【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明はプラズマ処理方法及
び装置に係り、特にプラズマクリーニングに好敵なプラ
ズマ処理方法及び装置に関するものである。
【0002】
【従来の技術】特開昭61−5521号公報に記載のよ
うに、一対の平行平板型電極にRF(13.56MHz)や
交流(50〜400Hz)の電圧を印加する技術がある。
しかし、この公知例では、このような電圧が一対の平行
平板型電極に印加される場合一方の電極が他方の電極の
方へ移動され、両電極が近接した状態にされるので、こ
のようなRF電圧の印加条件で両電極間にプラズマ生成
するという技術思想については全く配慮されていない。
【0003】
【発明が解決しようとする課題】上記従来技術は2つの
電極間に高密度プラズマを生成する点について配慮され
ていない。
【0004】本発明の目的は、高密度プラズマを生成し
て、例えばクリーニングするときの洗浄時間を短縮する
ことのできるプラズマ処理方法及び装置を提供すること
にある。
【0005】
【課題を解決するための手段】上記目的は、平行平板型
電極を内部に有する処理室に処理ガスを供給し、該処理
室内の圧力を0.1Torr付近から以下に減圧排気し、周
波数が100kHz〜1MHzであるRF電圧を前記電極の両
電極に印加して処理ガスのプラズマを発生させ、該発生
したプラズマにより前記処理室内をクリ−ニングするこ
とにより、達成される。
【0006】上記手段により、RF電圧を印加した高エ
ネルギ−放電が一対の電極間で生じるので、2つの電極
間に高密度のプラズマが得られ、このプラズマを例えば
処理室クリーニングに用いて洗浄時間を短縮することが
できる。
【0007】
【実施例】以下、本発明の一実施例を図1から図5によ
り説明する。
【0008】図1はプラズマ処理装置として、この場
合、平行平板型電極を有した装置である。処理室1内に
は電極2および3が対向して設けてあり、図示しないガ
ス供給装置によって処理ガスが供給され、図示しない排
気装置によって所定圧力に減圧排気される。電極2はス
イッチ5を介して電源、この場合は、周波数13.56M
Hzの高周波電源4に接続してある。電極3はスイッチ6
を介して接地してある。また、スイッチ5および6の他
方はクリーニング用の他の電源、この場合は、周波数1
00kHzの低周波電源7に接続してあり、スイッチ5お
よび6の切替えにより電極2および3につながる。
【0009】上記構成の装置により、スイッチ5を高周
波電源4側に接続し、スイッチ6を接地側に接続し、電
極2にウェハを載置して、この場合、処理ガスとして例
えばCHF3を供給し所定の圧力でウェハ面に形成され
たSiO2膜をエッチング処理する。このエッチング処
理によって処理室1の内壁および電極2,3の表面に
C,CF系,Si等の堆積物が付着するので、次に、こ
の堆積物を除去するためプラズマクリーニングを行う。
【0010】プラズマクリーニングは、この場合、処理
室1内にO2ガスを供給し、0.1Torrの圧力に保持し、
スイッチ5および6を低周波電源7側に接続し電極2お
よび3に周波数100kHzの電力を印加して、処理室1
内にO2ガスのプラズマを発生させて行う。O2ガスはO
イオンやOラジカルのプラズマ状態となって、Oイオン
やOラジカルが処理室1の内壁に付着した堆積物と反応
して堆積物を反応除去するとともに、低周波電力によっ
て加速され高いエネルギを有した一部のOイオンが堆積
物に衝突して堆積物をスパッタ除去するので、効率の良
いプラズマクリーニングが可能となる。
【0011】これは、低周波電源7の周波数を変えて、
周波と洗浄速度との関係を調べて見て分かったものであ
り、第2図に示すように、周波数を下げるに従い洗浄速
度が向上することが分かった。この場合の洗浄速度は処
理室1内の側壁部Aの点を測定したものである。エッチ
ング処理を行ったときの13.56MHzの周波数では、正
負に切り換わる周期が短く電子に比べて質量の大きいイ
オンを加速させるだけのエネルギが得られず、イオンに
よるスパッタ効果が得られるのでイオンやラジカルによ
る反応除去だけになって洗浄速度が遅くなっている。ま
