so that the distance between the respective reference end surfaces is a predetermined distance based on the distance to each reference end surface measured by the reflected light of each beam light. In parallel with the process, the reference end face of the element and the reference end face of the object to be bonded are simultaneously irradiated with the measuring beam light, and the reference end face images focused by the reflected light are displayed in the same field of view. And
Moving at least one of the element and the object to be bonded in parallel with the bonding surface so that each reference end surface is at a predetermined relative position.

【0015】従って、請求項1、2及び3によれば、素
子の基準端面または接合対象物の基準端面における少な
くとも二箇所に測定用ビーム光が照射され、各ビーム光
の反射光により測定される基準端面までの距離が各照射
位置において互いに等しくなるように素子及び接合対象
物を相対的に回転させることにより、素子の基準端面及
び接合対象物の基準端面の平行度調整が行われることか
ら、一回のビーム光照射で必要な回転角度が正確に計測
され、しかも基準端面の少なくとも二箇所に測定用ビー
ム光が照射されることから、計測に際して測定用ビーム
光を移動させる必要がない。
Therefore, according to the first, second and third aspects, at least two points on the reference end face of the element or the reference end face of the object to be joined are irradiated with the measuring beam light, and the measurement is performed by the reflected light of each beam light. By relatively rotating the element and the object to be joined so that the distance to the reference end face is equal to each other at each irradiation position, since the parallelism adjustment of the reference end face of the element and the reference end face of the object to be joined is performed, Since the required rotation angle is accurately measured by one irradiation of the light beam, and at least two positions of the reference end face are irradiated with the measuring light beam, it is not necessary to move the measuring light beam at the time of measurement.

【0016】また、請求項4では、接合面に対して垂直
な基準端面を有する素子を、接合面に対して垂直な基準
端面を有する接合対象物の近傍に保持し、素子及び接合
対象物を相対的に位置合わせした後、素子と接合対象物
を接合する素子のボンディング装置において、前記素子
を着脱自在に保持する素子保持手段と、素子または接合
対象物の基準端面の少なくとも二箇所に測定用ビーム光
を同時に照射するビーム光照射手段と、各ビーム光の反
射光により各照射位置における基準端面までの距離を測
定する距離測定手段と、素子の基準端面における各照射
位置の測定距離が互いに等しくなるように素子を接合面
に垂直な軸を中心に回転させる素子回転手段と、接合対
象物の基準端面における各照射位置の測定距離が互いに
等しくなるように接合対象物を接合面に垂直な軸を中心
に回転させる接合対象物回転手段と、素子の基準端面及
び接合対象物の基準端面における各照射位置の測定距離
に基づいて各基準端面間が所定の距離になるように素子
及び接合対象物の少なくとも一方を互いの接合面に対し
て平行な方向に移動させる移動手段と、測定用ビーム光
の反射光によって各基準端面に焦点を合わせて各基準端
面像を同一視野内に表示する表示手段と、表示された各
基準端面が所定の相対位置になるように素子及び接合対
象物の少なくとも一方を接合面に対して平行に移動する
移動手段とを備えている。これにより、一回のビーム光
照射で必要な回転角度を正確に計測することができ、し
かも計測に際して測定用ビーム光を移動させる必要のな
い装置を具体的に実現することができる。
According to a fourth aspect of the present invention, an element having a reference end face perpendicular to the joining surface is held near a joining object having a reference end face perpendicular to the joining face, and the element and the joining object are held. In the device bonding apparatus for bonding the element and the object to be bonded after the relative alignment, an element holding means for detachably holding the element, and a measuring device at at least two positions on the reference end surface of the element or the object to be bonded. Beam light irradiation means for simultaneously irradiating the beam light, distance measuring means for measuring the distance to the reference end face at each irradiation position by reflected light of each beam light, and measuring distance of each irradiation position on the reference end face of the element are equal to each other Element rotation means for rotating the element about an axis perpendicular to the bonding surface so that the measurement distances of the respective irradiation positions on the reference end surface of the bonding object are equal to each other. A joining object rotating means for rotating the joining object about an axis perpendicular to the joining surface, and a predetermined distance between the reference end surfaces based on the measured distances of the irradiation positions on the reference end surface of the element and the reference end surface of the joining object. Moving means for moving at least one of the element and the object to be joined so as to be at a distance in a direction parallel to the joining surface of each other; and focusing each reference end surface by reflected light of the measurement beam light so that each reference end surface is focused. Display means for displaying an image in the same field of view, and moving means for moving at least one of the element and the object to be bonded in parallel with the bonding surface such that the displayed reference end faces are at predetermined relative positions. ing. Thus, it is possible to accurately measure the rotation angle required by one light beam irradiation, and to specifically realize an apparatus that does not need to move the measurement light beam during measurement.

【0017】また、請求項5では、接合面に位置決め用
マークを有する素子を、接合面に位置決め用マークを有
する接合対象物の近傍に保持し、素子及び接合対象物を
接合面に垂直な軸を中心に回転及び接合面に対して平行
に移動して素子及び接合対象物の位置決め用マークを互
いに一致させた後、素子と接合対象物を接合する素子の
ボンディング方法において、測定用ビーム光を素子内を
透過させて素子の接合面及び接合対象物の接合面にそれ
ぞれ同時に照射するとともに、その反射光によって焦点
を合わせた各接合面のマーク像を同一視野内に表示し、
各マークが一致するように素子及び接合対象物を相対的
に回転及び移動する工程を含むようにしている。これに
より、素子内を透過した測定用ビーム光が素子の接合面
及び接合対象物の接合面にそれぞれ同時に照射されると
ともに、その反射光によって焦点を合わせた各接合面の
マーク像が同一視野内に表示され、各マークが一致する
ように素子及び接合対象物を相対的に回転及び移動する
ことにより、素子及び接合対象物の相対的な位置合わせ
が行われることから、このようなマークを用いて位置合
わせをするボンディング方法に的確に対応することがで
きる。
According to a fifth aspect of the present invention, an element having a positioning mark on a bonding surface is held near an object to be bonded having a positioning mark on the bonding surface, and the element and the object to be bonded are held in an axis perpendicular to the bonding surface. In the method of bonding the element and the object to be bonded, the measurement beam light is applied after the rotation of the element and the parallel movement with respect to the bonding surface and the alignment marks of the element and the object to be bonded coincide with each other. While transmitting the inside of the element and simultaneously irradiating the bonding surface of the element and the bonding surface of the bonding target simultaneously, the mark image of each bonding surface focused by the reflected light is displayed in the same field of view,
The method includes a step of relatively rotating and moving the element and the object to be joined so that the marks match. Thereby, the measuring beam light transmitted through the inside of the element is simultaneously irradiated on the joining surface of the element and the joining surface of the object to be joined, and the mark image of each joining surface focused by the reflected light is in the same visual field. The relative position of the element and the object to be joined is performed by relatively rotating and moving the element and the object to be joined so that the respective marks coincide with each other. It is possible to accurately cope with a bonding method of performing positioning.

