JP3041379B2 - Method for producing high purity sulfur monochloride - Google Patents
Method for producing high purity sulfur monochlorideInfo
- Publication number
- JP3041379B2 JP3041379B2 JP5265262A JP26526293A JP3041379B2 JP 3041379 B2 JP3041379 B2 JP 3041379B2 JP 5265262 A JP5265262 A JP 5265262A JP 26526293 A JP26526293 A JP 26526293A JP 3041379 B2 JP3041379 B2 JP 3041379B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- chlorine
- reaction
- monochloride
- sulfur monochloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高純度の一塩化硫黄の
製造方法に関し、詳しくは、一塩化硫黄を溶媒とし、触
媒量のルイス酸及び/又は金属の存在下で硫黄と塩素と
を実質的に定量的に反応させて、高収率、高純度にて一
塩化硫黄を製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity sulfur monochloride, and more particularly, to a method for converting sulfur and chlorine in the presence of a catalytic amount of Lewis acid and / or metal using sulfur monochloride as a solvent. The present invention relates to a method for producing sulfur monochloride in high yield and high purity by reacting substantially quantitatively.
【0002】[0002]
【従来の技術】一塩化硫黄は、二塩化硫黄、塩化チオニ
ル、芳香族チオール類、チオビスフェノール類等の製造
原料や、ゴム加硫剤等に用いられている有用な化合物で
ある。従来、一塩化硫黄の一般的な製造方法としては、
二硫化炭素に塩素を反応させる方法や、或いは一塩化硫
黄や二塩化硫黄等の塩化硫黄を溶媒として用い、これに
固体硫黄を溶解させた後、塩素を吹き込んで、硫黄と塩
素とを直接に反応させる方法等が知られている(Encycl
opedia of Chemical Technology, Vol. 13, p.402-403,
The Interscience Encyclopedia, Inc., N.Y., 195
4)。2. Description of the Related Art Sulfur monochloride is a useful compound used as a raw material for producing sulfur dichloride, thionyl chloride, aromatic thiols, thiobisphenols and the like, and as a rubber vulcanizing agent. Conventionally, as a general production method of sulfur monochloride,
A method of reacting chlorine with carbon disulfide or using sulfur chloride such as sulfur monochloride or sulfur dichloride as a solvent, dissolving solid sulfur in this, and then blowing chlorine to directly convert sulfur and chlorine. A reaction method is known (Encycl
opedia of Chemical Technology, Vol. 13, p. 402-403,
The Interscience Encyclopedia, Inc., NY, 195
Four).
【0003】従来、工業的には、これらの方法のうち前
者の方法が採用されているが、上記前者の方法によれ
ば、一塩化硫黄のほかに、副生物として四塩化炭素が同
時に生成し、この四塩化炭素は、オゾン層破壊原因物質
として、その使用が制限されているハロゲン化炭化水素
の一種であるので、上記製造方法を今後とも継続するこ
とは困難である。Conventionally, the former method is industrially adopted, but according to the former method, carbon tetrachloride is simultaneously produced as a by-product in addition to sulfur monochloride. Since this carbon tetrachloride is a kind of halogenated hydrocarbon whose use is restricted as a substance causing ozone layer depletion, it is difficult to continue the above production method in the future.
【0004】他方、後者の方法は、特開平4−3174
01号にその改良が提案されているものの、一般に、一
塩化硫黄を溶媒として、硫黄と塩素とを直接に反応させ
る方法においては、反応容器中に過剰の塩素を吹き込ん
で、反応させる方式を採用しているので、反応容器を吹
き抜けた塩素を回収し、又は処理する設備が必要であ
る。On the other hand, the latter method is disclosed in Japanese Unexamined Patent Publication No.
Although the improvement is proposed in No. 01, in general, in a method of directly reacting sulfur with chlorine using sulfur monochloride as a solvent, a method in which excess chlorine is blown into a reaction vessel and reacted is adopted. Therefore, a facility for collecting or treating chlorine blown through the reaction vessel is required.