た、イオンが加速されて動き始める周波数は圧力や電圧
等によって異なってくるが、だいたい1MHz近傍からで
ある。
【0012】次に、周波数は100kHzで一定にしてお
いて、処理室1内の圧力と洗浄速度との関係を調べて見
ると第3図に示すように、0.1Torr付近から以下にか
けて洗浄速度が向上することが分かった。なお、ポイン
トBおよびCは排気装置の性能の問題でO2ガスを50c
c/minの状態では所定圧力まで減圧できなかったので、
O2ガスの流量をそれぞれ39cc/minおよび5cc/minに
して所定圧力に減圧して調べた。洗浄速度が向上するの
は、ガス分子の自由行程長さが長くなるので、イオンの
スパッタ効果がより向上するものと思われ、また、さら
に圧力を下げると洗浄速度が下がるのは、イオンやラジ
カルの量が減るためと考える。
【0013】なお、周波数13.56MHzの場合は第4図
および第5図に示すように、圧力0.1Torr付近が最も
洗浄速度が速くなり洗浄時間が短縮されている。しか
し、周波数を下げた場合に比べると洗浄速度は一段と遅
い。
【0014】以上、本一実施例によればプラズマクリー
ニング時のプラズマ発生電源に周波数1MHz以下の低周
波電源を用いているので、プラズマ中のイオンを交番電
界に追随させて処理室に衝突させることができるので、
イオンおよびラジカルによる反応除去に合せ、イオンに
よるスパッタ除去も加わるので、洗浄時間を短縮するこ
とができる。
【0015】また、クリーニング時の処理圧力を0.1T
orr以下に下げることによりさらに洗浄時間を短縮でき
る効果がある。
【0016】さらに、本一実施例では電極2および3の
両電極に低周波電力を印加し処理室1との間に放電を生
じさせるようにしているので、処理室1の内壁面全体お
よび電極2,3の裏面はもとより、電極2および3の間
にもプラズマが拡がり、処理室内部の全面にわたってプ
ラズマクリーニングが可能となる。すなわち、電極2,
3の互いに対向する面にそってそれぞれシース層が発生
して、シース間に発生したプラズマが閉込められるよう
になるので、より高密度のプラズマが得られ、この高密
度のプラズマが電極端部から処理室全体に拡がることに
なる。
【0017】なお、本一実施例では電極2,3の両方に
低周波電力を印加しているが、一方の電極に低周波電力
を印加したり、また低周波電力を印加する電極を交互に
換えるようにしても、洗浄速度の向上は同様に行える。
【0018】また、本一実施例ではウェハを処理する高
周波電源4とプラズマクリーニングを行うときの低周波
電源7とを別々にしているが、ウェハを処理するときに
低周波電源を利用して処理しても良いものの場合は、第
6図に示すように電極2は低周波電源7に接続してお
き、スイッチ6によって電極3を低周波電源7と接地と
に切替えるようにしても良い。
【0019】さらに、本一実施例はプラズマクリーニン
グの処理ガスにO2ガスを用いているが、これはウェハ
の処理によって堆積物が異なり、この堆積物によって決
めるものであることはいうまでもない。
【0020】
【発明の効果】本発明によれば、プラズマを用いてクリ
ーニングするときの洗浄時間を短縮することができると
いう効果がある。Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a plasma processing method and apparatus, and more particularly, to a plasma processing method and apparatus which are suitable for plasma cleaning. 2. Description of the Related Art As described in Japanese Patent Application Laid-Open No. 61-5521, there is a technique of applying an RF (13.56 MHz) or AC (50 to 400 Hz) voltage to a pair of parallel plate electrodes. .