【0018】また、請求項6では、接合面に位置決め用
マークを有する素子を、接合面に位置決め用マークを有
する接合対象物の近傍に保持し、素子及び接合対象物の
位置決め用マークを互いに一致させた後、素子と接合対
象物を接合する素子のボンディング装置において、前記
素子を着脱自在に保持する素子保持手段と、測定用ビー
ム光を素子内を透過させて素子の接合面及び接合対象物
の接合面にそれぞれ同時に照射するビーム光照射手段
と、測定用ビーム光の反射光によって各接合面に焦点を
合わせて各接合面のマーク像を同一視野内に表示する表
示手段と、表示された各マークが一致するように素子及
び接合対象物を相対的に回転及び移動させる回転移動手
段とを備えている。これにより、マークを用いて位置合
わせをするボンディング方法に的確に対応することので
きる装置を具体的に実現することができる。
According to a sixth aspect of the present invention, the element having the positioning mark on the joining surface is held near the joining object having the positioning mark on the joining surface, and the positioning mark of the element and the joining mark coincide with each other. Then, in an element bonding apparatus for bonding the element and the object to be bonded, an element holding means for detachably holding the element, a bonding surface of the element and an object to be bonded by transmitting the measuring beam light through the element. Beam light irradiating means for simultaneously irradiating the respective joint surfaces, and display means for displaying the mark image of each joint surface in the same field of view by focusing on each joint surface by reflected light of the measuring beam light, A rotation moving means for relatively rotating and moving the element and the object to be joined so that the respective marks coincide with each other is provided. Thus, it is possible to specifically realize an apparatus that can appropriately cope with a bonding method of performing alignment using marks.

【0019】[0019]

【発明の実施の形態】図1乃至図6は本発明の一実施形
態を示すもので、図1はボンディング装置の斜視図、図
2はその一部断面側面図、図3及び図4はディスプレイ
表示を示す図、図5は素子及び光導波路基板の拡大斜視
図、図6はディスプレイ表示を示す図である。
1 to 6 show an embodiment of the present invention. FIG. 1 is a perspective view of a bonding apparatus, FIG. 2 is a partial sectional side view thereof, and FIGS. 3 and 4 are displays. FIG. 5 is a view showing a display, FIG. 5 is an enlarged perspective view of an element and an optical waveguide substrate, and FIG. 6 is a view showing a display.

【0020】同図において、1は図示しない真空ポンプ
等の真空吸引手段を用いた素子吸着用のエアピンセット
で、本実施形態ではその先端にリン化インジウムの基材
からなる1mm角以下の素子2を真空吸着で保持してい
る。3はピンセット駆動機構で、エアピンセット1の上
部を保持し、エアピンセット1を図2中に示した座標系
X,Y,Z方向に移動させるとともに、Z軸を中心に所
定角度だけ回転させるようになっている。ピンセット駆
動機構3の全体は、素子2の置かれた図示しない載物台
と、以下に説明する領域との間を図示しない搬送機構に
よって往復移動する。
In FIG. 1, reference numeral 1 denotes an air tweezer for sucking an element using a vacuum suction means such as a vacuum pump (not shown). In this embodiment, the tip of the element 2 having a size of 1 mm square or less made of an indium phosphide base material is provided. Is held by vacuum suction. Reference numeral 3 denotes a tweezer driving mechanism which holds the upper portion of the air tweezers 1 and moves the air tweezers 1 in a coordinate system X, Y, and Z directions shown in FIG. 2 and rotates the air tweezers 1 by a predetermined angle about the Z axis. It has become. The entire tweezers drive mechanism 3 reciprocates between a stage (not shown) on which the element 2 is placed and an area described below by a transport mechanism (not shown).

【0021】4は試料台で、その上面5は図示しない真
空ポンプ等を真空吸引手段とした真空チャックをなして
いる。6はシリコンの基材からなる接合対象物としての
光導波路基板で、光路であるコア6aの端面を含む端面
6bに連なってテラス面6cが形成されている。テラス
面6cには素子2を搭載する電極6dと、その表面薄膜
ハンダ6eがそれぞれ設けられている。
Reference numeral 4 denotes a sample stage, and its upper surface 5 forms a vacuum chuck using a vacuum pump or the like (not shown) as vacuum suction means. Reference numeral 6 denotes an optical waveguide substrate as a bonding target made of a silicon base material, and a terrace surface 6c is formed so as to be continuous with an end surface 6b including an end surface of a core 6a as an optical path. An electrode 6d for mounting the element 2 and a surface thin-film solder 6e are provided on the terrace surface 6c.

【0022】光導波路基板6はテラス面6eがXY平面
に平行で且つエアピンセット1の先端と対向する位置に
配置された試料台4の上面5に真空吸着で固定される。
7は方形の箱をなして試料台4を囲むハウンジングで、
耐熱性透明ガラスの主窓7aと、耐熱性透明ガラスの照
明用窓7bと、上面を覆う耐熱性透明ガラスの蓋8を有
している。また、蓋8には素子2を保持したエアピンセ
ット1の先端側を挿入してXY方向に微動できるだけの
開口部8aが設けられている。9はガス供給ノズルで、
不活性ガスまたは還元性ガスをハウジング7の内部に導
入するようになっている。
The optical waveguide substrate 6 is fixed by vacuum suction to the upper surface 5 of the sample stage 4 whose terrace surface 6e is parallel to the XY plane and is located at a position facing the tip of the air tweezers 1.
Reference numeral 7 denotes a housing surrounding the sample stage 4 in a rectangular box.
It has a main window 7a made of heat-resistant transparent glass, an illumination window 7b made of heat-resistant transparent glass, and a lid 8 made of heat-resistant transparent glass that covers the upper surface. Further, the lid 8 is provided with an opening 8a that allows the distal end side of the air tweezers 1 holding the element 2 to be inserted and finely moved in the XY directions. 9 is a gas supply nozzle,
An inert gas or a reducing gas is introduced into the housing 7.

【0023】試料台4の下部にはヒータ10が設けら
れ、ハウジング7内にガスを充満させた雰囲気中で素子
2を光導波路基板6の所定の位置に合わせて接触させた
後、ヒータ10で試料台4を薄膜ハンダ6cの溶融温度
以上に加熱するようになっている。9aは冷却用ガス供
給ノズルで、試料台4に多量のガスを吹付けることによ
り、ハンダ接合されて高温状態にある素子2及び光導波
路基板6を常温まで冷却するためのものである。また、
試料台4及びこれを囲むハウジング7は、ユニットとし
て光導波路基板6のコア6aの端面をZ軸を中心に回転
する機構(図示せず)上に設置されている。
A heater 10 is provided below the sample table 4, and the element 2 is brought into contact with a predetermined position of the optical waveguide substrate 6 in an atmosphere filled with gas in the housing 7. The sample stage 4 is heated above the melting temperature of the thin film solder 6c. Reference numeral 9a denotes a cooling gas supply nozzle, which blows a large amount of gas onto the sample stage 4 to cool the device 2 and the optical waveguide substrate 6, which are soldered and in a high temperature state, to room temperature. Also,
The sample stage 4 and the housing 7 surrounding the sample stage are installed as a unit on a mechanism (not shown) for rotating the end surface of the core 6a of the optical waveguide substrate 6 around the Z axis.

