JP3040895B2 - Rare earth bonded magnet and its manufacturing method - Google Patents
Rare earth bonded magnet and its manufacturing methodInfo
- Publication number
- JP3040895B2 JP3040895B2 JP5059524A JP5952493A JP3040895B2 JP 3040895 B2 JP3040895 B2 JP 3040895B2 JP 5059524 A JP5059524 A JP 5059524A JP 5952493 A JP5952493 A JP 5952493A JP 3040895 B2 JP3040895 B2 JP 3040895B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- crystal structure
- magnet
- type crystal
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 150000002910 rare earth metals Chemical group 0.000 title claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 117
- 239000013078 crystal Substances 0.000 claims description 55
- 239000000203 mixture Substances 0.000 claims description 31
- 239000000843 powder Substances 0.000 claims description 28
- 238000010438 heat treatment Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 27
- 229910045601 alloy Inorganic materials 0.000 claims description 23
- 239000000956 alloy Substances 0.000 claims description 23
- 229910052742 iron Inorganic materials 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 18
- 239000000470 constituent Substances 0.000 claims description 13
- 238000010791 quenching Methods 0.000 claims description 13
- 229910052779 Neodymium Inorganic materials 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 6
- 238000009689 gas atomisation Methods 0.000 claims description 5
- 238000007783 splat quenching Methods 0.000 claims description 5
- 230000000171 quenching effect Effects 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 2
- -1 M is A g Inorganic materials 0.000 claims 1
- 230000005291 magnetic effect Effects 0.000 description 21
- 229910000859 α-Fe Inorganic materials 0.000 description 10
- 230000005347 demagnetization Effects 0.000 description 8
- 239000006247 magnetic powder Substances 0.000 description 8
- 229910001047 Hard ferrite Inorganic materials 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000005294 ferromagnetic effect Effects 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- 238000009776 industrial production Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0578—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、マグネットロール、
スピーカー、磁気センサー用磁気回路、各種メーターお
よびフォーカス用マグネットならびにモーターやアクチ
ュエーターなどに最適な希土類ボンド磁石とその製造方
法に係り、希土類元素の含有量が少ない特定組成のFe
−V−B−R、Fe−V−B−R−M(M=Al,S
i)合金溶湯を回転ロールを用いた超急冷法、スプラッ
ト急冷法、ガスアトマイズ法あるいはこれらの併用法に
てアモルファス組織とし、特定の熱処理にて体心正方晶
Fe3P型結晶構造を有する鉄を主成分とするホウ化物
相とNd2Fe14B型結晶構造の構成相との微細結晶集
合体をからなる合金粉末を得、これを樹脂にて結合する
ことにより、ハードフェライト磁石では得られなかった
5kG以上の残留磁束密度Brを有するFe−B−R系
ボンド磁石を得る希土類ボンド磁石とその製造方法に関
する。The present invention relates to a magnet roll,
Rare earth bonded magnets suitable for speakers, magnetic circuits for magnetic sensors, various meter and focusing magnets, motors and actuators, and methods of manufacturing the same. Fe of a specific composition with low rare earth element content.
-VBR, Fe-VBRM (M = Al, S
i) The alloy melt is made to have an amorphous structure by a rapid quenching method using a rotating roll, a splat quenching method, a gas atomizing method or a combination thereof, and iron having a body-centered tetragonal Fe 3 P type crystal structure is obtained by a specific heat treatment. An alloy powder consisting of a fine crystal aggregate of a boride phase as a main component and a constituent phase of the Nd 2 Fe 14 B type crystal structure is obtained, and this is bonded with a resin. The present invention relates to a rare-earth bonded magnet for obtaining an Fe-BR-based bonded magnet having a residual magnetic flux density Br of 5 kG or more and a method of manufacturing the same.
【0002】[0002]
【従来の技術】静電現像用マグネットロール、電装品用
モーター、アクチュエーターなどに使用される永久磁石
は主にハードフェライト磁石に限定されていたが、低温
でのiHc低下に伴う低温減磁特性が有ること、セラミ
ックス材質のために機械的強度が低くて割れ、欠けが発
生し易いこと、複雑な形状が得難いことなどの問題があ
った。2. Description of the Related Art Permanent magnets used in magnet rolls for electrostatic development, motors for electric components, actuators, and the like have been mainly limited to hard ferrite magnets. There is a problem that the ceramic material has a low mechanical strength due to a low mechanical strength, so that cracking and chipping are likely to occur, and a complicated shape is difficult to obtain.
【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが
5〜7kG程度のものが最適とされている。すなわち、
使用する磁石材料のBrが8kG以上の場合、現在のモ
ーター構造では磁路となる回転子やステーターの鉄板の
断面積を増大させる必要があり、重量の増大を招来する
が、Brが5〜7kGであれば性能対重量比を最大にす
ることができる。[0003] Today, there is a strong demand for automobiles to improve fuel efficiency by reducing the weight of the vehicles in order to save resources, and it is required to further reduce the size and weight of electrical components for automobiles. Also,
Designs to maximize the performance-to-weight ratio are also being considered for applications such as motors for home appliances other than automotive electrical components, and the current motor structure is optimal for magnet materials with a Br material of about 5 to 7 kG. It has been. That is,
When Br of the magnet material to be used is 8 kG or more, the current motor structure needs to increase the cross-sectional area of the iron plate of the rotor or the stator which becomes the magnetic path, which leads to an increase in weight. If so, the performance to weight ratio can be maximized.
【0004】従って、小型モーター用の磁石材料は磁気
特性的には特に5kG以上の残留磁束密度Brが要求さ
れているが、従来のハードフェライト磁石では得ること
ができない。例えばNd−Fe−B系ボンド磁石ではか
かる磁気特性を満足するが、金属の分離精製や還元反応
に多大の工程並びに大規模な設備を要するNd等を10
〜15at%含有しているため、ハードフェライト磁石
に比較して著しく高価であり、現在のところ大量生産が
可能で安価に提供できるBrが5〜7kG程度の磁石材
料は、見出されていない。Accordingly, a magnetic material for a small motor is required to have a residual magnetic flux density Br of at least 5 kG in terms of magnetic properties, but cannot be obtained with a conventional hard ferrite magnet. For example, an Nd—Fe—B-based bonded magnet satisfies such magnetic properties, but Nd or the like, which requires a large number of steps and large-scale facilities for metal separation and purification or reduction reaction, is required.
Since it contains 1515 at%, it is significantly more expensive than a hard ferrite magnet, and at present, a magnet material having Br of about 5 to 7 kG that can be mass-produced and can be provided at low cost has not been found.
