[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3042616B2 - Constant potential electrolytic gas sensor - Google Patents

Constant potential electrolytic gas sensor

Info

Publication number
JP3042616B2
JP3042616B2 JP10031719A JP3171998A JP3042616B2 JP 3042616 B2 JP3042616 B2 JP 3042616B2 JP 10031719 A JP10031719 A JP 10031719A JP 3171998 A JP3171998 A JP 3171998A JP 3042616 B2 JP3042616 B2 JP 3042616B2
Authority
JP
Japan
Prior art keywords
gas
permeable
concentration
porous membrane
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10031719A
Other languages
Japanese (ja)
Other versions
JPH11230933A (en
Inventor
順一 小坂
仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komyo Rikagaku Kogyo KK
Original Assignee
Komyo Rikagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komyo Rikagaku Kogyo KK filed Critical Komyo Rikagaku Kogyo KK
Priority to JP10031719A priority Critical patent/JP3042616B2/en
Publication of JPH11230933A publication Critical patent/JPH11230933A/en
Application granted granted Critical
Publication of JP3042616B2 publication Critical patent/JP3042616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス濃度を測定す
るための定電位電解式ガスセンサに関し、特に詳細に
は、%レベルの高濃度ガス測定用の定電位電解式ガスセ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a potentiostatic gas sensor for measuring gas concentration, and more particularly to a potentiostatic gas sensor for measuring high-concentration gas of% level.

【0002】[0002]

【従来の技術】ガスセンサは、気体中に含まれている特
定のガスに感応して、これを電気信号に変換し、検知定
量するデバイスである。このようなガスセンサとして、
半導体式センサ、固体電解質センサ、接触燃焼式セン
サ、電気化学式センサ等の各種のものが現在知られてい
る。このうち、電気化学式センサに属する定電位電解式
ガスセンサは、電気化学セルによってガスを定電位電解
したときの電解電流からガス濃度を定量するものであ
る。
2. Description of the Related Art A gas sensor is a device that responds to a specific gas contained in a gas, converts the gas into an electric signal, and detects and quantitatively detects the gas. As such a gas sensor,
Various types such as a semiconductor sensor, a solid electrolyte sensor, a contact combustion sensor, and an electrochemical sensor are currently known. Among them, the potentiostatic gas sensor belonging to the electrochemical sensor is for quantifying the gas concentration from the electrolytic current when the gas is subjected to potentiostatic electrolysis by an electrochemical cell.

【0003】具体的には、この定電位電解式ガスセンサ
は、作用電極、対極及び比較電極の3電極と、電解液及
びこれを収納する容器からなり、前記3電極はガス透過
性の多孔質膜の内側に結合されており、いずれも前記電
解液と接している。測定ガスは作用電極側に供給され、
この作用電極が結合されているガス透過性の多孔質膜を
透過して作用電極に達し、この作用電極表面において酸
化もしくは還元される。この際に、対極との間にガスの
濃度に応じた電流が流れ、ガス濃度が測定されるのであ
るが、あらかじめ基準となる比較電極に対して作用電極
の電位を一定に保つことにより、特定のガスを選択的
に、かつ安定に測定できることを特徴とする。
More specifically, this potentiostatic gas sensor comprises three electrodes, a working electrode, a counter electrode and a reference electrode, an electrolyte and a container for accommodating the same, and the three electrodes are a gas-permeable porous membrane. , Which are in contact with the electrolyte. The measurement gas is supplied to the working electrode side,
The gas passes through the gas-permeable porous membrane to which the working electrode is connected, reaches the working electrode, and is oxidized or reduced on the surface of the working electrode. At this time, a current corresponding to the gas concentration flows between the counter electrode and the gas concentration is measured, and the gas concentration is measured by keeping the potential of the working electrode constant with respect to the reference electrode in advance. Is characterized by being able to measure the gas selectively and stably.