【0005】[0005]
【発明が解決しようとする課題】本発明は、一塩化硫黄
を反応溶媒として用いて、硫黄と塩素とを直接に反応さ
せる方法における上記した問題を解決するためになされ
たものであって、実質的に、二塩化硫黄の副生及び未反
応硫黄の残存なしに、且つ、反応の終了後に特別な精製
操作の必要なしに、通常、純度99%以上の高純度の一
塩化硫黄を高収率で得ることができる一塩化硫黄の製造
方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in a method of directly reacting sulfur with chlorine using sulfur monochloride as a reaction solvent, In general, high-purity sulfur monochloride having a purity of 99% or more can be obtained in a high yield without producing by-product sulfur dichloride and remaining unreacted sulfur, and without requiring a special purification operation after the completion of the reaction. To provide a method for producing sulfur monochloride obtainable by the method described above.
【0006】[0006]
【課題を解決するための手段】本発明による高純度一塩
化硫黄の製造方法は、一塩化硫黄を反応溶媒として、こ
れに硫黄を溶解させ、硫黄に対して5〜300ppmの
ルイス酸及び/又は金属の存在下に、上記溶媒中に塩素
を吹き込んでこの塩素を硫黄と反応させながら、反応混
合物の比重又は透過度を測定することによって反応の終
点を検知し、その時点で反応を終了して、硫黄に対して
実質的に理論量加えた塩素と硫黄とを実質的に定量的に
反応させることを特徴とする。The process for producing high-purity sulfur monochloride according to the present invention comprises dissolving sulfur in sulfur monochloride as a reaction solvent, and adding 5 to 300 ppm of Lewis to sulfur. Chlorine in the above solvent in the presence of acid and / or metal
While reacting this chlorine with sulfur,
The end of the reaction is determined by measuring the specific gravity or permeability of the compound.
The point is detected, at which point the reaction is terminated and the sulfur
It is characterized in that substantially stoichiometrically added chlorine and sulfur are reacted substantially quantitatively.
【0007】即ち、本発明によれば、一塩化硫黄を反応
溶媒として、これに硫黄を溶解させ、ルイス酸及び/又
は金属の存在下に、上記溶媒中に塩素を吹き込んでこの
塩素を硫黄と反応させながら、反応混合物の比重又は透
過度を測定することによって反応の終点を検知し、この
時点で塩素の吹き込みを止めて反応を終了することによ
って、吹き込んだ塩素を硫黄に対して実質的に理論量と
し、しかも、この理論量の塩素を実質的にすべて硫黄と
反応させ、かくして、硫黄に対して実質的に理論量の塩
素を用いて、99%以上の高純度の一塩化硫黄をほぼ定
量的に得ることができる。 That is, according to the present invention, sulfur monochloride is used as a reaction solvent, sulfur is dissolved in the solvent, and chlorine is blown into the solvent in the presence of a Lewis acid and / or a metal.
While reacting chlorine with sulfur, the specific gravity or permeability of the reaction mixture
The end point of the reaction is detected by measuring the
At that point, stop blowing chlorine and terminate the reaction.
Thus, the injected chlorine is substantially stoichiometric with respect to sulfur.
And convert this theoretical amount of chlorine to virtually all sulfur
Reaction, and thus a substantially stoichiometric amount of salt relative to sulfur
Approximately 99% or more high purity sulfur monochloride is determined using hydrogen
It can be obtained quantitatively.