【0005】[0005]
【発明が解決しようとする課題】一方、Nd−Fe−B
系磁石において、最近、Nd4Fe77B19(at%)近
傍でFe3B型化合物を主相とする磁石材料が提案
(R.Coehoorn等、J.de Phys.,C
8,1988,669〜670頁)された。この磁石材
料はアモルファスリボンを熱処理することにより、準安
定なFe3Bと準安定相のNd2Fe14Bの結晶集合組織
を有する磁石材料が得られるが、iHcが2〜3kOe
程度と低く、またこのiHcを得るための熱処理条件が
狭く限定され、工業生産上実用的でない。On the other hand, Nd-Fe-B
Recently, a magnetic material having a main phase of a Fe 3 B type compound in the vicinity of Nd 4 Fe 77 B 19 (at%) has been proposed as a system magnet (R. Coehoorn et al., J. de Phys., C.
8, 1988, 669-670). This magnet material is obtained by heat-treating an amorphous ribbon to obtain a magnet material having a crystal texture of metastable Fe 3 B and a metastable phase of Nd 2 Fe 14 B. However, iHc is 2-3 kOe.
The heat treatment conditions for obtaining this iHc are narrow and limited, and are not practical for industrial production.
【0006】このFe3B型化合物を主相とする磁石材
料に添加元素を加えて多成分化し、性能向上を図った研
究が発表されている。その1つは希土類元素にNdのほ
かにDyとTbを用いてiHcの向上を図るものである
が、高価な元素を添加する問題のほか、添加希土類元素
はその磁気モーメントがNdやFeの磁気モーメントと
反平行して結合するため磁化が減少する問題がある
(R.Coehoorn、J.Magn,Magn,M
at.、83(1990)228〜230頁)。Researches have been published to improve the performance by adding an additional element to the magnetic material having the Fe 3 B-type compound as a main phase to make it multi-component. One of them is to improve iHc by using Dy and Tb in addition to Nd as a rare earth element. In addition to the problem of adding an expensive element, the added rare earth element has a magnetic moment of Nd or Fe. There is a problem that magnetization decreases due to coupling in anti-parallel to the moment (R. Coehorn, J. Magn, Magn, M
at. , 83 (1990) 228-230).
【0007】他の研究(Shen Bao−genら,
J.Magn,Magn,Mat.、89(1991)
335〜340頁)として、Feの一部をCoにて置換
してキュリー温度を上昇させ、iHcの温度係数を改善
するものであるが、Coの添加にともないBrを低下さ
せる問題がある。[0007] Other studies (Shen Bao-gen et al.,
J. See Magn, Magn, Mat. , 89 (1991)
(Pp. 335-340) is to improve the temperature coefficient of iHc by replacing a part of Fe with Co to improve the temperature coefficient of iHc, but there is a problem that Br is reduced with the addition of Co.
【0008】いずれにしてもFe3B型Nd−Fe−B
系磁石は、超急冷法によりアモルファス化した後、熱処
理してハード磁石材料化できるが、iHcが低く、かつ
前記熱処理条件が狭く、添加元素にて高iHc化を図る
と磁気エネルギー積が低下するなど、安定した工業生産
ができず、ハードフェライト磁石の代替えとして安価に
提供することができない。In any case, Fe 3 B type Nd-Fe-B
The system magnet can be made into a hard magnet material by heat treatment after being made amorphous by a super-quenching method. For example, stable industrial production cannot be performed, and it cannot be provided at a low cost as a substitute for a hard ferrite magnet.
【0009】この発明は、Fe3B型Fe−B−R系磁
石(Rは希土類元素)に着目して、iHcと(BH)m
axを向上させ、安定した工業生産が可能な製造方法の
確立と、5kG以上の残留磁束密度Brを有しハードフ
ェライト磁石に匹敵するコストパフォーマンスを有し、
安価に提供できるFe3B型Nd−Fe−B系ボンド磁
石とその製造方法の提供を目的としている。The present invention focuses on Fe 3 B type Fe—BR based magnets (R is a rare earth element) and focuses on iHc and (BH) m
ax has been improved, a manufacturing method that enables stable industrial production has been established, and a residual magnetic flux density Br of 5 kG or more has a cost performance comparable to that of hard ferrite magnets.
It is intended to provide a Fe 3 B type Nd-Fe-B based bonded magnet and a manufacturing method thereof can be provided at low cost.
【0010】[0010]
【課題を解決するための手段】この発明は、Fe3B型
系Fe−B−R磁石のiHcと(BH)maxを向上さ
せ、安定した工業生産が可能な製造方法を目的に種々検
討した結果、希土類元素の含有量が少なく、Vあるいは
さらにAl、Siの少なくとも1種を少量添加した鉄基
の特定組成の合金溶湯を超急冷法等にてアモルファス組
織となし、特定の昇温速度による熱処理にて微細結晶集
合体を得ることにより、ハードフェライト磁石では得ら
れなかった5kG以上の残留磁束密度Brを有するボン
ド磁石が得られることを知見し、この発明を完成した。DISCLOSURE OF THE INVENTION The present invention has been studied variously for the purpose of improving the iHc and (BH) max of a Fe 3 B type Fe—BR magnet and enabling a stable industrial production. As a result, a rare-earth element content is low, and V or at least one of Al and Si is added in a small amount to form a molten alloy having a specific composition of an iron-based alloy having an amorphous structure by a super-quenching method or the like. The present inventors have found that by obtaining a fine crystal aggregate by heat treatment, a bonded magnet having a residual magnetic flux density Br of 5 kG or more, which cannot be obtained with a hard ferrite magnet, can be obtained, and the present invention has been completed.