However, in this known example, when such a voltage is applied to a pair of parallel plate electrodes, one electrode is moved toward the other electrode, and both electrodes are brought into a close state. No consideration has been given to the technical idea of generating plasma between the two electrodes under the RF voltage application condition. [0003] The above-mentioned prior art does not consider generation of high-density plasma between two electrodes. It is an object of the present invention to provide a plasma processing method and apparatus capable of generating high-density plasma and shortening a cleaning time for cleaning, for example. [0005] The object of the present invention is to supply a processing gas into a processing chamber having a parallel plate type electrode therein, and to evacuate and reduce the pressure in the processing chamber from around 0.1 Torr to below. This is achieved by applying an RF voltage having a frequency of 100 kHz to 1 MHz to both of the electrodes to generate a plasma of the processing gas and cleaning the processing chamber with the generated plasma. By the above means, a high-energy discharge to which an RF voltage is applied is generated between the pair of electrodes, so that a high-density plasma can be obtained between the two electrodes. Can be shortened. An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a plasma processing apparatus having a parallel plate type electrode in this case. Electrodes 2 and 3 are provided in the processing chamber 1 so as to face each other. The processing gas is supplied by a gas supply device (not shown), and the pressure is reduced to a predetermined pressure by an exhaust device (not shown). Electrode 2 is powered via switch 5, in this case frequency 13.56M
Hz high-frequency power supply 4. Electrode 3 is switch 6
Grounded via The other of the switches 5 and 6 is another power source for cleaning, in this case, the frequency 1
It is connected to a 00 kHz low frequency power supply 7 and is connected to the electrodes 2 and 3 by switching the switches 5 and 6. With the apparatus having the above structure, the switch 5 is connected to the high-frequency power supply 4 side, the switch 6 is connected to the ground side, and the wafer is placed on the electrode 2. In this case, for example, CHF 3 is supplied as a processing gas. Then, the SiO 2 film formed on the wafer surface is etched at a predetermined pressure. Deposits such as C, CF, and Si adhere to the inner wall of the processing chamber 1 and the surfaces of the electrodes 2 and 3 due to the etching process. Next, plasma cleaning is performed to remove the deposits. In this case, the plasma cleaning is performed by supplying O 2 gas into the processing chamber 1 and maintaining the pressure at 0.1 Torr.
The switches 5 and 6 are connected to the low frequency power supply 7 side, and a power of 100 kHz is applied to the electrodes 2 and 3 so that the processing chamber 1
This is performed by generating O 2 gas plasma therein. O 2 gas is O
In a plasma state of ions and O radicals, the O ions and O radicals react with the deposits attached to the inner wall of the processing chamber 1 to remove the deposits, and have high energy accelerated by low frequency power. Since some O ions collide with the deposit to remove the deposit by sputtering, efficient plasma cleaning can be performed. This is achieved by changing the frequency of the low-frequency power source 7 and
It was found by examining the relationship between the frequency and the cleaning speed, and as shown in FIG. 2, it was found that the cleaning speed improved as the frequency was lowered. The cleaning speed in this case is obtained by measuring a point on the side wall A in the processing chamber 1. At a frequency of 13.56 MHz when the etching process is performed, the cycle of switching between positive and negative is short, and energy for accelerating ions having a larger mass than electrons is not obtained, and a sputtering effect by ions is obtained. The cleaning rate has been reduced due to only reaction removal by radicals. The frequency at which ions start to move due to acceleration is different depending on pressure, voltage, and the like, but is generally from around 1 MHz. Next, the frequency is kept constant at 100 kHz, and the relationship between the pressure in the processing chamber 1 and the cleaning speed is examined. As shown in FIG. 3, the cleaning speed is reduced from around 0.1 Torr to below. Was found to improve. Incidentally, points B and C are O 2 gas in performance problems of the exhaust system 50c
Since the pressure could not be reduced to the specified pressure at c / min,
The flow rate of the O 2 gas was 39 cc / min and 5 cc / min, respectively, and the pressure was reduced to a predetermined pressure, and the examination was performed. It is believed that the improvement in the cleaning rate is due to the longer free path length of the gas molecules, so that the ion sputtering effect is further improved.In addition, when the pressure is further reduced, the cleaning rate is reduced by ions and radicals. I think that the amount of In the case of a frequency of 13.56 MHz, as shown in FIGS. 4 and 5, the cleaning speed is the highest at a pressure of about 0.1 Torr, and the cleaning time is shortened. However, the cleaning speed is much slower than when the frequency is lowered. As described above, according to this embodiment, a low-frequency power supply having a frequency of 1 MHz or less is used as a plasma generation power supply during plasma cleaning, so that ions in the plasma follow the alternating electric field and collide with the processing chamber. So you can
Sputter removal by ions is added together with reaction removal by ions and radicals, so that the cleaning time can be shortened. The processing pressure at the time of cleaning is 0.1T.