【0008】本発明の方法においては、反応溶媒とし
て、一塩化硫黄を用いる。ここに、この一塩化硫黄は、
通常の市販品を用いることができるが、本発明によって
製造された高純度の一塩化硫黄を用いてもよい。本発明
において、反応溶媒として用いる上記一塩化硫黄の純度
は、特に、制限されるものではないが、通常、90%以
上の純度を用いることか好ましい。また、反応溶媒とし
て用いる一塩化硫黄の量も、特に限定されないが、通
常、原料として用いる硫黄に対して、1〜50重量倍ま
での範囲である。特に、塩素の有効利用と容積効率等の
経済的な観点から、2〜10重量倍の範囲が好ましい。In the method of the present invention, sulfur monochloride is used as a reaction solvent. Here, this sulfur monochloride
Normal commercial products can be used, but high-purity sulfur monochloride produced according to the present invention may also be used. In the present invention, the purity of the sulfur monochloride used as the reaction solvent is not particularly limited, but usually, it is preferable to use a purity of 90% or more. Also, the amount of sulfur monochloride used as the reaction solvent is not particularly limited, but is usually in the range of 1 to 50 times the weight of sulfur used as a raw material. In particular, the range of 2 to 10 times by weight is preferable from the economical viewpoints such as effective utilization of chlorine and volumetric efficiency.
【0009】本発明の方法においては、反応容器への硫
黄の仕込みは、反応溶媒と共に、予め一括して仕込んで
もよいが、また、溶媒中に塩素を吹き込みながら、他方
で硫黄を連続的に又は間欠的に溶媒に加えてもよい。In the method of the present invention, the sulfur may be charged into the reaction vessel together with the reaction solvent in advance. It may be added intermittently to the solvent.
【0010】本発明の方法においては、触媒として、ル
イス酸又は金属が用いられる。ルイス酸としては、鉄、
ニツケル、クロム、銅又はアルミニウムのハロゲン化
物、特に、塩化物又は臭化物が好ましく、このようなル
イス酸として、例えば、塩化第二鉄、塩化ニツケル、塩
化アルミニウム、塩化第二クロム、臭化第二鉄、臭化ニ
ツケル、臭化アルミニウム、臭化クロム、塩化第一鉄、
塩化第一クロム、臭化第一鉄、臭化第二銅等を挙げるこ
とができる。また、金属としては、鉄、ニツケル又はク
ロム等が用いられる。本発明においては、これらのなか
でも、経済性及び取扱いやすさの点から、触媒として
は、金属を用いるときは、鉄、ニツケル又はクロムが好
ましく用いられ、ルイス酸を用いるときは、塩化第二
鉄、塩化第一鉄、塩化第二クロム又は塩化第一クロムが
特に好ましく用いられる。In the method of the present invention, a Lewis acid or metal is used as a catalyst. As Lewis acids, iron,
Nickel, chromium, copper or aluminum halides, especially chloride or bromide, are preferred, such as Lewis acids such as ferric chloride, nickel chloride, aluminum chloride, chromic ferric chloride, ferric bromide , Nickel bromide, aluminum bromide, chromium bromide, ferrous chloride,
Examples thereof include chromous chloride, ferrous bromide, and cupric bromide. As the metal, iron, nickel, chromium, or the like is used. In the present invention, among these, iron, nickel or chromium is preferably used as a catalyst when a metal is used, and a secondary chloride is used when a Lewis acid is used, from the viewpoint of economy and ease of handling. Iron, ferrous chloride, chromic chloride or chromic chloride are particularly preferably used.
【0011】用いる触媒の量は、反応条件等により異な
るので、一概には限定できないが、通常、仕込みの硫黄
に対して、5〜300ppmの範囲であり、好ましく
は、20〜100ppmの範囲である。用いる触媒の量
が5ppmより少ないときは、触媒効果が十分に発現せ
ず、従って、残存硫黄及び二塩化硫黄の副生量が増加す
ることがあり他方、300ppmよりも多いときは、製
品から触媒を除去する必要があるので好ましくない。The amount of the catalyst used varies depending on the reaction conditions and the like, and cannot be unconditionally limited. However, it is usually in the range of 5 to 300 ppm, preferably 20 to 100 ppm, based on the charged sulfur. . When the amount of the catalyst used is less than 5 ppm, the catalytic effect is not sufficiently exhibited, and therefore, the amount of residual sulfur and sulfur dichloride by-products may increase. It is not preferable because it is necessary to remove
【0012】本発明の方法においては、一塩化硫黄を溶
媒とし、これに硫黄を溶解させ、上記触媒の存在下に、
塩素を吹き込んで、硫黄と塩素とを反応させる、その際
に、温度10〜80℃の範囲にて、塩素を硫黄に対して
実質的に理論量を加え、硫黄と塩素とを実質的に定量的
に反応させることが重要である。従って、本発明におい
ては、塩素の吹き込み量は、硫黄1モルに対して、0.4
9〜0.51モルの範囲が好ましい。In the method of the present invention, sulfur monochloride is used as a solvent, and sulfur is dissolved in the solvent.