【0011】この発明は、組成式をFe100-x-y-zVxB
yRz (但しRはPrまたはNdの1種または2種)と
表し、あるいはさらに、組成式をFe100-x-y-zVxBy
RzMw (但しRはPrまたはNdの1種または2種、
MはAlまたはSiの1種または2種)と表し、組成範
囲を限定する記号x、y、z、wが下記値を満足し、体
心正方晶Fe3P型結晶構造を有する鉄を主成分とする
ホウ化物相とNd2Fe14B型結晶構造を有する構成相
とが同一粉末粒子中に共存し、各構成相の平均結晶粒径
が5nm〜100nmの範囲内のとき、実用的に必要な
4kOe以上の固有保持力を発現し、平均粒径が3μm
〜500μmである粉末を樹脂にて結合して所要形状に
成型固化することにより、室温付近で準安定な結晶構造
相が分解することなく、ボンド磁石として利用可能な形
態として提供できる。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%According to the present invention, the composition formula is represented by Fe 100-xyz V x B
y R z (where R is Pr or one or two of Nd) expressed as, or even a composition formula Fe 100-xyz V x B y
R z M w (where R is one or two of Pr or Nd,
M represents one or two types of Al or Si), and the symbols x, y, z, and w that limit the composition range satisfy the following values, and iron having a body-centered tetragonal Fe 3 P type crystal structure is mainly used. When the boride phase as a component and the constituent phase having the Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is in the range of 5 nm to 100 nm, Expresses the required intrinsic holding power of 4 kOe or more and has an average particle size of 3 μm
By bonding powder having a size of about 500 μm with a resin and molding and solidifying it into a required shape, a metastable crystal structure phase can be provided in a form usable as a bond magnet without decomposition of a metastable crystal structure phase at around room temperature. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
【0012】また、この発明は、 (1)組成式をFe100-x-y-zVxByRz (但しRはP
rまたはNdの1種または2種)と表し、あるいはさら
に、組成式をFe100-x-y-zVxByRzMw (但しRは
PrまたはNdの1種または2種、MはAlまたはSi
の1種または2種)と表し、組成範囲を限定する記号
x、y、z、wが上述の値を満足する合金溶湯を回転ロ
ールを用いた超急冷法、スプラット急冷法、ガスアトマ
イズ法あるいはこれらを組み合せて急冷し、実質的に9
0%以上をアモルファス組織となし、 (2)さらに熱処理の際に、Fe3P型結晶構造を有す
る鉄を主成分とするホウ化物相が析出する温度付近から
の昇温温度を1℃/分〜15℃/分で昇温して620℃
〜750℃で10秒間〜6時間保持する熱処理を施し、 (3)Fe3P型結晶構造を有する鉄を主成分とするホ
ウ化物相と、Nd2Fe14B型結晶構造を有す構成相と
が同一粉末粒子中に共存し、各構成相の平均結晶粒径が
5nm〜100nmの範囲にある微結晶集合体を得たの
ち、 (4)平均粒径3μm〜500μmに粉砕して得られた
磁石合金粉末を樹脂にて結合したことを特徴とする希土
類ボンド磁石の製造方法である。Further, the present invention is, (1) the composition formula Fe 100-xyz V x B y R z ( where R is P
It represents r or one or two of Nd) with, or in addition, one or two of the compositional formula Fe 100-xyz V x B y R z M w ( where R is Pr or Nd, M is Al or Si
And the symbols x, y, z, and w, which limit the composition range, satisfy the above-mentioned values. An ultra-rapid cooling method using a rotating roll, a splat quenching method, a gas atomizing method, or any of these methods. And quenched, practically 9
0% or more has an amorphous structure. (2) During the heat treatment, the temperature is raised from 1 ° C./min from around the temperature at which a boride phase mainly composed of iron having an Fe 3 P type crystal structure is precipitated. 620 ℃ by heating up to ~ 15 ℃ / min
(3) a boride phase mainly composed of iron having an Fe 3 P type crystal structure and a constituent phase having an Nd 2 Fe 14 B type crystal structure Are obtained in the same powder particles, and a microcrystalline aggregate having an average crystal grain size of each constituent phase in the range of 5 nm to 100 nm is obtained. A rare earth bonded magnet, wherein the magnet alloy powder is bonded with a resin.
【0013】組成の限定理由 希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では4kOe以
上のiHcが得られず、また5.5at%を超えるとF
e3B相が生成せず、硬磁性を示さない準安定相のR2F
e23B3相が折出しiHcは著しく低下するので好まし
くないため、3〜5.5at%の範囲とする。Reasons for Restriction of Composition Only when the rare earth element R contains one or two kinds of Pr or Nd in a specific amount, high magnetic properties can be obtained.
For example, in Ce and La, iHc characteristics of 2 kOe or more cannot be obtained, and middle rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. If R is less than 3 at%, iHc of 4 kOe or more cannot be obtained, and if it exceeds 5.5 at%, F
R 2 F, a metastable phase that does not produce e 3 B phase and shows no hard magnetism
Since e 23 B 3 phase folding out iHc is not preferable because it decreases significantly, and the range of 3~5.5at%.
【0014】Bは、16at%未満および22at%を
超えると4kOe以上のiHcが得られないため、16
〜22at%の範囲とする。If B is less than 16 at% or more than 22 at%, iHc of 4 kOe or more cannot be obtained.
2222 at%.
【0015】Vは、iHcの向上に有効であるが、0.
01at%未満ではかかる効果が得られず、10at%
を超えるとBrおよび減磁曲線の角形性が著しく低下
し、6kG以上のBrが得られないため、0.01〜1
0at%の範囲とする。V is effective for improving iHc.
If it is less than 01 at%, such an effect cannot be obtained and 10 at%
Is exceeded, the squareness of Br and the demagnetization curve is significantly reduced, and Br of 6 kG or more cannot be obtained.
The range is 0 at%.
【0016】Al、Siは熱処理温度範囲を拡大してか
つ減磁曲線の角型性を改善し、磁気特性のBr、(B
H)maxを増大させる効果を有し、かかる効果を得る
には少なくとも0.1at%以上の添加が必要である
が、3at%を超えるとかえって角型性を劣化させ、
(BH)maxも低下するため、0.1〜3at%の範
囲とする。Al and Si increase the temperature range of the heat treatment and improve the squareness of the demagnetization curve.
H) has an effect of increasing max, and at least 0.1 at% or more is required to obtain such an effect, but if it exceeds 3 at%, the squareness is rather deteriorated,
Since (BH) max also decreases, the range is 0.1 to 3 at%.
【0017】Feは、上述の元素の含有残余を占める。[0017] Fe accounts for the residual content of the above-mentioned elements.
【0018】粉末の構成相の限定理由 この発明によるボンド磁石構成する合金粉末は、1.6
Tという高い飽和磁化を持つ体心正方晶Fe3P型結晶
構造を有する鉄を主成分とするホウ化物相を主相とする
ことを特徴としている。このホウ化物相はFe3Bまた
はその中のFeの一分がCoで置換されている。このホ
ウ化物相は特定の範囲で準安定的に空間群P4/nmn
のNd2Fe14B型結晶構造を有するNd2(Fe,N
i)14B強磁性相と共存できる。これらのホウ化物相と
強磁性相が共存することが高い磁束密度と十分なiHc
を得るためには必須であり、同一組成であっても、例え
ば鋳造法などではその正方に起因して、C16型結晶構
造を有するFe 2 B相と体心正方晶のα−Fe相とが主
相となると、高い磁化が得られるが、iHCは1kOe
以下に劣化して磁石として使用できなくなるため好まし
くない。Reasons for Limiting Constituent Phase of Powder The alloy powder constituting the bonded magnet according to the present invention is 1.6.
It is characterized in that the main phase is a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P type crystal structure having a high saturation magnetization of T. In the boride phase, Fe 3 B or a part of Fe therein is replaced by Co. This boride phase is metastable in a specific range in the space group P 4 / nmn
Nd 2 ( Fe, N) having the Nd 2 Fe 14 B type crystal structure
i) Can coexist with 14B ferromagnetic phase. The coexistence of these boride phase and ferromagnetic phase requires high magnetic flux density and sufficient iHc
For example, in the casting method or the like, the Fe 2 B phase having the C16 type crystal structure and the body-centered tetragonal α-Fe phase are indispensable for obtaining In the main phase, high magnetization is obtained, but iHC is 1 kOe.
It is not preferable because it deteriorates below and cannot be used as a magnet.