【0024】11はピンセット駆動機構3に一体に取付
けられた実体顕微鏡で、手前の作業者側から(図1では
分かりやすくするために左から)エアピンセット1で素
子2を吸着するときの目視並びに位置合わせ空間におけ
る素子2と光導波路基板6の大まかな位置関係の確認の
ためにそれぞれ用いる。
Reference numeral 11 denotes a stereo microscope integrally attached to the tweezers driving mechanism 3, which is used for visual observation when the element 2 is sucked by the air tweezers 1 from the operator side (for simplicity in FIG. 1 from the left). It is used to confirm the approximate positional relationship between the element 2 and the optical waveguide substrate 6 in the alignment space.

【0025】12は位置合わせ空間の側方に設けた遠近
合焦装置で、ディスプレイ用カメラ付きの顕微鏡12a
(一部分を図示)と、ビーム光13を発するためのレー
ザ光源(図示せず)と、レーザ光源からのビーム光13
を途中から二つの光路に分岐させる光学系(図示せず)
と、レーザ光源から二光路をなす光学系を経て顕微鏡1
2aの先端部の対物レンズ12bを有する鏡筒12cか
ら素子2の後側面2aの全幅よりも狭い間隔で水平に並
んだ二本のビーム光13を出射させるための光学系と、
出射させた二本のビーム光13が素子2の後側面2aの
水平方向二箇所または光導波路基板6のコアを含む端面
6bの水平方向二箇所でそれぞれ反射させて鏡筒12c
へ戻る水平方向二本の反射光を個別に検出するための検
出系(図示せず)と、二光路に分岐させる光学系の末端
をなして二本のビーム光13の水平出射を垂直方向二本
のビームで出射させるように切換えるための光学系(図
示せず)とを備えており、鏡筒12cはハウジング7の
主窓7aに対向し、且つX,Y,Z方向に移動可能な周
知のスライド機構(図示せず)上に設置されている。更
に、遠近合焦装置12は鏡筒12cから出射させた二本
のビーム光13が反射面でそれぞれ合焦(フォーカシン
グ)するように内部鏡筒(図示せず)を自動で移動させ
る機構を備えており、この移動量を精密にカウントして
サブミクロン単位で表示するようになっている。このよ
うな合焦手段としては、例えば特開昭62−75411
号公報に記載の方法または特願平7−13881号に記
載の方法を適用することができる。
Reference numeral 12 denotes a perspective focusing device provided on the side of the positioning space, and a microscope 12a equipped with a display camera.
(Partially shown), a laser light source (not shown) for emitting a light beam 13, and a light beam 13 from the laser light source.
Optical system (not shown) that splits light into two optical paths from the middle
And a microscope 1 through an optical system forming two optical paths from a laser light source.
An optical system for emitting two light beams 13 arranged horizontally at a smaller interval than the entire width of the rear side surface 2a of the element 2 from a lens barrel 12c having an objective lens 12b at the tip of 2a;
The two emitted light beams 13 are reflected at two horizontal positions on the rear side surface 2a of the element 2 or at two horizontal positions on the end surface 6b including the core of the optical waveguide substrate 6, respectively, to form a lens barrel 12c.
And a detection system (not shown) for individually detecting the two reflected lights in the horizontal direction, and an end of an optical system for branching into two optical paths to horizontally output the two light beams 13 in the vertical direction. An optical system (not shown) for switching to emit light with a book beam is provided, and the lens barrel 12c faces the main window 7a of the housing 7 and is movable in the X, Y, and Z directions. Is mounted on a slide mechanism (not shown). Further, the perspective focusing device 12 is provided with a mechanism for automatically moving an internal lens barrel (not shown) so that the two light beams 13 emitted from the lens barrel 12c are respectively focused on the reflecting surface. This movement amount is precisely counted and displayed in sub-micron units. Such focusing means is disclosed, for example, in Japanese Patent Application Laid-Open No. 62-75411.
The method described in Japanese Unexamined Patent Application Publication No. Hei. 7-13881 or the method described in Japanese Patent Application No. Hei.

【0026】15は位置合わせ空間の上方に設けた遠近
合焦装置であり、基本的な構成と機能は前記遠近合焦装
置12と同等であるが、真上からの目視と計測ができる
ようにビーム光が垂直出射するように配置してある。こ
れに伴って相違する点は、先端部の対物レンズ15aに
エアピンセット1を貫通し得るだけの開口部15bが設
けられていること、二本のビーム光16が素子2及び光
導波路基板6の電極6dの領域をそれぞれ個別に同時照
射できる配置とし、且つビーム光16が本実施形態で示
す素子2及び光導波路基板6をなすリン化インジウム及
びシリコンの半導体結晶材料を透過する約1〜1.5μ
m波長帯の赤外光であることである。
Reference numeral 15 denotes a perspective focusing device provided above the positioning space, which has the same basic structure and function as the perspective focusing device 12, but allows visual observation and measurement from directly above. It is arranged so that the light beam is emitted vertically. The difference with this is that the objective lens 15a at the tip is provided with an opening 15b enough to penetrate the air tweezers 1 and that the two light beams 16 The arrangement is such that the regions of the electrodes 6d can be individually irradiated at the same time, and the light beam 16 passes through the semiconductor crystal materials of indium phosphide and silicon which form the element 2 and the optical waveguide substrate 6 of this embodiment. 5μ
It is infrared light in the m wavelength band.

【0027】以上の構成により、図1及び図2に示すよ
うにエアピンセット1で保持した素子2を光導波路基板
6に近接させた後、位置合わせのためにまず素子2及び
光導波路基板6に対してそれぞれ個別にX,Y平面内の
傾きを修正する。即ち、遠近合焦装置12から出射させ
た二本のビーム光13を素子2の基準端面、即ち後側面
2a内の左右二箇所に照射し、鏡筒12cへ戻る二本の
反射光を検出してそれぞれオートフォーカシングしたと
きの距離が互いに等しくなるようにエアピンセット1を
回転させるべき回転角Δθを計算し、表示部(図示せ
ず)に表示する。これに基づいてエアピンセット1を表
示値だけ所定の方向にZ軸を中心に回転させることによ
り、後側面2aの傾きがゼロになり、素子2の後側面2
aは遠近合焦装置12からの二本のビーム光13に対し
て直角をなす。尚、素子2は光導波路基板6のコア6a
と対向する側面がレーザ出射端なので、ここではこの面
を前側面、ビーム光13が照射する反対側の面を後側面
と定義した。
With the above configuration, as shown in FIGS. 1 and 2, the element 2 held by the air tweezers 1 is brought close to the optical waveguide substrate 6, and then the element 2 and the optical waveguide substrate 6 are first aligned for alignment. On the other hand, the inclinations in the X and Y planes are individually corrected. That is, the two light beams 13 emitted from the perspective focusing device 12 are irradiated on the reference end surface of the element 2, that is, two right and left portions in the rear side surface 2a, and two reflected lights returning to the lens barrel 12c are detected. Then, a rotation angle Δθ at which the air tweezers 1 is to be rotated is calculated so that the distances when the auto-focusing are performed are equal to each other, and displayed on a display unit (not shown). By rotating the air tweezers 1 by a display value in a predetermined direction about the Z axis based on this, the inclination of the rear side surface 2a becomes zero, and the rear side surface 2
a is at right angles to the two light beams 13 from the perspective focusing device 12. The element 2 is a core 6a of the optical waveguide substrate 6.
Since the side opposite to is the laser emission end, this surface is defined as the front side, and the opposite side irradiated with the light beam 13 is defined as the rear side.