The chlorine is blown to react the sulfur with the chlorine. At this time, in a temperature range of 10 to 80 ° C., the chlorine is added to the sulfur in a substantially theoretical amount, and the sulfur and the chlorine are substantially determined. It is important to make it react. Therefore, in the present invention, the blowing amount of chlorine is 0.4 per mol of sulfur.
A range from 9 to 0.51 mol is preferred.
【0013】また、塩素吹き込み温度が80℃よりも高
いときは、触媒の活性が低下するため、残存する未反応
硫黄及び二塩化硫黄の副生量が増加し、他方、10℃よ
りも低いときは、反応速度が遅くなるため、塩素吹き込
みに長時間を要し、反応が効率的に行なわれない。特に
好ましくは、塩素の吹き込み温度は、20〜50℃の範
囲である。When the chlorine blowing temperature is higher than 80 ° C., the activity of the catalyst decreases, so that the amount of residual unreacted sulfur and sulfur dichloride by-products increases. On the other hand, when the chlorine blowing temperature is lower than 10 ° C. However, since the reaction speed is slow, it takes a long time to blow chlorine, and the reaction is not efficiently performed. Particularly preferably, the blowing temperature of chlorine is in the range of 20 to 50 ° C.
【0014】特に、本発明によれば、触媒量のルイス酸
又は金属の存在下に、硫黄を溶解させた反応溶媒中に塩
素を吹き込み、反応混合物をモニターしつつ、反応の終
点を検知し、硫黄に実質的に定量的に塩素を反応させる
ことによって、副生する二塩化硫黄や未反応の硫黄を実
質的に反応系においてなくすることができ、かくして、
前記不純物を実質的に含まない高純度の一塩化硫黄を高
収率にて容易に得ることができる。In particular, according to the present invention, chlorine is blown into a reaction solvent in which sulfur is dissolved in the presence of a catalytic amount of a Lewis acid or a metal, and the end point of the reaction is detected while monitoring the reaction mixture. By reacting chlorine substantially quantitatively with sulfur, by-product sulfur dichloride and unreacted sulfur can be substantially eliminated in the reaction system, and thus,
High-purity sulfur monochloride substantially free of the impurities can be easily obtained in high yield.
【0015】本発明の方法において、硫黄と塩素との反
応のモニターは、好ましくは、反応混合物の比重又は透
過度を測定することによって行なう。反応混合物の比重
によって反応をモニターするときは、比重の大きい硫黄
(比重2.06)の影響のために高比重側にあつた反応混
合物の比重が、反応の進行に伴つて、一塩化硫黄の比重
である1.690付近、即ち、1.688〜1.692の範囲
に至った時点で塩素の吹き込みを停止すればよい。上記
比重は、純度99%以上の一塩化硫黄に十分に対応する
値である。In the method of the present invention, the reaction between sulfur and chlorine is preferably monitored by measuring the specific gravity or the permeability of the reaction mixture. When the reaction is monitored by the specific gravity of the reaction mixture, the specific gravity of the reaction mixture on the higher specific gravity side due to the effect of sulfur having a higher specific gravity (specific gravity of 2.06) increases with the progress of the reaction. The blowing of chlorine may be stopped when the specific gravity approaches 1.690, that is, when the specific gravity reaches a range of 1.688 to 1.692. The above specific gravity is a value sufficiently corresponding to a purity of 99% or more of sulfur monochloride.