【0019】結晶粒径、粉末粒径の限定理由 この発明のボンド磁石を構成する合金粉末中に共存する
体心正方晶Fe3P型結晶構造を有する鉄を主成分とす
るホウ化物相とNd2Fe14B型結晶構造は、いずれも
強磁性相であるが、前者相は単独では磁気的に軟質であ
り、後者相が共存することがiHcを発現するのに不可
欠である。しかし、単に両相が共存するだけでは不十分
であり、両者の平均結晶粒径が5nm〜100nmの範
囲にないと、減磁曲線の第2象限の角形性が悪化して、
永久磁石としては動作点において十分な磁束を取り出す
ことができないため、平均結晶粒径は5nm〜100n
mに限定する。複雑形状や薄肉形状の磁石が得られるボ
ンド磁石としての特徴を生かし、高精度の成型を行うに
は、粉末の粒径は十分小さいことが必要であるが、アト
マイズで得られる粒径が100μmを越える合金粉末は
急冷時に十分粉末内部まで冷却されず大部分がα−Fe
相となるため、熱処理を施してもFe3B並びにNd2F
e14B相が析出せずに、硬磁性材料となり得ない。ま
た、3μm未満の粒径では、比表面積増大に伴い多量の
樹脂を使用する必要があり、充填密度が低下して好まし
くないため、粉末粒径を3μm〜500μmに限定す
る。Reasons for Limiting Crystal Grain Size and Powder Grain Size A boride phase containing iron as a main component and having a body-centered tetragonal Fe 3 P type crystal structure coexisting in the alloy powder constituting the bonded magnet of the present invention, and Nd Each of the 2 Fe 14 B-type crystal structures is a ferromagnetic phase, but the former phase alone is magnetically soft, and the coexistence of the latter phase is indispensable for expressing iHc. However, simply coexisting both phases is not sufficient, and if the average crystal grain size of both is not in the range of 5 nm to 100 nm, the squareness of the second quadrant of the demagnetization curve deteriorates,
Since a permanent magnet cannot take out sufficient magnetic flux at the operating point, the average crystal grain size is 5 nm to 100 n.
m. To perform high-precision molding by taking advantage of the characteristics of bonded magnets that can produce magnets with complex shapes and thin shapes, the particle size of the powder must be sufficiently small, but the particle size obtained by atomization must be 100 μm. The excess alloy powder is not sufficiently cooled to the inside of the powder during rapid cooling, and most of it is α-Fe
Phase, so that Fe 3 B and Nd 2 F
e 14 B phase does not precipitate and cannot be a hard magnetic material. If the particle diameter is less than 3 μm, a large amount of resin must be used with an increase in the specific surface area, and the packing density is undesirably reduced. Therefore, the powder particle diameter is limited to 3 μm to 500 μm.
【0020】この発明によるボンド磁石は等方性磁石で
あり、以下に示す圧縮成型、射出成型、押し出し成型、
圧延成型、樹脂含浸法など公知のいずれの製造方法であ
ってもよい。圧縮成型の場合は、磁性粉末に熱硬化性樹
脂、カップリング剤、滑剤等を添加混連したのち、圧縮
成型して加熱樹脂を硬化して得られる。射出成型、押し
出し成型、圧延成型の場合は、磁性粉末に熱可塑性樹
脂、カップリング剤、滑剤等を添加混連したのち、射出
成型、押し出し成型、圧延成型のいずれかの方法にて成
型して得られる。樹脂含浸法においては、磁性粉末を圧
縮成型後、必要に応じて熱処理した後、熱硬化性樹脂を
含浸させ、加熱して樹脂を硬化させて得る。また、磁性
粉末を圧縮成型後、必要に応じて熱処理した後、熱可塑
性樹脂を含浸させて得る。The bonded magnet according to the present invention is an isotropic magnet, and has the following compression molding, injection molding, extrusion molding,
Any known production method such as rolling molding and resin impregnation may be used. In the case of compression molding, it is obtained by adding and mixing a thermosetting resin, a coupling agent, a lubricant and the like to the magnetic powder, and then compressing and curing the heated resin. In the case of injection molding, extrusion molding, and rolling molding, add a thermoplastic resin, a coupling agent, a lubricant, etc. to the magnetic powder and mix them. can get. In the resin impregnation method, after magnetic powder is compression-molded, heat-treated if necessary, then impregnated with a thermosetting resin, and heated to cure the resin. Further, the magnetic powder is obtained by compression molding, heat-treating as necessary, and then impregnating with a thermoplastic resin.
【0021】この発明において、ボンド磁石中の磁性粉
末の重量比は、前記製法により異なるが、70〜99.
5wt%であり、残部0.5〜30wt%が樹脂その他
である。圧縮成型の場合、磁性粉末の重量比は95〜9
9.5wt%、射出成型の場合、磁性粉末の充填率は9
0〜95wt%、樹脂含浸法の場合、磁性粉末の重量比
は96〜99.5wt%が好ましい。この発明における
合成樹脂は、熱硬化性、熱可塑性のいずれの性質を有す
るものも利用できるが、熱的に安定な樹脂が好ましく、
例えば、ポリアミド、ポリイミド、フェノール樹脂、弗
素樹脂、けい素樹脂、エポキシ樹脂などを適宜選定でき
る。In the present invention, the weight ratio of the magnetic powder in the bonded magnet varies depending on the above-mentioned manufacturing method.
5 wt%, and the remaining 0.5 to 30 wt% is resin and others. In the case of compression molding, the weight ratio of the magnetic powder is 95 to 9
9.5 wt%, in the case of injection molding, the filling rate of the magnetic powder is 9
In the case of the resin impregnation method, the weight ratio of the magnetic powder is preferably 96 to 99.5 wt%. As the synthetic resin in the present invention, any of thermosetting and thermoplastic properties can be used, but a thermally stable resin is preferable.
For example, polyamide, polyimide, phenol resin, fluorine resin, silicon resin, epoxy resin and the like can be appropriately selected.
【0022】製造条件の限定理由 この発明において、上述の特定組成の合金溶湯を超急冷
法にてアモルファスとなし、Fe3P型結晶構造を有す
る鉄を主成分とするホウ化物相が析出する温度付近から
の昇温温度を1℃/分〜15℃/分で昇温して620℃
〜750℃で10秒間〜6時間保持する熱処理を施すこ
とにより、熱力学的には準安定相であるFe3P型結晶
構造を持つFe3B相と、Nd2Fe14B型結晶構造を有
する強磁性相が共存し、各構成相の平均結晶粒径が5n
m〜100nmの範囲にある微結晶集合体を得ることが
最も重要であり、合金溶湯の超急冷処理には公知の回転
ロールを用いた超急冷法を採用できるが、実質的に90
%以上のアモルファスが得られれば、回転ロールを用い
た超急冷法の他にもスプラット急冷法、ガスアトマイズ
法あるいはこれらを組み合わせた急冷方法を採用しても
よい。例えば、Cu製ロールを用いる場合は、そのロー
ル表面周速度が10〜50m/秒の範囲が好適な組織が
得られるため好ましい。すなわち周速度が10m/秒未
満ではアモルファスとならずα−Fe相の析出量が増大
して好ましくなく、ロール表面周速度が50m/秒を超
えると、急冷された合金が連続的なリボンとして生成せ
ず、合金片が飛散し、装置から合金を回収する際の回収
率や回収能率が低下して好ましくない。ただし、微量の
α−Fe相が急冷薄帯中に存在しても特性を著しく低下
させるものでなく許容される。Reasons for Limiting Manufacturing Conditions In the present invention, the temperature at which the molten alloy having the above-mentioned specific composition is made amorphous by a rapid quenching method and a boride phase mainly composed of iron having an Fe 3 P type crystal structure is precipitated. The temperature is raised from 1 ° C / min to 15 ° C / min.