【0028】次に、遠近合焦装置12を降下させた後、
二本のビーム光13を光導波路基板6の基準端面、即ち
端面6b内の左右に照射し、反射して鏡筒12cへ戻る
二本の反射光を検出してそれぞれオートフォーカシング
したときの距離が互いに等しくなるように試料台4を回
転させるべき回転角Δθを計算して表示部に表示する。
そして、前述と同様に、Z軸を中心に試料台4を表示値
だけ所定の方向に回転させることにより、端面6bの傾
きがゼロになり、端面6bは遠近合焦装置12からの二
本のビーム光13に対して直角をなす。これにより、素
子2の後側面2aと光導波路基板6のコアを含む端面6
bは互いに平行をなす。また、素子2は劈開によって個
片化されているので、その後側面2aと前側面2bは完
全な平行をなし、前側面2bとコアを含む端面6bも平
行をなす。
Next, after lowering the distance focusing device 12,
The two light beams 13 are applied to the reference end face of the optical waveguide substrate 6, that is, the left and right sides within the end face 6 b, and the two reflected lights that are reflected and return to the lens barrel 12 c are detected and the distances when the respective auto-focusing are performed are determined. The rotation angle Δθ at which the sample stage 4 should be rotated so as to be equal to each other is calculated and displayed on the display unit.
Then, as described above, by rotating the sample table 4 in the predetermined direction about the Z axis by the indicated value, the inclination of the end face 6b becomes zero, and the end face 6b is At right angles to the light beam 13. Thereby, the rear surface 2 a of the element 2 and the end surface 6 including the core of the optical waveguide substrate 6 are formed.
b are parallel to each other. Further, since the element 2 is singulated by cleavage, the rear side surface 2a and the front side surface 2b are completely parallel, and the front side surface 2b and the end surface 6b including the core are also parallel.

【0029】これら各面2a,6bの平行度出しが終わ
るまで、図3(a)(b)に示すように個々の合焦画像、或い
は画面切替え操作によって各面2a,6bを併合した合
焦画像がそれぞれディスプレイに表示される。
Until the parallelism of each of the surfaces 2a and 6b is completed, an in-focus image as shown in FIGS. 3 (a) and 3 (b), or a focusing in which the surfaces 2a and 6b are combined by a screen switching operation. Each image is displayed on the display.

【0030】次に、前述の如くして素子2の後側面2a
と光導波路基板6の端面6bとがサブミクロン精度の平
行度をなした後、水平に並ぶ二本のビーム光13を垂直
に並ぶ二本のビーム光で出射するように光学系を切替
え、更に後側面2aと端面6bの拡大した併合画像を図
4(a) に示すようにディスプレイに表示し、このディス
プレイに表示された垂直のカーソルを図中白抜き矢印で
示すように移動して後側面2a内の活性層2cの中央に
合致させる。但し、この場合、活性層2cの端面は微少
な領域であり、また周囲との区別がつかず目視による位
置の特定は難しい。そこで、例えば活性層2cの直近で
後側面2aから前側面2bに亘って特徴のある輪郭の断
面部、例えば微小な角溝2dを半導体プロセスで形成し
ておき、この角溝2dと活性層2cの相対位置を予め測
定しておく。このような素子2を用いれば、カーソルを
まず角溝2dに合致させた後、そこから活性層2cの中
央まで所定寸法だけ表示部を読みながらカーソルを移動
させればよい。
Next, as described above, the rear surface 2a of the element 2 is formed.
And the end face 6b of the optical waveguide substrate 6 has a submicron-precision parallelism, and then switches the optical system so that the two light beams 13 arranged horizontally are emitted by the two light beams arranged vertically. The enlarged merged image of the rear side surface 2a and the end surface 6b is displayed on the display as shown in FIG. 4 (a), and the vertical cursor displayed on this display is moved as shown by the white arrow in the figure to move the rear side surface. It is matched to the center of the active layer 2c in 2a. However, in this case, the end face of the active layer 2c is a very small area, and it is difficult to visually identify the position because it cannot be distinguished from the surroundings. Therefore, for example, a section having a characteristic contour, for example, a minute square groove 2d is formed by a semiconductor process from the rear side surface 2a to the front side surface 2b immediately near the active layer 2c, and this square groove 2d and the active layer 2c are formed. Is measured in advance. When such an element 2 is used, after the cursor is first matched with the square groove 2d, the cursor may be moved from there to the center of the active layer 2c while reading the display portion by a predetermined size.

【0031】次に、Y方向に小距離移動できる試料台4
のスライド機構(図示せず)を用いて光導波路基板6を
移動させ、予め寸法の判っているコア6aの端面の中央
を垂直カーソルに合致させる。ここで、照明用窓7bの
後方にハウジング7と一体化して配置された光源用レー
ザ14は、コア6aの領域を照射して端面6bにおける
コア6aの輪郭をより明瞭にするための照明用光源であ
る。
Next, the sample stage 4 that can move a small distance in the Y direction
The optical waveguide substrate 6 is moved by using the slide mechanism (not shown), and the center of the end face of the core 6a whose dimensions are known in advance is aligned with the vertical cursor. Here, the light source laser 14 disposed integrally with the housing 7 behind the illumination window 7b illuminates the area of the core 6a to make the contour of the core 6a on the end face 6b clearer. It is.

【0032】この状態において、素子2の後側面2a、
前側面2b及び光導波路基板6の端面6bは互いに近接
して平行をなし、更に図4(a) に示すように微少なレー
ザ出射端である活性層2cと微小断面の光路であるコア
6aのY方向位置がサブミクロンの精度で合致する。
In this state, the rear surface 2a of the element 2
The front side face 2b and the end face 6b of the optical waveguide substrate 6 are close to each other and parallel to each other. Further, as shown in FIG. 4 (a), the active layer 2c which is a minute laser emitting end and the core 6a which is an optical path having a minute cross section are formed. The position in the Y direction matches with submicron accuracy.