【0016】他方、反応混合物の透過度によって反応を
モニターするときは、副生する二塩化硫黄に固有の波
長、即ち、525nmを測定することにより行う。具体
的には、光路長1cmのセルで光の透過度が42〜58%
の範囲、好ましくは50〜58%の範囲になった時点で
塩素の吹き込みを停止すれば、実質的に二塩化硫黄の副
生のない一塩化硫黄を得ることができる。On the other hand, when monitoring the reaction by the transmittance of the reaction mixture, it is performed by measuring a wavelength specific to by-produced sulfur dichloride, that is, 525 nm. Specifically, a cell having an optical path length of 1 cm has a light transmittance of 42 to 58%.
, Preferably 50 to 58%, when the chlorine blowing is stopped, sulfur monochloride substantially free of by-produced sulfur dichloride can be obtained.
【0017】[0017]
【発明の効果】本発明の方法によれば、以上のように、
触媒量のルイス酸又は金属の存在下に、硫黄に塩素を実
質的に定量的に反応させることによって、実質的に、二
塩化硫黄の副生及び未反応硫黄の残存なしに、且つ、上
記反応の終了後に特別な精製操作の必要なしに、通常、
純度99%以上の高純度の一塩化硫黄を高収率で得るこ
とができる。According to the method of the present invention, as described above,
By substantially quantitatively reacting sulfur with chlorine in the presence of a catalytic amount of a Lewis acid or metal, substantially no by-product of sulfur dichloride and residual unreacted sulfur remain, and Without the need for special purification operations after the end of
High-purity sulfur monochloride having a purity of 99% or more can be obtained in a high yield.
【0018】[0018]
【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。尚、反応混合物をモニターするために、反応混合物
をポンプにより外部循環させて、その比重又は透過度を
連続的に測定した。比重は、コリオリ式質量流量計を用
い、透過度は、光路長1cmの石英セルを用い、分光光度
計にて測定した。EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by these examples. In order to monitor the reaction mixture, the reaction mixture was externally circulated by a pump, and its specific gravity or permeability was continuously measured. The specific gravity was measured with a Coriolis mass flowmeter, and the transmittance was measured with a spectrophotometer using a quartz cell having an optical path length of 1 cm.
【0019】実施例1 容量1000mlのガラス製四つ口フラスコに、溶媒とし
て純度99.2 %の一塩化硫黄400.0gを仕込み、これ
に硫黄160.0g(5.00モル)と触媒としての鉄粉約
10mgを加えた。液温を25℃とし、塩素を吹き込み、
その後、反応混合物の比重が1.690となった時点で塩
素の吹き込みを停止した。結果的に、塩素吹き込み時間
は3.2時間、吹き込み量は硫黄1モルに対して0.497
モルであった。得られた反応混合物を分析したところ、
一塩化硫黄の純度は99.8%であり、収率は99.8%で
あった。EXAMPLE 1 A glass four-necked flask having a capacity of 1000 ml was charged with 400.0 g of 99.2% sulfur monochloride as a solvent, and 160.0 g (5.00 mol) of sulfur and 160.0 g of sulfur as a catalyst were added thereto. About 10 mg of iron powder was added. The liquid temperature is 25 ° C, chlorine is blown in,
Thereafter, when the specific gravity of the reaction mixture reached 1.690, the blowing of chlorine was stopped. As a result, the chlorine blowing time was 3.2 hours, and the blowing amount was 0.497 per mole of sulfur.
Mole. When the obtained reaction mixture was analyzed,
The purity of sulfur monochloride was 99.8% and the yield was 99.8%.
【0020】実施例2 容量1000mlのガラス製四つ口フラスコに、溶媒とし
て純度99.5%の一塩化硫黄400.0gを仕込み、これ
に硫黄160.0g(5.00モル)と触媒としての鉄粉約
10mgを加えた。液温を30℃とし、塩素を吹き込み、
その後、反応混合物の透過度が57%となった時点で塩
素の吹き込みを停止した。結果的に、塩素吹き込み時間
は3.0時間、吹き込み量は硫黄1モルに対して0.498
モルであった。得られた反応混合物を分析したところ、
一塩化硫黄の純度は99.9%であり、収率は99.6%で
あったEXAMPLE 2 A four-necked glass flask having a capacity of 1000 ml was charged with 400.0 g of 99.5% sulfur monochloride as a solvent, and 160.0 g (5.00 mol) of sulfur and 160.0 g of sulfur as a catalyst were added thereto. About 10 mg of iron powder was added. The liquid temperature is 30 ° C, chlorine is blown in,
Thereafter, when the transmittance of the reaction mixture reached 57%, the blowing of chlorine was stopped. As a result, the chlorine blowing time was 3.0 hours, and the blowing amount was 0.498 per mole of sulfur.