By performing heat treatment at 750 ° C. for 10 seconds to 6 hours, a Fe 3 B phase having a Fe 3 P type crystal structure and a Nd 2 Fe 14 B type crystal structure which are thermodynamically Ferromagnetic phases coexist and the average crystal grain size of each constituent phase is 5n
It is most important to obtain a microcrystal aggregate in the range of m to 100 nm. For the ultra-quenching treatment of the molten alloy, a known ultra-quenching method using a rotating roll can be employed.
If an amorphous content of not less than% is obtained, a splat quenching method, a gas atomizing method, or a quenching method combining these may be employed in addition to the ultra-quenching method using a rotating roll. For example, when a Cu roll is used, it is preferable that the roll surface peripheral speed is in the range of 10 to 50 m / sec because a suitable structure can be obtained. In other words, if the peripheral speed is less than 10 m / sec, it does not become amorphous and the precipitation amount of the α-Fe phase increases, which is not preferable. If the roll surface peripheral speed exceeds 50 m / sec, a quenched alloy is formed as a continuous ribbon. However, the alloy pieces are scattered, and the recovery rate and recovery efficiency when recovering the alloy from the apparatus are undesirably reduced. However, even if a trace amount of the α-Fe phase is present in the quenched ribbon, the characteristics are not remarkably deteriorated but are acceptable.
【0023】この発明において、上述の特定組成の合金
溶湯を超急冷法にて実質的に90%以上をアモルファス
となした後、磁気特性が最高となる熱処理は組成に依存
するが、熱処理温度が620℃未満ではNd2Fe14B
相が析出せず、4kOe以上のiHcが得られず、また
750℃を超えると熱平衡相であるα−Fe相とFe2
BまたはNd1.1Fe4B4相が生成してiHcが発現し
ないため、熱処理温度は620〜750℃以下に限定す
る。熱処理雰囲気はArガス中などの不活性ガス雰囲気
が好ましい。熱処理時間は短くてもよいが、10秒未満
では十分なミクロ組織の生成が行われず、iHc及び減
磁曲線の角型性が劣化し、また6時間を超えると3kO
e以上のiHcが得られないので、熱処理保持時間を1
0秒〜6時間に限定する。In the present invention, after the molten alloy having the above-mentioned specific composition is made substantially 90% or more amorphous by the ultra-quenching method, the heat treatment for maximizing the magnetic properties depends on the composition. If the temperature is lower than 620 ° C., Nd 2 Fe 14 B
No phase was precipitated, iHc of 4 kOe or more was not obtained, and when the temperature exceeded 750 ° C., the α-Fe phase which is a thermal equilibrium phase and Fe 2
Since B or Nd 1.1 Fe 4 B 4 phase is generated iHc is not expressed, the heat treatment temperature is limited to not more than six hundred and twenty to seven hundred fifty ° C.. The heat treatment atmosphere is preferably an inert gas atmosphere such as Ar gas. The heat treatment time may be short, but if it is less than 10 seconds, a sufficient microstructure is not formed, and the squareness of iHc and demagnetization curve is deteriorated.
e, iHc longer than e cannot be obtained.
Limited to 0 seconds to 6 hours.
【0024】この発明において重要な特徴として、熱処
理に際してFe3P型結晶構造を有する鉄を主成分とす
るホウ化物相が析出する温度からの昇温速度があり、1
℃/分未満の昇温速度では、昇温中にNd2Fe14B相
とFe3B相の結晶粒径が大きく成長しすぎてiHcが
劣化し、4kOe以上のiHcが得られない。また、1
5℃/分を超える昇温速度では、620℃を通過してか
ら生成するNd2Fe14B相の析出が十分に行われず、
α−Fe相の析出量が増大して、磁化曲線の第2象限に
Br点近傍に磁化の低下のある減磁曲線となり、(B
H)maxが劣化するため好ましくない。ただし、微量
のα−Fe相の存在は許容できる。なお、熱処理に際し
てFe3P型結晶構造を有する鉄を主成分とするホウ化
物相が析出する温度未満まではその昇温速度は任意であ
り、急速加熱などを適用して処理能率を高めることがで
きる。An important feature of the present invention is the rate of temperature rise from the temperature at which a boride phase mainly composed of iron having an Fe 3 P type crystal structure is precipitated during heat treatment.
At a heating rate of less than ° C./min, the crystal grain size of the Nd 2 Fe 14 B phase and the Fe 3 B phase grows too large during the heating, so that iHc is deteriorated and iHc of 4 kOe or more cannot be obtained. Also, 1
At a heating rate exceeding 5 ° C./min, the Nd 2 Fe 14 B phase generated after passing 620 ° C. is not sufficiently precipitated,
The precipitation amount of the α-Fe phase increases, and the magnetization curve becomes a demagnetization curve with a decrease in magnetization near the Br point in the second quadrant of the magnetization curve.
H) It is not preferable because max is deteriorated. However, the presence of a small amount of the α-Fe phase is acceptable. The rate of temperature rise is arbitrary up to a temperature lower than the temperature at which a boride phase mainly composed of iron having an Fe 3 P-type crystal structure is precipitated during heat treatment, and it is possible to increase the processing efficiency by applying rapid heating or the like. it can.
【0025】結晶構造 この発明による希土類磁石並びに希土類磁石合金粉末の
結晶相は、Fe3P型結晶構造を有する鉄を主成分とす
るホウ化物を主相とし、Nd2Fe14B型結晶構造を有
する強磁性相を有し、平均結晶粒径が5nm〜100n
mの微細結晶集合体からなることを特徴としている。こ
の発明において、磁石合金の平均結晶粒径が100nm
を超えると、減磁曲線の角型性が著しく劣化し、Br≧
5kG、(BH)max≧6MGOeの磁気特性を得る
ことができない。また、平均結晶粒径は細かいほど好ま
しいが、5nm未満の平均結晶粒径を得ることは工業生
産上困難であるため、下限を5nmとする。The crystal phase of the rare earth magnet and the rare earth magnet alloy powder according to the present invention is mainly composed of a boride mainly composed of iron having an Fe 3 P type crystal structure, and has a Nd 2 Fe 14 B type crystal structure. Having an average crystal grain size of 5 nm to 100 n
It is characterized by comprising a fine crystal aggregate of m. In the present invention, the average grain size of the magnet alloy is 100 nm.