【0033】素子2と光導波路基板6との残る位置決め
は、前側面2bとコア6a(端面6b)とのX方向の隔
間設定である。即ち、後側面2aと端面6dとにそれぞ
れ照射したビーム光13の反射光を傾きの修正時と同様
に検出し、オートフォーカシングしたときのそれぞれの
合焦位置の差を読むことにより相対変位量ΔXが求ま
る。この時、予め測定しておいた素子2の長さ、即ち後
側面2aと前側面2b間の寸法値を補正値として演算部
(図示せず)に入力しておき、相対変位量ΔXからこの
値を差し引くようにしておくことにより、相対変位量Δ
Xの変化に応じて前側面2bとコア端面6dとの隙間の
値が表示部に表示される。また、X方向の隙間について
は、Y,Z方向の相対位置ずれに比べて光学的に寸法公
差が緩いので、例えばY,Z方向の位置ずれが生じない
ように隙間をゼロ、即ち両者が接するような位置決めも
可能である。
The remaining positioning of the element 2 and the optical waveguide substrate 6 is a setting in the X direction between the front side surface 2b and the core 6a (end surface 6b). That is, the reflected light of the light beam 13 illuminated on the rear side surface 2a and the end surface 6d is detected in the same manner as when the inclination is corrected, and the difference between the respective in-focus positions at the time of auto-focusing is read to obtain the relative displacement amount ΔX. Is found. At this time, the length of the element 2 measured in advance, that is, the dimension value between the rear side surface 2a and the front side surface 2b is input as a correction value to a calculation unit (not shown), and the relative displacement amount ΔX By subtracting the value, the relative displacement Δ
The value of the gap between the front side surface 2b and the core end surface 6d is displayed on the display unit according to the change of X. The gap in the X direction has a smaller optical tolerance than the relative displacement in the Y and Z directions. Therefore, for example, the gap is zero so that the displacement in the Y and Z directions does not occur. Such positioning is also possible.

【0034】このように、ボンディングに先立つ位置合
わせでは、空間に保持した素子2を試料台4に固定した
光導波路基板6に近接させた状態で、まずZ軸回りの平
行度調整、次に活性層2cの中央とコア6aの中央との
Y方向位置決め、続いてX方向の隙間の設定を何れもサ
ブミクロンのオーダで行う。この後、エアピンセット1
を降下させて素子2を光導波路基板6の薄膜ハンダ6e
に接触させ、ヒータ10で所定の温度に加熱して薄膜ハ
ンダ6eを溶融させた後、ノズル9eからガスを噴射し
て冷却することにより、所望の高精度ボンディグを実現
することができる。この場合、二本のビーム光13を出
射して素子2の後側面2a及び光導波路基板6の端面6
bの平行度出しを行うようにしたので、各照射位置に対
して時間的ずれを伴うことなく同時にオートフォーカシ
ングと距離計測とを行うことができ、その結果に基づい
て照射した面の姿勢や位置の修正を自動で行うことがで
きる。従って、従来のボンディング装置のオートフォー
カス機構に比べ、検出精度と操作性を格段に向上させる
ことができる。
As described above, in the alignment prior to bonding, the parallelism around the Z-axis is adjusted first, and then the activation is performed in a state where the element 2 held in the space is brought close to the optical waveguide substrate 6 fixed to the sample table 4. Positioning in the Y direction between the center of the layer 2c and the center of the core 6a, and subsequently setting of the gap in the X direction are performed on the order of submicron. After this, air tweezers 1
And the element 2 is brought into contact with the thin film solder 6 e of the optical waveguide substrate 6.
After the thin film solder 6e is melted by being heated to a predetermined temperature by the heater 10 and then cooled by injecting gas from the nozzle 9e, a desired high-precision bonding can be realized. In this case, the two light beams 13 are emitted and the rear surface 2 a of the element 2 and the end surface 6 of the optical waveguide substrate 6 are formed.
Since the parallelism of b is performed, auto-focusing and distance measurement can be performed simultaneously without time lag for each irradiation position, and the posture and position of the irradiated surface based on the result are obtained. Can be automatically corrected. Therefore, detection accuracy and operability can be remarkably improved as compared with the auto-focus mechanism of the conventional bonding apparatus.

【0035】尚、活性層2cとコア6aの高さ方向(Z
方向)の位置合わせについては、従来例と同様に調整要
素を有しないので、例えば素子2については接合面2e
から活性層2cまでの距離、光導波路基板6については
コア6aとテラス面6cの高さ方向の相対位置や電極6
dや薄膜ハンダ6e等の厚みをそれぞれ厳密に規定して
おく必要がある。
The height direction (Z) of the active layer 2c and the core 6a
As for the alignment in the direction (2), there is no adjustment element as in the conventional example.
Of the optical waveguide substrate 6, the relative position of the core 6a and the terrace surface 6c in the height direction,
It is necessary to strictly define the thickness of d and the thin film solder 6e.

【0036】また、素子2及び光導波路基板6にそれぞ
れ位置合わせ用のマークが形成されている場合には、前
述で用いた側方の遠近合焦装置12に代えて上方の遠近
合焦装置15を用いる。即ち、図5に示すように、素子
2の接合面2eの全面に電極2fを形成せずに結晶材
(リン化インジウム)が露出した領域2gを設け、そこ
に例えば電極2fと同じ材質で同じ厚みのマーク(パタ
ーン)2hが複数個形成してある。また、上面の電極2
fにも接合面2eとほぼ同じ位置で結晶材表面の領域2
gが形成されている。
When the alignment mark is formed on each of the element 2 and the optical waveguide substrate 6, the upper and lower focusing devices 15 are used instead of the lateral focusing device 12 used in the above. Is used. That is, as shown in FIG. 5, a region 2g where a crystal material (indium phosphide) is exposed is provided over the entire bonding surface 2e of the element 2 without forming the electrode 2f, and for example, the same material as the electrode 2f is used there. A plurality of thickness marks (patterns) 2h are formed. The electrode 2 on the upper surface
f, the region 2 of the crystal material surface at almost the same position as the bonding surface 2e.
g is formed.

【0037】一方、光導波路基板6についてもテラス面
6cの電極6dに素子2の領域2gに対応する位置に結
晶材(シリコン)表層の絶縁膜が露出した領域6fを設
け、且つ所定の接合位置で素子2の個々のマーク2hに
正確に対向するように同数のマーク6gが電極6dと同
じ材質、同じ厚みで形成されている。これら対向するマ
ーク2h,6gは、ネガとポジの関係にしてあるのに加
え、重なり具合の正確さ(位置ずれ)が容易に判別でき
る形状に工夫してある。
On the other hand, in the optical waveguide substrate 6, a region 6f where the insulating film of the crystal material (silicon) is exposed is provided on the electrode 6d of the terrace surface 6c at a position corresponding to the region 2g of the element 2, and a predetermined bonding position is provided. Thus, the same number of marks 6g are formed of the same material and the same thickness as the electrodes 6d so as to accurately face the individual marks 2h of the element 2. These opposing marks 2h and 6g are designed to have a positive and negative relationship and a shape that allows the accuracy (positional deviation) of the degree of overlap to be easily determined.