Mole. When the obtained reaction mixture was analyzed,
The purity of sulfur monochloride was 99.9% and the yield was 99.6%
【0021】実施例3 触媒としてニッケル粉30mgを用いた以外は、実施例1
と同様な操作を行ない、反応液の比重が1.688となっ
た時点で塩素の吹き込みを停止した。結果的に、塩素吹
き込み時間は3.1時間、塩素吹き込み量は硫黄1モルに
対して、0.503モルであった。得られた反応混合物を
分析したところ、一塩化硫黄の純度は99.2%であり、
収率は99.6%であった。Example 3 Example 1 was repeated except that 30 mg of nickel powder was used as the catalyst.
When the specific gravity of the reaction solution reached 1.688, the blowing of chlorine was stopped. As a result, the chlorine blowing time was 3.1 hours, and the chlorine blowing amount was 0.503 mol with respect to 1 mol of sulfur. When the obtained reaction mixture was analyzed, the purity of sulfur monochloride was 99.2%,
The yield was 99.6%.
【0022】実施例4 触媒として塩化第二鉄粉末4mgを用いた以外は、実施例
1と同様な操作を行なった。結果的に、塩素吹き込み時
間は2.9時間、塩素吹き込み量は硫黄1モルに対して、
0.500モルであった。得られた反応混合物を分析した
ところ、一塩化硫黄の純度は99.8%であり、収率は9
9.7%であった。Example 4 The same operation as in Example 1 was carried out except that 4 mg of ferric chloride powder was used as a catalyst. As a result, the chlorine blowing time was 2.9 hours, and the chlorine blowing amount was
0.500 mol. Analysis of the resulting reaction mixture showed that the purity of sulfur monochloride was 99.8% and the yield was 9
It was 9.7%.
【0023】実施例5 触媒として塩化第二鉄粉末20mgを用いた以外は、実施
例2と同様な操作を行ない、反応混合物の透過度が54
%となった時点で塩素の吹き込みを停止した。結果的
に、塩素吹き込み時間は3.1時間、塩素吹き込み量は硫
黄1モルに対して、0.502モルであった。得られた反
応混合物を分析したところ、一塩化硫黄の純度は99.8
%であり、収率は99.6%であった。Example 5 The same operation as in Example 2 was carried out except that 20 mg of ferric chloride powder was used as a catalyst.
%, The blowing of chlorine was stopped. As a result, the chlorine blowing time was 3.1 hours, and the chlorine blowing amount was 0.502 mol with respect to 1 mol of sulfur. When the obtained reaction mixture was analyzed, the purity of sulfur monochloride was 99.8.
%, And the yield was 99.6%.
【0024】実施例6 塩素吹き込み温度を40℃とした以外は、実施例2と同
様な操作を行なった。結果的に、塩素吹き込み時間は3.
1時間、塩素吹き込み量は硫黄1モルに対して、0.49
8モルであった。得られた反応混合物を分析したとこ
ろ、一塩化硫黄の純度は99.7%であり、収率は99.5
%であった。Example 6 The same operation as in Example 2 was performed except that the chlorine blowing temperature was 40 ° C. As a result, the chlorine blowing time is 3.
One hour, the amount of chlorine blown was 0.49 with respect to 1 mole of sulfur.
8 moles. Analysis of the resulting reaction mixture showed that the purity of sulfur monochloride was 99.7% and the yield was 99.5.
%Met.