【0004】このように、定電位電解式ガスセンサは小
型軽量で、常温で作動し消費電力が小さいこと、及び感
度が高くppmレベルの濃度のガスの識別が可能なた
め、各種毒性ガス、例えばCO、H2 S等を対象とした
許容濃度管理用の携帯用検知器、測定器用センサとして
広く使用されている。
As described above, the potentiostatic gas sensor is small and lightweight, operates at room temperature, consumes little power, and has high sensitivity and can discriminate a gas having a concentration of ppm level. , H 2 S, etc., are widely used as portable detectors for measuring allowable concentrations and sensors for measuring instruments.

【0005】[0005]

【発明が解決しようとする課題】定電位電解式ガスセン
サは、上記のように、従来はガス漏れを検知するための
ような、特に低濃度のガスを測定するために使用されて
いる。ところがこの従来の定電位電解式ガスセンサは、
工程管理における還元用ガスとしてのCO、H2等の濃
度測定、原油タンカーのタンカー内のH2 Sガス濃度チ
ェック、又は火山ガス中のH2 Sガス濃度測定等のよう
な、%レベルの高濃度のガスを測定するためには使用で
きなかった。すなわち、従来の定電位電解式ガスセンサ
では、作用電極はガス透過性の多孔質膜に結合されてい
るため、導入された測定対象ガスは制御されることなく
この多孔質膜を透過し、作用電極と接し、対極との間に
電流が流れるのであるが、ppmレベルの濃度を検知す
るよう設計されているため、%レベルの濃度のガスを測
定対象ガスとして導入すると、流れる電流が大きくなり
過ぎるため飽和してしまい、測定することができないと
いう問題が生ずる。
As described above, the potentiostatic electrolytic gas sensor is conventionally used for measuring a gas having a particularly low concentration, for example, for detecting a gas leak. However, this conventional potentiostatic electrolytic gas sensor,
CO as reducing gas in process control, concentration measurement, etc. H 2, H 2 S gas concentration check in tanker crude oil tanker, or volcanic like in such H 2 S gas concentration measurement of a gas, the percent level high It could not be used to measure the concentration of gas. That is, in the conventional potentiostatic gas sensor, the working electrode is bonded to the gas-permeable porous membrane, so that the introduced measurement target gas permeates the porous membrane without being controlled, and Current flows between the counter electrode and the counter electrode. However, since it is designed to detect the concentration of ppm level, if the gas of the concentration of% level is introduced as the gas to be measured, the flowing current becomes too large. There is a problem that the measurement is saturated and measurement cannot be performed.

【0006】本発明は、このような%レベルの高濃度の
ガスに対しても適用可能な定電位電解式ガスセンサを提
供することを目的とする。
It is an object of the present invention to provide a potentiostatic gas sensor which can be applied to such a high concentration gas of% level.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するた
め、本発明の定電位電解式ガスセンサは、作用電極、対
極及び比較電極の3電極と、電解液及びこの電解液を収
納する容器本体からなり、前記3電極がガス透過性の多
孔質膜の、前記電解液と接する内側に結合されており、
前記作用電極の電解液と接する面と反対側のガス供給側
にガス透過性の非多孔質膜を配置したことを特徴とす
る。
In order to solve the above-mentioned problems, a constant potential electrolytic gas sensor according to the present invention comprises a working electrode, a counter electrode and a reference electrode, an electrolyte, and a container body containing the electrolyte. Do Ri, the three electrodes are gas permeable multi
A porous membrane, which is bonded to an inner side in contact with the electrolytic solution,
A gas-permeable non-porous membrane is disposed on the gas supply side of the working electrode opposite to the surface in contact with the electrolyte.

【0008】本発明の定電位電解式ガスセンサにおいて
は、作用電極の測定ガス供給側に、ガス透過性の非多孔
質膜を配置しているため、作用電極に到達する測定対象
ガス量が著しく制限され、その結果、高濃度の測定ガス
を供給しても反応によって生ずる電流が過大とならず、
高濃度ガスの測定が可能となるのである。
In the galvanostatic gas sensor of the present invention, the gas permeable non-porous membrane is disposed on the measurement gas supply side of the working electrode, so that the amount of the gas to be measured reaching the working electrode is extremely limited. As a result, even if a high-concentration measurement gas is supplied, the current generated by the reaction does not become excessive,
Measurement of high-concentration gas becomes possible.