【0038】このような素子2と光導波路基板6との位
置合わせにおいては、遠近合焦装置15の先端部の対物
レンズ12bから二本の赤外ビーム光16を素子2及び
光導波路基板6の結晶材領域2g,6fにそれぞれ個別
に同時照射すると、両者の照射領域に点在するマーク2
h,6gからの反射光が検知されて、それぞれの反射面
に合焦するように内部鏡筒(図示せず)が移動し、図6
(a) に示すように両者の画像を併合してディスプレイに
表示する。赤外ビーム光16は、半導体結晶と絶縁膜の
領域2g,6fは透過し、フォーカシングされた各マー
ク2h,6gのみがディスプレイまたは顕微鏡視野に表
示されることから、これを目視しながらピンセット駆動
機構3、試料台4側のZ軸回転機構及びX,Y,Z方向
に小距離移動できる周知のスライド機構を駆使し、図6
(b) に示すように両者の全てのマーク2h,6gが重な
り合うようにすることで正確な位置合わせができる。こ
の後、前記実施形態の場合と同様にエアピンセット1を
降下させて素子2を光導波路基板6の薄膜ハンダ6e上
に載置し、ヒータ10で所定の温度に一定時間加熱した
後、ノズル9aからガスを噴射して冷却すれば所望の高
精度ボンディングを実現することができる。
In the alignment between the element 2 and the optical waveguide substrate 6, two infrared light beams 16 are transmitted from the objective lens 12 b at the tip of the distance focusing device 15 to the element 2 and the optical waveguide substrate 6. When simultaneously irradiating the crystal material regions 2g and 6f individually, marks 2 scattered in both irradiation regions
h, 6g, the inner lens barrel (not shown) moves so as to focus on the respective reflecting surfaces, and FIG.
As shown in (a), both images are merged and displayed on the display. The infrared beam light 16 is transmitted through the regions 2g and 6f of the semiconductor crystal and the insulating film, and only the focused marks 2h and 6g are displayed on the display or the microscope visual field. 3. Using a Z-axis rotation mechanism on the sample stage 4 side and a well-known slide mechanism capable of moving a small distance in the X, Y, and Z directions, FIG.
As shown in (b), by making all the marks 2h and 6g overlap, accurate positioning can be performed. Thereafter, the air tweezers 1 are lowered to mount the element 2 on the thin film solder 6e of the optical waveguide substrate 6 as in the case of the above-described embodiment, and the heater 2 is heated to a predetermined temperature for a predetermined time. If desired, high-precision bonding can be realized by injecting a gas from the substrate and cooling it.

【0039】[0039]

【発明の効果】以上説明したように、請求項1、2及び
3によれば、一回のビーム光照射で必要な回転角度を正
確に計測することができるので、素子及び接合対象物の
計測面の平行出し及び相対的な位置決めをサブミクロン
オーダで容易に行うことができ、例えば光通信に用いる
光加入者系用の光モジュール組立に適用すれば、半導体
レーザ及び受光素子の高精度ボンディングを実現するこ
とができる。また、計測に際して測定用ビーム光を移動
させる必要がないので、測定用ビーム光の移動による測
定誤差を確実に解消することができる。
As described above, according to the first, second and third aspects, the required rotation angle can be accurately measured by one irradiation of the light beam, so that the measurement of the element and the object to be bonded can be performed. Parallelization and relative positioning of surfaces can be easily performed on the order of submicron.For example, if applied to optical module assembly for optical subscriber systems used for optical communication, high precision bonding of semiconductor lasers and light receiving elements can be achieved. Can be realized. In addition, since it is not necessary to move the measurement light beam at the time of measurement, measurement errors due to movement of the measurement light beam can be reliably eliminated.

【0040】また、請求項4によれば、一回のビーム光
照射で必要な回転角度を正確に計測することができ、し
かも計測に際して測定用ビーム光を移動させる必要のな
い装置を具体的に実現することができるので、実用化に
際して有利である。
According to a fourth aspect of the present invention, there is provided an apparatus which can accurately measure a rotation angle required by one irradiation of a light beam and does not need to move a measuring light beam during measurement. Since it can be realized, it is advantageous in practical use.

【0041】また、請求項5によれば、マークを用いて
位置合わせをするボンディング方法に的確に対応するこ
とができるので、マークを用いた高精度ボンディングが
可能となる。
According to the fifth aspect, since it is possible to accurately cope with a bonding method of performing alignment using a mark, high-precision bonding using a mark can be performed.

【0042】また、請求項6によれば、マークを用いて
高精度な位置合わせを可能とするボンディング方法に的
確に対応することのできる装置を具体的に実現すること
ができるので、実用化に際して有利である。
According to the sixth aspect of the present invention, it is possible to specifically realize an apparatus which can accurately cope with a bonding method which enables high-accuracy alignment using a mark. It is advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すボンディング装置の
斜視図
FIG. 1 is a perspective view of a bonding apparatus showing an embodiment of the present invention.

【図2】ボンディング装置の一部断面側面図FIG. 2 is a partial cross-sectional side view of a bonding apparatus.

【図3】ディスプレイ表示を示す図FIG. 3 is a diagram showing a display display.

【図4】ディスプレイ表示を示す図FIG. 4 is a diagram showing a display display.

【図5】素子及び光導波路基板の拡大斜視図FIG. 5 is an enlarged perspective view of an element and an optical waveguide substrate.

【図6】ディスプレイ表示を示す図FIG. 6 is a diagram showing a display display.

【図7】従来例を示すボンディング装置の側面図FIG. 7 is a side view of a bonding apparatus showing a conventional example.

【符号の説明】[Explanation of symbols]