【0025】実施例7 純度90.2%の一塩化硫黄を用いた以外は、実施例1と
同様の操作にて反応を行なった。結果的に、塩素吹き込
み時間は3.2時間、塩素吹き込み量は硫黄1モルに対し
て、0.502モルであった。得られた反応混合物を分析
したところ、一塩化硫黄の純度は99.6%であり、収率
は99.7%であった。Example 7 A reaction was carried out in the same manner as in Example 1 except that sulfur monochloride having a purity of 90.2% was used. As a result, the chlorine blowing time was 3.2 hours, and the chlorine blowing amount was 0.502 mol with respect to 1 mol of sulfur. Analysis of the resulting reaction mixture showed that the purity of sulfur monochloride was 99.6% and the yield was 99.7%.
【0026】比較例1 容量1000mlのガラス製四つ口フラスコに、溶媒とし
て純度99.5%の一塩化硫黄400.0gを仕込み、これ
に硫黄160.0g(5.00モル)を加えた。液温を25
℃とし、触媒を加えず、触媒の不存在下に、塩素2.60
モルを4.0時間で吹き込んだ。得られた反応混合物を分
析したところ、一塩化硫黄の純度は98.0%であった。
また、収率は97.5%であった。Comparative Example 1 A glass four-necked flask having a capacity of 1,000 ml was charged with 400.0 g of 99.5% sulfur monochloride as a solvent, and 160.0 g (5.00 mol) of sulfur was added thereto. Liquid temperature 25
° C, no catalyst added and 2.60 chlorine in the absence of catalyst.
Mole was bubbled in for 4.0 hours. When the obtained reaction mixture was analyzed, the purity of sulfur monochloride was 98.0%.
The yield was 97.5%.
【0027】比較例2 容量1000mlのガラス製四つ口フラスコに、溶媒とし
て純度99.2%の一塩化硫黄400.0gを仕込み、これ
に硫黄160.0g(5.00モル)と触媒としての鉄粉約
10mgを加えた。液温を30℃とし、塩素を吹き込み、
その後、反応液の比重や透過度を測定する代わりに、塩
素ボンベの減量を測定し、ボンベ減量が177.5g(2.
50モル)となった時点で塩素の吹き込みを停止した。COMPARATIVE EXAMPLE 2 A glass four-necked flask having a capacity of 1000 ml was charged with 400.0 g of 99.2% pure sulfur monochloride as a solvent, and 160.0 g (5.00 mol) of sulfur and 160.0 g of sulfur as a catalyst were added thereto. About 10 mg of iron powder was added. The liquid temperature is 30 ° C, chlorine is blown in,
Then, instead of measuring the specific gravity and permeability of the reaction solution, the weight loss of the chlorine cylinder was measured, and the weight loss of the cylinder was 177.5 g (2.
(50 mol), the blowing of chlorine was stopped.
【0028】結果的に、塩素吹き込み時間は3.0時間で
あった。この方法によれば、硫黄に対して、塩素を理論
量加えているが、反応の終点をモニターしていないの
で、反応の終了時、硫黄と塩素との反応が定量的に完結
しておらず、かくして、得られた反応混合物を分析した
ところ、一塩化硫黄の純度は98.5%であった。また、
収率は98.3%であった。As a result, the chlorine blowing time was 3.0 hours. According to this method, a theoretical amount of chlorine is added to sulfur, but the end point of the reaction is not monitored, so that at the end of the reaction, the reaction between sulfur and chlorine is not quantitatively completed. When the thus obtained reaction mixture was analyzed, the purity of sulfur monochloride was 98.5%. Also,
The yield was 98.3%.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−317401(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 17/45 CA(STN)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-317401 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 17/45 CA (STN)
Claims (5)
を溶解させ、硫黄に対して5〜300ppmのルイス酸
及び/又は金属の存在下に、上記溶媒中に塩素を吹き込
んでこの塩素を硫黄と反応させながら、反応混合物の比
重又は透過度を測定することによって反応の終点を検知
し、その時点で反応を終了して、硫黄に対して実質的に
理論量加えた塩素と硫黄とを実質的に定量的に反応させ
ることを特徴とする高純度の一塩化硫黄の製造方法。1. Sulfur is dissolved in sulfur monochloride as a reaction solvent, and chlorine is blown into said solvent in the presence of 5-300 ppm of Lewis acid and / or metal relative to sulfur.