【0009】[0009]

【発明の実施の形態】以下、添付図面を参照して本発明
の定電位電解式ガスセンサを説明する。図1は本発明に
係る定電位電解式ガスセンサの一実施例を示す断面図で
あり、図2はこの定電位電解式ガスセンサの斜視分解図
である。1は円筒状の容器本体であり、その両端に2つ
の開口部21及び22を有している。一方の開口部21
にはガス透過性の多孔質膜10に結合された半円状の対
極4と比較電極5が設けられ、他方の開口部22には、
ガス透過性の多孔質膜11に結合された円形状の作用電
極6が設けられ、各電極にはそれぞれリード線7、8及
び9が接続されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a constant-potential electrolytic gas sensor according to the present invention. FIG. 1 is a sectional view showing an embodiment of a potentiostatic gas sensor according to the present invention, and FIG. 2 is an exploded perspective view of the galvanostatic gas sensor. Reference numeral 1 denotes a cylindrical container body having two openings 21 and 22 at both ends. One opening 21
Is provided with a semicircular counter electrode 4 and a reference electrode 5 coupled to a gas-permeable porous membrane 10, and the other opening 22 has
A circular working electrode 6 is provided which is coupled to a gas permeable porous membrane 11, and leads 7, 8 and 9 are connected to each electrode.

【0010】この各電極が結合されているガス透過性の
多孔質膜とは、気体分子の平均自由行程よりも大きな、
50Å〜1μm程度の細孔径を有する膜をいい、従って気
体に対しては透過性であるが液体に対しては不透過性で
ある膜を意味する。このような膜としては、例えば、四
フッ化エチレン樹脂(PTFE)等の材料が使用され
る。対極4と比較電極5は白金からなり、バインダによ
ってガス透過性の多孔質膜10に結合されている。作用
電極6は、白金、金等の貴金属からなり、バインダによ
ってガス透過性の多孔質膜11に結合されるか、又は真
空蒸着、スパッタリング、インプレーティング、又は無
電解めっき等の方法によってガス透過性の多孔質膜11
に結合される。これらのいずれの方法を用いるかは、主
として測定対象ガスによって選択される。
[0010] The gas-permeable porous membrane to which each electrode is bonded is defined as having a larger mean free path of gas molecules.
Refers to a membrane having a pore size of about 50 ° to 1 μm, and thus refers to a membrane that is permeable to gas but impermeable to liquid. As such a film, for example, a material such as tetrafluoroethylene resin (PTFE) is used. The counter electrode 4 and the reference electrode 5 are made of platinum, and are bonded to the gas-permeable porous membrane 10 by a binder. The working electrode 6 is made of a noble metal such as platinum or gold, and is bonded to the gas-permeable porous film 11 by a binder, or has a gas-permeable property by a method such as vacuum deposition, sputtering, plating, or electroless plating. Porous membrane 11
Is combined with Which of these methods is used is mainly selected depending on the gas to be measured.