1…エアピンセット、2…素子、2a…前側面、2e…
接合面、2h…マーク、3…ピンセット駆動機構、6…
光導波路基板、6b…端面、6g…マーク、12…遠近
合焦装置、13…ビーム光、15…遠近合焦装置、16
…ビーム光。
DESCRIPTION OF SYMBOLS 1 ... Air tweezers, 2 ... Element, 2a ... Front side, 2e ...
Joint surface, 2h mark, 3 tweezer drive mechanism, 6 ...
Optical waveguide substrate, 6b ... end face, 6g ... mark, 12 ... far / far focusing device, 13 ... beam light, 15 ... far / far focusing device, 16
… Beam light.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 接合面に対して垂直な基準端面を有する
素子を、接合面に対して垂直な基準端面を有する接合対
象物の近傍に保持し、素子及び接合対象物を接合面に垂
直な軸を中心に相対的に回転させて素子の基準端面と接
合対象物の基準端面とを互いに平行にした後、素子及び
接合対象物の少なくとも一方を接合面に対して平行に移
動して両者の相対的な位置決めをし、素子と接合対象物
を接合する素子のボンディング方法において、 前記素子の基準端面の少なくとも二箇所に測定用ビーム
光を同時に照射し、各ビーム光の反射光により測定され
る基準端面までの距離が各照射位置において互いに等し
くなるように素子を回転させる工程と、 前記接合対象物の基準端面の少なくとも二箇所に測定用
ビーム光を同時に照射し、各ビーム光の反射光により測
定される基準端面までの距離が各照射位置において互い
に等しくなるように接合対象物を回転させる工程とを含
むことを特徴とする素子のボンディング方法。
An element having a reference end face perpendicular to a joining surface is held near an object to be joined having a reference end face perpendicular to the joining face, and the element and the joining object are perpendicular to the joining face. After the reference end face of the element and the reference end face of the object to be joined are made to rotate in parallel with each other about the axis, at least one of the element and the object to be joined is moved in parallel to the joining face, and In a bonding method of an element for performing relative positioning and bonding an element and an object to be bonded, at least two points of a reference end face of the element are simultaneously irradiated with a measuring beam light, and the measurement is performed by reflected light of each beam light. Rotating the element so that the distance to the reference end surface is equal to each other at each irradiation position; and simultaneously irradiating at least two positions of the reference end surface of the object to be joined with measurement beam light, Bonding method for the device, which comprises a step of distance to the reference end surface that is measured by light turns the bonding target to be equal to each other at each irradiation position.
【請求項2】 接合面に対して垂直な基準端面を有する
素子を、接合面に対して垂直な基準端面を有する接合対
象物の近傍に保持し、素子及び接合対象物を接合面に垂
直な軸を中心に相対的に回転させて素子の基準端面と接
合対象物の基準端面とを互いに平行にした後、素子及び
接合対象物の少なくとも一方を接合面に対して平行に移
動して両者の相対的な位置決めをし、素子と接合対象物
を接合する素子のボンディング方法において、 前記素子の基準端面及び接合対象物の基準端面にそれぞ
れ測定用ビーム光を同時に照射し、各ビーム光の反射光
により測定される各基準端面までの距離に基づいて各基
準端面間が所定の距離になるように素子及び接合対象物
の少なくとも一方を接合面に対して平行に移動する工程
と、 素子の基準端面及び接合対象物の基準端面にそれぞれ測
定用ビーム光を同時に照射するとともに、その反射光に
よって焦点を合わせた各基準端面像を同一視野内に表示
し、各基準端面が所定の相対位置になるように素子及び
接合対象物の少なくとも一方を接合面に対して平行に移
動する工程とを含むことを特徴とする素子のボンディン
グ方法。
2. An element having a reference end face perpendicular to a joining surface is held near a joining object having a reference end face perpendicular to the joining face, and the element and the joining object are perpendicular to the joining face. After the reference end face of the element and the reference end face of the object to be joined are made to rotate in parallel with each other about the axis, at least one of the element and the object to be joined is moved in parallel to the joining face, and In a bonding method of an element for performing relative positioning and bonding an element and an object to be bonded, a reference end face of the element and a reference end face of the object to be bonded are simultaneously irradiated with a measuring beam light, respectively, and reflected light of each beam light is emitted. Moving at least one of the element and the object to be joined in parallel with the joining surface such that the distance between the respective reference end surfaces becomes a predetermined distance based on the distance to each of the reference end surfaces measured by: And contact At the same time, the reference end faces of the object are simultaneously irradiated with the measuring beam light, and the respective reference end face images focused by the reflected light are displayed in the same field of view, so that the reference end faces are at predetermined relative positions. And a step of moving at least one of the objects to be joined in parallel with the joining surface.
【請求項3】 接合面に対して垂直な基準端面を有する
素子を、接合面に対して垂直な基準端面を有する接合対
象物の近傍に保持し、素子及び接合対象物を接合面に垂
直な軸を中心に相対的に回転させて素子の基準端面と接
合対象物の基準端面とを互いに平行にした後、素子及び
接合対象物の少なくとも一方を接合面に対して平行に移
動して両者の相対的な位置決めをし、素子と接合対象物
を接合する素子のボンディング方法において、 前記素子の基準端面の少なくとも二箇所に測定用ビーム
光を同時に照射し、各ビーム光の反射光により測定され
る基準端面までの距離が各照射位置において互いに等し
くなるように素子を回転させる工程と、 前記接合対象物の基準端面の少なくとも二箇所に測定用
ビーム光を同時に照射し、各ビーム光の反射光により測
定される基準端面までの距離が各照射位置において互い
に等しくなるように接合対象物を回転させる工程と、 素子の基準端面及び接合対象物の基準端面にそれぞれ測
定用ビーム光を同時に照射し、各ビーム光の反射光によ
り測定される各基準端面までの距離に基づいて各基準端
面間が所定の距離になるように素子及び接合対象物の少
なくとも一方を接合面に対して平行に移動する工程と、 素子の基準端面及び接合対象物の基準端面にそれぞれ測
定用ビーム光を同時に照射するとともに、その反射光に
よって焦点を合わせた各基準端面像を同一視野内に表示
し、各基準端面が所定の相対位置になるように素子及び
接合対象物の少なくとも一方を接合面に対して平行に移
動する工程とを含むことを特徴とする素子のボンディン
グ方法。
3. An element having a reference end surface perpendicular to the joining surface is held near an object to be joined having a reference end surface perpendicular to the joining surface, and the element and the joining object are perpendicular to the joining surface. After the reference end face of the element and the reference end face of the object to be joined are made to rotate in parallel with each other about the axis, at least one of the element and the object to be joined is moved in parallel to the joining face, and In a bonding method of an element for performing relative positioning and bonding an element and an object to be bonded, at least two points of a reference end face of the element are simultaneously irradiated with a measuring beam light, and the measurement is performed by reflected light of each beam light. Rotating the element so that the distance to the reference end surface is equal to each other at each irradiation position; and simultaneously irradiating at least two positions of the reference end surface of the object to be joined with measurement beam light, Rotating the object to be bonded so that the distance to the reference end surface measured by light is equal to each other at each irradiation position; and simultaneously irradiating the reference end surface of the element and the reference end surface of the target object with the measurement beam light simultaneously. And moving at least one of the element and the object to be joined in parallel with the joining surface so that the distance between the respective reference end surfaces becomes a predetermined distance based on the distance to each of the reference end surfaces measured by the reflected light of each beam light. The process and simultaneously irradiating the reference end face of the element and the reference end face of the object to be bonded with the measurement beam light simultaneously, and displaying the respective reference end face images focused by the reflected light in the same field of view. Moving at least one of the device and the object to be bonded in parallel to the bonding surface so as to be at a predetermined relative position. .
【請求項4】 接合面に対して垂直な基準端面を有する
素子を、接合面に対して垂直な基準端面を有する接合対
象物の近傍に保持し、素子及び接合対象物を相対的に位
置合わせした後、素子と接合対象物を接合する素子のボ
ンディング装置において、 前記素子を着脱自在に保持する素子保持手段と、 素子または接合対象物の基準端面の少なくとも二箇所に
測定用ビーム光を同時に照射するビーム光照射手段と、 各ビーム光の反射光により各照射位置における基準端面
までの距離を測定する距離測定手段と、 素子の基準端面における各照射位置の測定距離が互いに
等しくなるように素子を接合面に垂直な軸を中心に回転
させる素子回転手段と、 接合対象物の基準端面における各照射位置の測定距離が
互いに等しくなるように接合対象物を接合面に垂直な軸
を中心に回転させる接合対象物回転手段と、 素子の基準端面及び接合対象物の基準端面における各照
射位置の測定距離に基づいて各基準端面間が所定の距離
になるように素子及び接合対象物の少なくとも一方を互
いの接合面に対して平行な方向に移動させる移動手段
と、 測定用ビーム光の反射光によって各基準端面に焦点を合
わせて各基準端面像を同一視野内に表示する表示手段
と、 表示された各基準端面が所定の相対位置になるように素
子及び接合対象物の少なくとも一方を接合面に対して平
行に移動する移動手段とを備えたことを特徴とする素子
のボンディング装置。
4. An element having a reference end face perpendicular to the joining surface is held near a joining object having a reference end face perpendicular to the joining face, and the element and the joining object are relatively positioned. Then, in a device bonding apparatus for bonding the element and the object to be bonded, an element holding means for detachably holding the element, and simultaneously irradiating at least two positions of the reference end surface of the element or the object to be bonded with the measuring beam light. A beam light irradiating means, a distance measuring means for measuring a distance to a reference end face at each irradiation position by reflected light of each beam light, and an element so that a measurement distance of each irradiation position on the reference end face of the element becomes equal to each other. Element rotating means for rotating about the axis perpendicular to the joining surface, and joining the object so that the measurement distances at each irradiation position on the reference end surface of the object are equal to each other Means for rotating the object to be rotated about an axis perpendicular to the axis, and an element so that the distance between the respective reference end faces becomes a predetermined distance based on the measured end positions of the reference end face of the element and the reference end face of the object to be joined. A moving means for moving at least one of the objects to be joined in a direction parallel to the joining surfaces of each other; and focusing each reference end surface by the reflected light of the measuring beam light to bring each reference end surface image into the same field of view. Display means for displaying, and moving means for moving at least one of the element and the object to be bonded in parallel with the bonding surface so that the displayed reference end faces are at predetermined relative positions. Device bonding device.
【請求項5】 接合面に位置決め用マークを有する素子
を、接合面に位置決め用マークを有する接合対象物の近
傍に保持し、素子及び接合対象物を接合面に垂直な軸を
中心に回転及び接合面に対して平行に移動して素子及び
接合対象物の位置決め用マークを互いに一致させた後、
素子と接合対象物を接合する素子のボンディング方法に
おいて、 測定用ビーム光を素子内を透過させて素子の接合面及び
接合対象物の接合面にそれぞれ同時に照射するととも
に、その反射光によって焦点を合わせた各接合面のマー
ク像を同一視野内に表示し、各マークが一致するように
素子及び接合対象物を相対的に回転及び移動する工程を
含むことを特徴とする素子のボンディング方法。
5. An element having a positioning mark on a bonding surface is held near a bonding object having a positioning mark on the bonding surface, and the element and the bonding object are rotated and rotated about an axis perpendicular to the bonding surface. After moving in parallel to the joining surface and aligning the positioning marks of the element and the joining object with each other,
In the element bonding method for bonding the element and the object to be bonded, the measurement beam light is transmitted through the element to simultaneously irradiate the bonding surface of the element and the bonding surface of the object to be bonded, and is focused by the reflected light. Displaying the mark images of the respective joining surfaces in the same field of view, and relatively rotating and moving the element and the object to be joined so that the respective marks coincide with each other.
【請求項6】 接合面に位置決め用マークを有する素子
を、接合面に位置決め用マークを有する接合対象物の近
傍に保持し、素子及び接合対象物の位置決め用マークを
互いに一致させた後、素子と接合対象物を接合する素子
のボンディング装置において、 前記素子を着脱自在に保持する素子保持手段と、 測定用ビーム光を素子内を透過させて素子の接合面及び
接合対象物の接合面にそれぞれ同時に照射するビーム光
照射手段と、 測定用ビーム光の反射光によって各接合面に焦点を合わ
せて各接合面のマーク像を同一視野内に表示する表示手
段と、 表示された各マークが一致するように素子及び接合対象
物を相対的に回転及び移動させる回転移動手段とを備え
たことを特徴とする素子のボンディング装置。
6. An element having a positioning mark on a bonding surface is held in the vicinity of a bonding object having a positioning mark on the bonding surface, and the element and the positioning mark of the bonding object are made to coincide with each other. An element holding device for detachably holding the element, and a measuring beam light transmitted through the inside of the element to be applied to a bonding surface of the element and a bonding surface of the object to be bonded, respectively. Each of the displayed marks coincides with the beam light irradiating means for simultaneously irradiating, the display means for focusing each joint surface by the reflected light of the measuring beam light and displaying the mark image of each joint surface in the same field of view. And a rotation moving means for relatively rotating and moving the element and the object to be joined.
JP20618495A 1995-08-11 1995-08-11 Device bonding method and device Expired - Lifetime JP3042762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20618495A JP3042762B2 (en) 1995-08-11 1995-08-11 Device bonding method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20618495A JP3042762B2 (en) 1995-08-11 1995-08-11 Device bonding method and device