By lowering it to orr or less, there is an effect that the cleaning time can be further shortened. Further, in the present embodiment, a low-frequency power is applied to both the electrodes 2 and 3 to generate a discharge between the processing chamber 1 and the entire inner wall surface of the processing chamber 1 and the electrodes. The plasma spreads between the electrodes 2 and 3 as well as the back surfaces of the substrates 2 and 3, and plasma cleaning can be performed on the entire surface of the processing chamber. That is, the electrodes 2,
3, a sheath layer is generated along the surfaces facing each other, and plasma generated between the sheaths is confined, so that a higher-density plasma can be obtained. To the entire processing chamber. In this embodiment, the low-frequency power is applied to both the electrodes 2 and 3. However, the low-frequency power is applied to one of the electrodes, or the electrodes to which the low-frequency power is applied are alternately applied. Even if it is changed, the cleaning speed can be similarly improved. In this embodiment, the high-frequency power supply 4 for processing the wafer and the low-frequency power supply 7 for performing the plasma cleaning are separated, but the processing is performed using the low-frequency power supply when processing the wafer. In such a case, the electrode 2 may be connected to a low-frequency power source 7 as shown in FIG. 6, and the switch 6 may be used to switch the electrode 3 between the low-frequency power source 7 and the ground. Further, in this embodiment, the O 2 gas is used as the processing gas for plasma cleaning. However, it is needless to say that the deposit varies depending on the processing of the wafer, and is determined by the deposit. . According to the present invention, there is an effect that the cleaning time for cleaning using plasma can be shortened.
【図面の簡単な説明】
【図1】本発明の一実施例であるプラズマ処理装置を示
す構成図である。
【図2】周波数と洗浄速度との関係を示す図である。
【図3】周波数を100kHzにしたときの圧力と洗浄速
度との関係を示す図である。
【図4】周波数13.56MHzにしたときの圧力と洗浄速
度との関係を示す図である。
【図5】図4の場合を圧力と洗浄時間との関係で示した
図である。
【図6】本発明の他の実施例を示す構成図である。
【符号の説明】
1…処理室、2,3…電極、7…低周波電源。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing a plasma processing apparatus according to one embodiment of the present invention. FIG. 2 is a diagram showing a relationship between a frequency and a cleaning speed. FIG. 3 is a diagram showing the relationship between pressure and cleaning rate when the frequency is set to 100 kHz. FIG. 4 is a diagram showing the relationship between the pressure and the cleaning speed when the frequency is 13.56 MHz. FIG. 5 is a diagram showing the case of FIG. 4 in relation to pressure and cleaning time. FIG. 6 is a configuration diagram showing another embodiment of the present invention. [Description of Signs] 1 ... Processing chamber, 2, 3 ... Electrode, 7 ... Low frequency power supply.
─────────────────────────────────────────────────────
フロントページの続き
(72)発明者 仲里 則男
茨城県土浦市神立町502番地 株式会社
日立製作所 機械研究所内
(72)発明者 中田 博之
群馬県高崎市西横手町111番地 株式会
社 日立製作所 高崎工場内
(56)参考文献 特開 昭61−5521(JP,A)
────────────────────────────────────────────────── ───
Continuation of front page
(72) Inventor Norio Nakazato
502 Kandate-cho, Tsuchiura-shi, Ibaraki Pref.
Hitachi, Ltd.
(72) Inventor Hiroyuki Nakata
111 Nishiyokote-cho, Takasaki-shi, Gunma
Hitachi, Ltd. Takasaki Plant
(56) References JP-A-61-5521 (JP, A)