【0011】作用電極6が結合されているガス透過性の
多孔質膜11の外側、すなわち測定ガス供給側にはガス
透過性の非多孔質膜12が配置されている。このガス透
過性の非多孔質膜とは、上記多孔質膜に比べてその細孔
径が極限的に小さなものであり、従って液体に対して不
透過性であるのみならず、気体も自由に透過することが
できず、気体の透過を制限する膜をいう。このガス透過
性の非多孔質膜12としては、一般に気体分離膜として
用いられている高分子膜、例えばフッ素樹脂、ポリアル
キレン樹脂、ポリジメチルシロキサン樹脂等が用いられ
る。これらのうち、耐薬品性、耐溶剤性、耐候性等の観
点から、フッ素樹脂、例えば四フッ化エチレン−六フッ
化プロピレン共重合体(FEP)、ポリフッ化ビニル
(PVF)、ポリフッ化ビニリデン(PVDF)、ペル
フルオロアルコキシフッ素樹脂(PFA)、エチレン−
四フッ化エチレン共重合体(ETFE)、ポリクロロ三
フッ化エチレン(PCTFE)等を用いることが好まし
い。また、このガス透過性の非多孔質膜12は単一膜で
あってもよく、又は可塑化膜、グラフト膜、多層膜のよ
うに、単一の樹脂のみでなく、他の材料と複合化された
複合膜であってもよい。
A non-porous gas-permeable membrane 12 is arranged outside the gas-permeable porous membrane 11 to which the working electrode 6 is connected, that is, on the measurement gas supply side. The gas-permeable non-porous membrane has a pore diameter extremely small as compared with the above-mentioned porous membrane, and therefore is not only impermeable to liquid but also freely permeable to gas. A membrane that cannot be gasified and restricts gas permeation. As the gas-permeable non-porous membrane 12, a polymer membrane generally used as a gas separation membrane, for example, a fluororesin, a polyalkylene resin, a polydimethylsiloxane resin, or the like is used. Among these, from the viewpoints of chemical resistance, solvent resistance, weather resistance and the like, fluororesins, for example, ethylene tetrafluoride-propylene hexafluoride copolymer (FEP), polyvinyl fluoride (PVF), polyvinylidene fluoride ( PVDF), perfluoroalkoxy fluororesin (PFA), ethylene-
It is preferable to use tetrafluoroethylene copolymer (ETFE), polychloroethylene trifluoride (PCTFE), or the like. The gas permeable non-porous membrane 12 may be a single membrane, or may be combined with other materials in addition to a single resin, such as a plasticized membrane, a graft membrane, or a multilayer membrane. A composite film may be used.

【0012】このガス透過性の非多孔質膜12は、作用
電極6が結合されているガス透過性の多孔質膜11に単
に重ねてもよいが、ホットプレス等によって両者を一体
として用いてもよい。また、ガス透過性の多孔質膜11
を用いず、ガス透過性の非多孔質膜12に作用電極6を
直接結合させてもよい。
The gas permeable non-porous membrane 12 may be simply superimposed on the gas permeable porous membrane 11 to which the working electrode 6 is connected, or may be used as a single body by hot pressing or the like. Good. The gas permeable porous membrane 11
Alternatively, the working electrode 6 may be directly coupled to the gas-permeable non-porous membrane 12.

【0013】開口部21の側の側板15には、対極4及
び比較電極5に空気を供給するための空気穴17が設け
られており、一方の開口部22の側の側板16には、測
定ガスを供給するためのガス室18が設けられ、このガ
ス室18は供気路19及び排気路20によって外気と接
続されている。2、3、13及び14はシールパッキン
グであり、これらがすべて圧着固定されて組み立てら
れ、容器本体1に電解液23が充填される。この電解液
23としては、硫酸、リン酸、水酸化カリウム、水酸化
ナトリウム、塩化カリウム等の水溶液が使用される。
The side plate 15 on the side of the opening 21 is provided with an air hole 17 for supplying air to the counter electrode 4 and the reference electrode 5, and the side plate 16 on the side of one opening 22 is provided with a measurement hole. A gas chamber 18 for supplying gas is provided, and the gas chamber 18 is connected to outside air by an air supply path 19 and an exhaust path 20. Reference numerals 2, 3, 13 and 14 denote seal packings, all of which are assembled by crimping and fixing, and the container body 1 is filled with the electrolytic solution 23. As the electrolytic solution 23, an aqueous solution of sulfuric acid, phosphoric acid, potassium hydroxide, sodium hydroxide, potassium chloride or the like is used.