Publications (2)

Publication Number Publication Date
JPH0955393A JPH0955393A (en) 1997-02-25
JP3042762B2 true JP3042762B2 (en) 2000-05-22

Family

ID=16519211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20618495A Expired - Lifetime JP3042762B2 (en) 1995-08-11 1995-08-11 Device bonding method and device

Country Status (1)

Country Link
JP (1) JP3042762B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203720B4 (en) 2001-02-02 2012-11-22 Nippon Telegraph And Telephone Corp. Blood flow meter and sensor part of the blood flow meter

Also Published As

Publication number Publication date
JPH0955393A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
US5680698A (en) Method for precise alignment and placement of optoelectric components
JPH0628272B2 (en) Aligning / joining apparatus and method
JP4934268B2 (en) Glass substrate cut surface inspection system
TW200912375A (en) Laser irradiation apparatus and laser processing system using same apparatus
JP2000346618A (en) Method and apparatus for precise alignment for rectangular beam
TWI592239B (en) A laser apparatus and a method of directing laser to a workpiece surface
JP7487045B2 (en) Laser Processing Equipment
JP2789387B2 (en) Bonding equipment
US5764366A (en) Method and apparatus for alignment and bonding
JP4514316B2 (en) Manufacturing method of semiconductor laser module
JP3042762B2 (en) Device bonding method and device
JP3691361B2 (en) Optical element module assembling apparatus and optical axis adjusting method
JP3018919B2 (en) Bonding method and apparatus
JPH09145965A (en) Optical module and its manufacture
JP2001274499A (en) Semiconductor laser device and mounting method for semiconductor laser chip
JP2020020990A (en) Joining device and joining method
JP2744518B2 (en) Optical element bonding method and apparatus
JP4127986B2 (en) Alignment fixing method and alignment fixing device
JP3795024B2 (en) Joining method and apparatus
US6331891B1 (en) Apparatus and method for assembling semiconductor device and semiconductor device thus fabricated
KR100591118B1 (en) Magento-optic head assembling method, mo head and mo disk unit
JPH11287937A (en) Device for sticking optical element
JP5400257B2 (en) Semiconductor laser mounting base soldering apparatus and semiconductor laser module manufacturing method
JPH0640576B2 (en) Method and device for adhering filter to solid-state imaging device
TWI388020B (en) Method and apparatus for mapping a position of a capillary tool tip using a prism

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term