Is exceeded, the squareness of the demagnetization curve is significantly deteriorated, and Br ≧
Magnetic properties of 5 kG and (BH) max ≧ 6 MGOe cannot be obtained. The average crystal grain size is preferably as small as possible, but it is difficult to obtain an average crystal grain size of less than 5 nm in industrial production, so the lower limit is set to 5 nm.
【0026】[0026]
【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe−V−B−R合金溶湯(RはNdまたはP
r)あるいはFe−V−B−R−M合金溶湯(MはA
l、Siの1種もしくは2種)を前述の超急冷法にて実
質的に90%以上をアモルファス組織となし、得られた
リボン、フレーク、球状粉末をFe3B析出温度以上か
ら1〜15℃/分の昇温速度で昇温した後、620〜7
50℃で10秒〜6時間保持する熱処理を施すことによ
り、熱力学的には、準安定相であるFe3P型結晶構造
をもつFe3B相とNd2Fe14B型結晶構造を有する強
磁性相が共存し、各構造相の平均結晶粒径が5nm〜1
00nmの範囲にある微結晶集合体を得る。この際、V
を含有しない組成では700℃を越えると熱平衡相であ
るα−Fe相とFe2B相またはNd1.1Fe4B4が生成
してiHcが発現しないが、V含有組成ではFe3B相
とNd2Fe14B相がVを添加しない組成に比べ熱的に
より安定となり、620℃〜750℃程度の広い温度範
囲でVを含有しない組成より高いiHcが発現する。さ
らにVと同時にAl、Siを1種あるいは2種含有する
ことにより、V含有時のBr、減磁曲線の角形の劣化を
改善することができ、iHc≧4kG、Br≧6kG、
(BH)max≧6MGOeの磁気特性を有するボンド
磁石を得ることができる。According to the present invention, a molten Fe—V—B—R alloy having a specific composition containing a small amount of rare earth element (R is Nd or Pd)
r) or Fe-VBRM alloy melt (M is A
(1 or 2 types of Si) by the above-mentioned ultra-quenching method to form substantially 90% or more of an amorphous structure, and to obtain the obtained ribbon, flake, and spherical powder from 1 to 15 from the Fe 3 B precipitation temperature or higher. After raising the temperature at a rate of 60 ° C./min,
By performing heat treatment at 50 ° C. for 10 seconds to 6 hours, thermodynamically, it has a Fe 3 B phase having a Fe 3 P type crystal structure and a Nd 2 Fe 14 B type crystal structure, which are metastable phases. Ferromagnetic phases coexist, and the average crystal grain size of each structural phase is 5 nm to 1
A microcrystalline aggregate in the range of 00 nm is obtained. At this time, V
In a composition containing no, when the temperature exceeds 700 ° C., an α-Fe phase and a Fe 2 B phase, which are thermal equilibrium phases, or Nd 1.1 Fe 4 B 4 are formed and iHc is not expressed, whereas in a composition containing V, the Fe 3 B phase and Nd The 2 Fe 14 B phase is more thermally stable than the composition without V, and exhibits higher iHc than the composition without V in a wide temperature range of about 620 ° C. to 750 ° C. Further, by containing one or two kinds of Al and Si simultaneously with V, it is possible to improve the deterioration of Br and the square of the demagnetization curve when V is contained, iHc ≧ 4 kG, Br ≧ 6 kG,
(BH) It is possible to obtain a bonded magnet having a magnetic property of max ≧ 6MGOe.
【0027】[0027]
【実施例】実施例1 表1のNo.1〜4の組成となるように、純度99.5
%以上のFe、V、B、Nd、Pr、Al、Siの金属
を用いて、総量が30grとなるように秤量し、底部に
直径0.8mmのオリフィスを有する石英るつぼ内に投
入し、圧力56cmHgのAr雰囲気中で高周波加熱に
より溶解し、溶解温度を1300℃にした後、湯面をA
rガスにより加圧して室温にてロール周速度20m/秒
にて高速回転するCu製ロールの外周面に0.7mmの
高さから溶湯を噴出させて、幅2〜3mm、厚み30〜
40μmの超急冷薄帯を作製した。得られた超急冷薄帯
をCuKαの特性X線によりアモルファスであることを
確認した。Example 1 Example 1 of Table 1 Purity 99.5 so as to have a composition of 1 to 4.
% Or more of metals of Fe, V, B, Nd, Pr, Al, and Si, weighed so that the total amount becomes 30 gr, and put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom and pressure. After melting by high frequency heating in an Ar atmosphere of 56 cmHg and setting the melting temperature to 1300 ° C.,
A molten metal is jetted from a height of 0.7 mm onto the outer peripheral surface of a Cu roll which is pressurized with r gas and rotates at a high speed at a roll peripheral speed of 20 m / sec at room temperature.
A 40 μm ultra-quenched ribbon was produced. The obtained ultra-quenched ribbon was confirmed to be amorphous by characteristic X-rays of CuKα.
【0028】この超急冷薄帯をArガス中で580℃ま
で急速加熱した後、580℃以上を表1に示す昇温速度
で昇温し、表1に示す熱処理温度で10分間保持し、そ
の後室温まで冷却して薄帯を取り出し、幅2〜3mm、
厚み30〜40μm、長さ3〜5mmの試料を作製し、
VSMを用いて磁気特性、平均結晶粒径を測定した。測
定結果を表2に示す。なお、試料の測定結果は、正方晶
と斜方晶が混在するFe3B相が主相で、Nd2Fe14B
相とα−Fe相が混在する多相組織であり、平均結晶粒
径はいずれも100nm以下であった。なお、Vはこれ
らの各相でFeの一部を置換するが、Al、Siについ
ては添加量が少ない上、超微細結晶であるため分析不能
であった。この薄帯を粉砕して、粒径が5〜120μm
にわたって分布する平均粒径60μmの粉末を得たの
ち、粉末98wt%に対してエポキシ樹脂を2wt%の
割合で混合したのち、6ton/cm2の圧力で圧縮成
型し、150℃で硬化処理してボンド磁石を得た。この
ボンド磁石の密度は6.0gr/cm3であり、磁石特
性を表3に示す。After the ultra-quenched ribbon was rapidly heated to 580 ° C. in Ar gas, the temperature was raised to 580 ° C. or more at the heating rate shown in Table 1, and kept at the heat treatment temperature shown in Table 1 for 10 minutes. After cooling to room temperature, take out the ribbon, width 2-3mm,
A sample having a thickness of 30 to 40 μm and a length of 3 to 5 mm is prepared,
Magnetic properties and average crystal grain size were measured using VSM. Table 2 shows the measurement results. The measurement results of the sample show that the main phase is Fe 3 B phase in which tetragonal and orthorhombic are mixed, and Nd 2 Fe 14 B
It was a multiphase structure in which a phase and an α-Fe phase were mixed, and the average crystal grain size was 100 nm or less in each case. V substitutes a part of Fe in each of these phases. However, Al and Si could not be analyzed due to the small amount of addition and ultrafine crystals. This ribbon is pulverized to a particle size of 5 to 120 μm.