【0014】こうして構成された本発明の定電位電解式
ガスセンサに、給気路19より測定対象ガスを導入する
と、この測定対象ガスはガス室18に入る。ところが、
このガス室18と作用電極6はガス透過性の非多孔質膜
12で隔てられているため、ガス室18に入ったガスの
うち、ガス透過性の非多孔質膜12のガス透過性に応じ
た分のガスのみが作用電極6に達し、酸化もしくは還元
されて対電極との間に電流を生ずる。
When a gas to be measured is introduced from the air supply path 19 into the thus-configured constant potential electrolytic gas sensor of the present invention, the gas to be measured enters the gas chamber 18. However,
Since the gas chamber 18 and the working electrode 6 are separated by the gas permeable non-porous membrane 12, the gas entering the gas chamber 18 depends on the gas permeability of the gas permeable non-porous membrane 12. Only the accumulated gas reaches the working electrode 6 and is oxidized or reduced to generate a current between the gas and the counter electrode.

【0015】このガス透過性の非多孔質膜12をガスが
透過する量は下式で表される。 Q=(P/L)(p1 −p2)At 上式中、Qはガス透過量、Pは気体透過係数、p1 及び
2 はそれぞれ膜に供給されたガスの分圧及び膜の透過
側のガスの分圧、Lは膜厚、Aは透過面積、そしてtは
時間である。気体透過係数は、膜の材料とガスの組合せ
によって特有の値である。従って、測定対象ガスによっ
てかつ測定しようとする濃度に応じて、ガス透過性の非
多孔質膜12の材料を選択すればよい。また、膜厚、膜
の面積、及び測定対象ガスの供給圧力を変えることによ
って、測定可能な濃度範囲を調節することができる。
The amount of gas permeating the gas permeable non-porous membrane 12 is expressed by the following equation. Q = (P / L) (p 1 −p 2 ) At In the above equation, Q is the gas permeation amount, P is the gas permeation coefficient, p 1 and p 2 are the partial pressure of the gas supplied to the membrane and the pressure of the membrane, respectively. The partial pressure of the gas on the permeation side, L is the film thickness, A is the permeation area, and t is the time. The gas permeability coefficient is a unique value depending on the combination of the material of the membrane and the gas. Therefore, the material of the gas-permeable non-porous membrane 12 may be selected according to the gas to be measured and according to the concentration to be measured. Further, the concentration range that can be measured can be adjusted by changing the film thickness, the area of the film, and the supply pressure of the gas to be measured.

【0016】いずれにせよ、このガス透過性の非多孔質
膜12のガス透過率は非常に低いため、作用電極6の表
面において反応するガスの量は、このガス透過性の非多
孔質膜12が配置されていない場合と比較して、1/1000
0 以下とすることができる。すなわち、従来ppmレベ
ルの濃度測定用のセンサを用いて、%レベルの濃度を測
定することが可能となる。
In any case, since the gas permeability of the gas-permeable non-porous membrane 12 is very low, the amount of gas reacting on the surface of the working electrode 6 depends on the gas-permeable non-porous membrane 12. Is 1/1000 compared to the case where
It can be 0 or less. That is, it is possible to measure the concentration at the% level using a sensor for measuring the concentration at the ppm level in the related art.

【0017】[0017]

【実施例】ガス透過性の非多孔質膜12として、厚さ1
2.5μm 、25μm 及び50μm のFEP膜を用い、図1に
示すようにして構成した定電位電解式ガスセンサ(作用
電極の反応面積約5cm2)において、10%のH2 Sに対す
るこのセンサの出力電流を測定し、その結果を以下の表
1に示す。また、比較として、このガス透過性の非多孔
質膜12を配置していない、従来の定電位電解式ガスセ
ンサにおける10ppmのH2 Sに対するこのセンサの出
力電流をも表1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a gas-permeable nonporous membrane 12, a thickness of 1
In a potentiostatic gas sensor (reaction area of the working electrode of about 5 cm 2 ) constructed as shown in FIG. 1 using FEP films of 2.5 μm, 25 μm and 50 μm, the output current of this sensor with respect to 10% H 2 S was obtained. Was measured, and the results are shown in Table 1 below. As a comparison, Table 1 also shows the output current of this conventional constant-potential-electrolysis gas sensor with respect to 10 ppm of H 2 S in which the gas-permeable nonporous membrane 12 is not provided.