While reacting the chlorine with sulfur, the ratio of the reaction mixture
Detect end point of reaction by measuring weight or permeability
At which point the reaction is terminated and substantially reduced to sulfur.
A method for producing high-purity sulfur monochloride, comprising substantially quantitatively reacting stoichiometric chlorine and sulfur .
項1記載の方法。 2. The metal is iron, nickel or chromium.
Item 7. The method according to Item 1.
アルミニウムのハロゲン化物である請求項1記載の方
法。 3. The Lewis acid is iron, nickel, chromium, copper or
2. The method according to claim 1, which is a halide of aluminum.
Law.
んで、反応させる請求項1記載の方法。4. The method according to claim 1, wherein chlorine is blown into the sulfur at a temperature of 10 to 80 ° C. to cause a reaction.
0.49〜0.51モルである請求項1記載の方法。 5. The amount of chlorine blown into one mole of sulfur is
2. The method according to claim 1, wherein the amount is 0.49 to 0.51 mol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5265262A JP3041379B2 (en) | 1993-10-22 | 1993-10-22 | Method for producing high purity sulfur monochloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5265262A JP3041379B2 (en) | 1993-10-22 | 1993-10-22 | Method for producing high purity sulfur monochloride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07118004A JPH07118004A (en) | 1995-05-09 |
JP3041379B2 true JP3041379B2 (en) | 2000-05-15 |
Family
ID=17414791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5265262A Expired - Lifetime JP3041379B2 (en) | 1993-10-22 | 1993-10-22 | Method for producing high purity sulfur monochloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3041379B2 (en) |
-
1993
- 1993-10-22 JP JP5265262A patent/JP3041379B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07118004A (en) | 1995-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5545298A (en) | Process for preparing polyfluorocarboxylic acid chlorides and perfluorocarboxylic acid chlorides | |
JP3041379B2 (en) | Method for producing high purity sulfur monochloride | |
EP0844239B1 (en) | Method for producing homocystine | |
EP0163230B1 (en) | Process for producing aromatic chlorine compounds | |
JP3918883B2 (en) | Method for producing benzoyl chlorides | |
JPH03294237A (en) | Production of 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane | |
JPS60193939A (en) | Production of 2-chloro-4-fluorophenol | |
JPH06145100A (en) | Production of 2,6-dichlorobenzoyl chloride | |
JPS6038324B2 (en) | Production method of SF↓5Cl | |
JP2523936B2 (en) | Method for producing dicarbonyl fluoride | |
JPS61151016A (en) | Production of fluorosilane | |
JPS6016361B2 (en) | Manufacturing method of sulfur tetrafluoride | |
JP3010337B2 (en) | Method for producing orthobenzenedithiols | |
JP4301766B2 (en) | Method for producing dibenzoyltartaric acid and acid anhydrides thereof | |
JPS6328903B2 (en) | ||
JPS6224410B2 (en) | ||
JPH045007B2 (en) | ||
JPH06219998A (en) | Production of fluorinated organic quaternary ammonium salt | |
JP3008375B2 (en) | Method for producing sulfur monochloride | |
SU662492A1 (en) | Method of obtaining fluosilicic acid | |
JPS62181234A (en) | Production of isophthaloyl dichloride | |
JPS606934B2 (en) | Method for producing α-chloro-diethyl carbonate | |
JPH08169867A (en) | Production of methacrylamide | |
JPS6056939A (en) | Production of 2,6-dichloro-4-nitrophenol | |
JPS61229836A (en) | Manufacture of aromatic 1,1-difluoroperhaloalkoxy or 1,1- difluoroperhalothioalkyl derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080310 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090310 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090310 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110310 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110310 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120310 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120310 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130310 Year of fee payment: 13 |