After obtaining a powder having an average particle size of 60 μm distributed over the powder, 98% by weight of the powder is mixed with 2% by weight of the epoxy resin, and then compression molded at a pressure of 6 ton / cm 2 and cured at 150 ° C. A bonded magnet was obtained. The density of this bonded magnet was 6.0 gr / cm 3 , and the magnet properties are shown in Table 3 .
【0029】比較例 表1のNo.5の組成となるように純度99.5%以上
のFe、B、Ndを用いて実施例1と同条件で超急冷薄
帯を作製した。得られた薄帯を実施例1と同一条件の熱
処理を施し、冷却後に実施例1と同条件で粉砕して、平
均粒径60μmの粉末を得たのち、実施例1と同一条件
にてボンド磁石を作成した。得られたボンド磁石の磁石
特性を表3に示す。 Comparative Example No. 1 in Table 1 A super-quenched ribbon was produced under the same conditions as in Example 1 using Fe, B, and Nd having a purity of 99.5% or more so as to obtain a composition of No. 5. The obtained ribbon was subjected to a heat treatment under the same conditions as in Example 1, and after cooling, crushed under the same conditions as in Example 1 to obtain a powder having an average particle diameter of 60 μm, and then bonded under the same conditions as in Example 1. Created a magnet. Table 3 shows the magnet properties of the obtained bonded magnet .
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】[0032]
【表3】 [Table 3]
【0033】[0033]
【発明の効果】この発明は、希土類元素の含有量が少な
い特定組成のFe−V−B−R合金溶湯(RはNdまた
はPr)あるいはFe−V−B−R−M合金溶湯(Mは
Al、Siの1種もしくは2種)を前述の超急冷法にて
実質的に90%以上をアモルファス組織となし、得られ
たリボン、フレーク、球状粉末を得、これに特定条件の
熱処理を施すことにより、熱力学的には準安定相である
Fe3P型結晶構造をもつFe3B相とNd2Fe14B型
結晶構造を有する強磁性相が共存し、各構成相の平均結
晶粒径が5nm〜100nmの範囲にある微結晶集合体
を得る。この際、Vを含有しない組成では700℃を越
えると熱平衡相であるα−Fe相とFe2B相またはN
d1.1Fe4B4が生成してiHcが発現しないが、V含
有組成ではFe3B相とNd2Fe14B相がVを添加しな
い組成に比べ、熱的により安定となり620℃〜750
℃程度の広い温度範囲でVを含有しない組成より高いi
Hcが発現する。さらにVと同時にAl、Siを1種あ
るいは2種含有することにより、V含有時のBr、減磁
曲線の角形の劣化が改善されることにより、iHc≧4
kG、Br≧6kG、(BH)max≧6MGOeの磁
気特性を有するボンド磁石を得ることができる。また、
この発明は、希土類元素の含有量が少なく、製造方法が
簡単で大量生産に適しているため、5kG以上の残留磁
束密度Brを有し、ハードフェライト磁石を超える磁気
的性能を有するボンド磁石を提供できる。According to the present invention, a molten Fe—V—B—R alloy (R is Nd or Pr) or a molten Fe—V—B—R—M alloy (M: Al or Si) is made into an amorphous structure by substantially 90% or more by the above-mentioned ultra-quenching method to obtain an obtained ribbon, flake, or spherical powder, and heat-treated under a specific condition. As a result, an Fe 3 B phase having an Fe 3 P-type crystal structure and a ferromagnetic phase having an Nd 2 Fe 14 B-type crystal structure, which are thermodynamically metastable phases, coexist, and the average crystal grain of each constituent phase is present. A microcrystalline aggregate having a diameter in the range of 5 nm to 100 nm is obtained. At this time, when the composition does not contain V, if the temperature exceeds 700 ° C., the α-Fe phase, which is a thermal equilibrium phase, and the Fe 2 B phase or N 2
Although d1.1 Fe 4 B 4 is formed and iHc is not expressed, in the V-containing composition, the Fe 3 B phase and the Nd 2 Fe 14 B phase are more thermally stable than the composition without addition of V, and are 620 ° C. to 750 ° C.
I higher than V-free composition over a wide temperature range of about ° C
Hc is expressed. Further, by containing one or two kinds of Al and Si simultaneously with V, the deterioration of the square of the Br and demagnetization curves when V is contained is improved, so that iHc ≧ 4.
It is possible to obtain a bonded magnet having magnetic characteristics of kG, Br ≧ 6 kG, and (BH) max ≧ 6MGOe. Also,
The present invention provides a bonded magnet having a residual magnetic flux density of 5 kG or more and a magnetic performance exceeding that of a hard ferrite magnet because the content of a rare earth element is small, the manufacturing method is simple, and it is suitable for mass production. it can.
Claims (4)
しRはPrまたはNdの1種または2種)と表し、組成
範囲を限定する記号x、y、zが下記値を満足し、体心
正方晶Fe3P型結晶構造を有する鉄を主成分とするホ
ウ化物相と、Nd2Fe14B型結晶構造を有する構成相
とが同一粉末粒子中に共存し、各構成相の平均結晶粒径
が5nm〜100nmの範囲にあり、平均粒径が3μm
〜500μmである粉末を樹脂にて結合したことを特徴
とする希土類ボンド磁石。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at%[Claim 1] represents the composition formula Fe 100-xyz V x B y R z ( where R is Pr or one or two of Nd), symbol x to limit the composition range, y, z are the following value Satisfactory, a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P type crystal structure and a constituent phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder particle. The average grain size of the phase is in the range of 5 nm to 100 nm, and the average grain size is 3 μm.
A rare-earth bonded magnet, wherein powder having a size of about 500 μm is bonded with a resin. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
(但しRはPrまたはNdの1種または2種、MはAl
またはSiの1種または2種)と表し、組成範囲を限定
する記号x、y、z、wが下記値を満足し、体心正方晶
Fe3P型結晶構造を有する鉄を主成分とするホウ化物
相と、Nd2Fe14B型結晶構造を有する構成相とが同
一粉末粒子中に共存し、各構成相の平均結晶粒径が5n
m〜100nmの範囲にあり、平均粒径が3μm〜50
0μmである粉末を樹脂にて結合したことを特徴とする
希土類ボンド磁石。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%2. A method composition formula Fe 100-xyz V x B y R z M w
(Where R is one or two of Pr or Nd, M is Al
Or one or two types of Si), and the symbols x, y, z, and w that limit the composition range satisfy the following values, and are mainly composed of iron having a body-centered tetragonal Fe 3 P-type crystal structure. The boride phase and the constituent phase having the Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is 5n.
m to 100 nm, and the average particle size is 3 μm to 50 μm.