【0018】[0018]

【表1】 [Table 1]

【0019】この表1から明らかなように、本発明の定
電位電解式ガスセンサにおいては、ガス透過性の非多孔
質膜を配置することにより、%レベルの濃度の測定対象
ガスに対して、従来のppmレベルの濃度を測定した場
合と同程度の電流で検知することができる。また、この
ガス透過性の非多孔質膜の膜厚を変えることにより、測
定電流を任意に設定することができ、測定ガスの濃度に
応じて対応させることができる。
As is clear from Table 1, in the galvanostatic gas sensor of the present invention, by arranging a gas-permeable non-porous membrane, the gas to be measured having a concentration of% level can be conventionally used. Can be detected with the same level of current as when measuring the concentration at the ppm level. Further, by changing the thickness of the gas-permeable non-porous membrane, the measurement current can be arbitrarily set, and can be adjusted according to the concentration of the measurement gas.

【0020】また、ガス透過性の非多孔質膜12とし
て、厚さ12.5μm のFEP膜を使用した定電位電解式ガ
スセンサにおいて、H2 Sガス濃度(0〜30%)に対す
るこのセンサの出力電流を測定し、その結果を図3に示
す。
In a galvanostatic gas sensor using a 12.5 μm-thick FEP film as the gas-permeable nonporous film 12, the output current of this sensor with respect to the H 2 S gas concentration (0 to 30%) is measured. Was measured, and the results are shown in FIG.

【0021】この図3のグラフより明らかなように、本
発明の定電位電解式ガスセンサは、従来の定電位電解式
ガスセンサと同様に、測定ガス濃度に応じて相関的に出
力電流が変化し、測定ガスの濃度測定に有効であること
がわかる。
As is clear from the graph of FIG. 3, in the constant potential electrolytic gas sensor of the present invention, the output current changes in a correlated manner according to the concentration of the measured gas, similarly to the conventional constant potential electrolytic gas sensor. It turns out that it is effective in measuring the concentration of the measurement gas.

【0022】[0022]

【発明の効果】本発明の定電位電解式ガスセンサは、p
pmレベルの濃度測定用のガスセンサを用いて、%レベ
ルの高濃度のガス濃度を測定することができる。
The potentiostatic electrolytic gas sensor of the present invention has a p
By using a gas sensor for measuring the concentration at the pm level, the gas concentration at the high concentration at the% level can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の定電位電解式ガスセンサの略断面図で
ある。
FIG. 1 is a schematic sectional view of a potentiostatic gas sensor of the present invention.

【図2】本発明の定電位電解式ガスセンサの斜視分解図
である。
FIG. 2 is an exploded perspective view of the potentiostatic gas sensor of the present invention.

【図3】本発明の定電位電解式ガスセンサを用いて測定
した、H2 Sガス濃度に対するこのセンサの出力電流を
示すグラフである。
FIG. 3 is a graph showing the output current of this sensor against the concentration of H 2 S gas measured using the potentiostatic gas sensor of the present invention.

【符号の説明】[Explanation of symbols]

1…容器本体 2、3、13、14…シールパッキング 4…対電極 5…比較電極 6…作用電極 7、8、9…リード線 10、11…ガス透過性の多孔質膜 12…ガス透過性の非多孔質膜 15、16…側板 17…空気穴 18…ガス室 19…ガス給気路 20…ガス排気路 21、22…開口部 23…電解質液 DESCRIPTION OF SYMBOLS 1 ... Container main body 2, 3, 13, 14 ... Seal packing 4 ... Counter electrode 5 ... Comparative electrode 6 ... Working electrode 7, 8, 9 ... Lead wire 10, 11 ... Gas permeable porous membrane 12 ... Gas permeable Non-porous membrane 15, 16 ... Side plate 17 ... Air hole 18 ... Gas chamber 19 ... Gas supply path 20 ... Gas exhaust path 21, 22 ... Opening 23 ... Electrolyte liquid

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 作用電極、対極及び比較電極の3電極
と、電解液及びこの電解液を収納する容器本体からなる
定電位電解式ガスセンサであって、前記3電極がガス透
過性の多孔質膜の、前記電解液と接する内側に結合され
ており、前記作用電極の電解液と接する面と反対側のガ
ス供給側にガス透過性の非多孔質膜を配置したことを特
徴とする定電位電解式ガスセンサ。
1. A constant potential electrolytic gas sensor comprising a working electrode, a counter electrode, and a reference electrode, an electrolytic solution, and a container body for storing the electrolytic solution, wherein the three electrodes are gas permeable.
Bonded to the inside of the transient porous membrane in contact with the electrolyte.
And a non-porous gas-permeable membrane disposed on the gas supply side of the working electrode opposite to the surface in contact with the electrolytic solution.
JP10031719A 1998-02-13 1998-02-13 Constant potential electrolytic gas sensor Expired - Lifetime JP3042616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10031719A JP3042616B2 (en) 1998-02-13 1998-02-13 Constant potential electrolytic gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10031719A JP3042616B2 (en) 1998-02-13 1998-02-13 Constant potential electrolytic gas sensor

Publications (2)

Publication Number Publication Date
JPH11230933A JPH11230933A (en) 1999-08-27
JP3042616B2 true JP3042616B2 (en) 2000-05-15

Family

ID=12338868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10031719A Expired - Lifetime JP3042616B2 (en) 1998-02-13 1998-02-13 Constant potential electrolytic gas sensor

Country Status (1)

Country Link
JP (1) JP3042616B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012624B1 (en) * 2013-06-18 2018-08-29 New Cosmos Electric Co., Ltd. Controlled potential electrolysis gas sensor
JP2016148513A (en) * 2015-02-10 2016-08-18 理研計器株式会社 Electrochemical-type gas sensor
JP6734162B2 (en) * 2016-09-23 2020-08-05 新コスモス電機株式会社 Constant potential electrolytic gas sensor and method for manufacturing constant potential electrolytic gas sensor

Also Published As

Publication number Publication date
JPH11230933A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
CA2515170C (en) Laminated membranes for diffusion limited gas sensors resistant to pressure variations
US8702935B2 (en) Electrochemical sensors including electrodes with diffusion barriers
US4265714A (en) Gas sensing and measuring device and process using catalytic graphite sensing electrode
GB2094005A (en) Electrochemical gas sensor
US6666963B1 (en) Oxygen sensor
JP4507235B2 (en) Electrochemical gas sensor
CN1350640A (en) Electrochemical toxic component sensor
JP2004170420A (en) Hybrid-film type sensor
US6099708A (en) Three-electrode electrochemical gas sensor
JPH0740010B2 (en) Electrode compartment for electrochemical cells
GB2367136A (en) Electrochemical gas sensor with membrane of specified copolymer
JP7141962B2 (en) Constant potential electrolytic gas sensor
JP3042616B2 (en) Constant potential electrolytic gas sensor
US20070227908A1 (en) Electrochemical cell sensor
EP0205399A2 (en) Amperometric cell and method
JP3881540B2 (en) Constant potential electrolysis gas sensor and gas detector
JP2954174B1 (en) Constant potential electrolytic gas sensor
US7569128B2 (en) Coulometric water vapor sensor
JP6576053B2 (en) Constant potential electrolytic gas sensor
JPH0785070B2 (en) Oxygen detector
JP4308223B2 (en) Gas sensor for ammonia, ammonia detection method
JPH01239446A (en) Gas sensor
JP2006284312A (en) Galvanic cell type oxygen sensor
US20080116083A1 (en) Electrochemical gas sensor with at least one punctiform measuring electrode
JP2002071622A (en) Electrochemical gas sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13