A rare earth bonded magnet, wherein powder having a particle size of 0 μm is bonded with a resin. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
しRはPrまたはNdの1種または2種)と表し、組成
範囲を限定する記号x、y、zが下記値を満足する合金
溶湯を回転ロールを用いた超急冷法、スプラット急冷
法、ガスアトマイズ法あるいはこれらを組み合せて急冷
し、実質的に90%以上をアモルファス組織となし、さ
らに熱処理の際に、Fe3P型結晶構造を有する鉄を主
成分とするホウ化物相が析出する温度付近からの昇温温
度を1℃/分〜15℃/分で昇温して620℃〜750
℃で10秒間〜6時間保持する熱処理を施し、Fe3P
型結晶構造を有する鉄を主成分とするホウ化物相と、N
d2Fe14B型結晶構造を有する構成相とが同一粉末粒
子中に共存し、各構成相の平均結晶粒径が5nm〜10
0nmの微結晶集合体からなる平均粒径3μm〜500
μmの磁石合金粉末を樹脂にて結合したことを特徴とす
る希土類ボンド磁石の製造方法。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at%3. A represents a composition formula Fe 100-xyz V x B y R z ( where R is Pr or one or two of Nd), symbol x to limit the composition range, y, z are the following value rapid quenching the satisfactory alloy melt using a rotating roll, splat quenching method, and quenched in conjunction gas atomizing method or these, substantially no more than 90% amorphous structure, further during heat treatment, Fe 3 P type The temperature is raised from about the temperature at which the boride phase mainly composed of iron having a crystal structure is precipitated at a rate of 1 ° C./min to 15 ° C./min to 620 ° C. to 750 ° C.
℃ heat treatment of holding for 10 seconds to 6 hours, Fe 3 P
A boride phase containing iron as a main component and having a crystalline structure;
A component phase having a d 2 Fe 14 B type crystal structure coexists in the same powder particle, and the average crystal grain size of each component phase is 5 nm to 10 nm.
Average particle size of 3 nm to 500 composed of microcrystalline aggregate of 0 nm
A method for producing a rare-earth bonded magnet, wherein a μm magnet alloy powder is bonded with a resin. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
(但しRはPrまたはNdの1種または2種、MはA
g、AlまたはSiの1種または2種)と表し、組成範
囲を限定する記号x、y、z、wが下記値を満足する合
金溶湯を回転ロールを用いた超急冷法、スプラット急冷
法、ガスアトマイズ法あるいはこれらを組み合せて急冷
し、実質的に90%以上をアモルファス組織となし、さ
らに熱処理の際に、Fe3P型結晶構造を有する鉄を主
成分とするホウ化物相が析出する温度付近からの昇温温
度を1℃/分〜15℃/分で昇温して620℃〜750
℃で10秒間〜6時間保持する熱処理を施し、Fe3P
型結晶構造を有する鉄を主成分とするホウ化物相と、N
d2Fe14B型結晶構造を有す構成相とが同一粉末粒子
中に共存し、各構成相の平均結晶粒径が5nm〜100
nmの範囲にある微結晶集合体からなる平均粒径3μm
〜500μmの磁石合金粉末を樹脂にて結合したことを
特徴とする希土類ボンド磁石の製造方法。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%The 4. A composition formula Fe 100-xyz V x B y R z M w
(Where R is one or two of Pr or Nd, M is A
g, Al or Si), and the symbols x, y, z, and w that limit the composition range satisfy the following values: a super-quenching method using a rotating roll, a splat quenching method, A gas atomizing method or a combination thereof is quenched to substantially form an amorphous structure of substantially 90% or more, and at the vicinity of a temperature at which a boride phase mainly composed of iron having an Fe 3 P type crystal structure precipitates during heat treatment. From 620 ° C to 750 at a rate of 1 ° C / min to 15 ° C / min.
℃ heat treatment of holding for 10 seconds to 6 hours, Fe 3 P
A boride phase containing iron as a main component and having a crystalline structure;
A constituent phase having a d 2 Fe 14 B type crystal structure coexists in the same powder particle, and the average crystal grain size of each constituent phase is 5 nm to 100 nm.
Average particle size of 3 μm consisting of microcrystalline aggregates in the range of nm
A method for producing a rare-earth bonded magnet, wherein a magnet alloy powder of about 500 μm is bonded with a resin. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5059524A JP3040895B2 (en) | 1993-02-23 | 1993-02-23 | Rare earth bonded magnet and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5059524A JP3040895B2 (en) | 1993-02-23 | 1993-02-23 | Rare earth bonded magnet and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06251919A JPH06251919A (en) | 1994-09-09 |
JP3040895B2 true JP3040895B2 (en) | 2000-05-15 |
Family
ID=13115748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5059524A Expired - Fee Related JP3040895B2 (en) | 1993-02-23 | 1993-02-23 | Rare earth bonded magnet and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3040895B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69822798T2 (en) * | 1997-02-06 | 2004-08-05 | Sumitomo Special Metals Co., Ltd. | MANUFACTURING METHOD FOR A THIN MAGNETIC DISC WITH A MICROCRYSTALLINE STRUCTURE |
-
1993
- 1993-02-23 JP JP5059524A patent/JP3040895B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06251919A (en) | 1994-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0149901B1 (en) | Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom | |
US5545266A (en) | Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods | |
EP0542529A1 (en) | Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder | |
JP3519443B2 (en) | Permanent magnet alloy powder and method for producing the same | |
JPH07263210A (en) | Permanent magnet, alloy powder for permanent magnet and their production | |
JP3040895B2 (en) | Rare earth bonded magnet and its manufacturing method | |
JP2966169B2 (en) | Rare earth magnet, alloy powder for rare earth magnet and method for producing the same | |
JP3547016B2 (en) | Rare earth bonded magnet and method of manufacturing the same | |
JP2999648B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same | |
JP2986611B2 (en) | Fe-BR bonded magnet | |
JP3432858B2 (en) | Method for producing Fe-BR bonded magnet | |
JP3238779B2 (en) | Rare earth magnet alloy powder and its manufacturing method | |
JP2999649B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same | |
JP3710154B2 (en) | Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet | |
JP2925840B2 (en) | Fe-BR bonded magnet | |
JP3519438B2 (en) | Rare earth magnet alloy powder and its production method | |
JPH07176417A (en) | Iron based bonded magnet and its manufacture | |
JP3032385B2 (en) | Fe-BR bonded magnet | |
JPH0636916A (en) | Fe-b-r base bond magnet | |
JP2966168B2 (en) | Rare earth magnet, alloy powder for rare earth magnet and method for producing the same | |
JP3795056B2 (en) | Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet | |
JP3131022B2 (en) | Fe-BR bonded magnet | |
JPH0657311A (en) | Production of rare earth alloy magnet powder | |
JP3131040B2 (en) | Method for producing Fe-BR bonded magnet | |
JP3411659B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |