[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2924062B2 - Production method of raw material powder for carbon material - Google Patents

Production method of raw material powder for carbon material

Info

Publication number
JP2924062B2
JP2924062B2 JP2084699A JP8469990A JP2924062B2 JP 2924062 B2 JP2924062 B2 JP 2924062B2 JP 2084699 A JP2084699 A JP 2084699A JP 8469990 A JP8469990 A JP 8469990A JP 2924062 B2 JP2924062 B2 JP 2924062B2
Authority
JP
Japan
Prior art keywords
less
weight
raw material
product
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2084699A
Other languages
Japanese (ja)
Other versions
JPH03281691A (en
Inventor
次郎 小出
正一 橋口
憲利 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2084699A priority Critical patent/JP2924062B2/en
Publication of JPH03281691A publication Critical patent/JPH03281691A/en
Application granted granted Critical
Publication of JP2924062B2 publication Critical patent/JP2924062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高密度特殊炭素材として有用な原料粉の製造
方法に関するものである。さらに詳しくは高密度でかつ
放電加工特性が良い特殊炭素材用原料粉の製造法に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a raw material powder useful as a high-density special carbon material. More specifically, the present invention relates to a method for producing a raw material powder for a special carbon material having a high density and excellent electric discharge machining characteristics.

〔従来の技術〕[Conventional technology]

従来特殊炭素材はピッチコークス、及び石油コークス
を所定の割合に粒度配合した粒と粉を加熱、混合しなが
らバインダーピッチを適当量添加ねつ合後、成形して製
造される。さらにこの生成形体を焼成、黒鉛化後、加工
して製品である特殊炭素材を製造している。また、最近
ピッチを熱処理後、溶剤で処理して得たメソカーボンマ
イクロビーズを成形して特殊炭素材を製造する方法も報
告されている。
Conventionally, a special carbon material is produced by heating and mixing particles and powder obtained by mixing pitch coke and petroleum coke in a predetermined ratio, adding an appropriate amount of binder pitch, and then molding. Furthermore, after firing and graphitizing the green compact, it is processed to produce a special carbon material as a product. Recently, there has been reported a method for producing special carbon materials by forming mesocarbon microbeads obtained by heat treating a pitch and then treating the pitch with a solvent.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

これらの方法は製品の嵩密度が低い、強度が低い等製
品の特性が不十分であり、また工程が複雑で製造コスト
が高い等の課題があり、低コストで特性の良い特殊炭素
材の出現が望まれていた。
These methods have problems such as poor product properties such as low bulk density and low strength of products, and complicated processes and high manufacturing costs. Was desired.

又近年炭素材は放電加工用電極としての利用が注目さ
れ、需要が急増の傾向にあるが従来の炭素材では放電加
工特性が不十分であり、もっと放電加工特性の良い炭素
材、特に放電加工時の消耗率が低い炭素材が要求されて
いる。またメソカーボンから製造した炭素材では工程が
複雑なためコストが高く、製造コストが低く高特性のも
のが求められている。
In recent years, attention has been paid to the use of carbon materials as electrodes for electric discharge machining, and the demand is rapidly increasing. However, conventional carbon materials have insufficient electric discharge machining characteristics, and carbon materials having better electric discharge machining characteristics, particularly electric discharge machining Carbon materials with low consumption rate at the time are required. In addition, a carbon material manufactured from mesocarbon has a high cost due to a complicated process, has a low manufacturing cost, and is required to have high characteristics.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者は、かかる状況に鑑み、高強度でか
つ放電特性の良い特殊炭素材を製造すべく鋭意検討した
結果、光学的異方性組織の割合が大きいコールタール系
原料を熱処理し、ある特性を持つ原料となし微粉砕した
ものを原料として成形後焼成黒鉛化し、製品とすると高
特性となることを見出し、本発明に到達した。
Therefore, in view of such circumstances, the present inventors have conducted intensive studies to produce a special carbon material having high strength and good discharge characteristics, and as a result, heat-treated a coal tar-based raw material having a large proportion of an optically anisotropic structure, The present inventors have found that a raw material having certain characteristics and a finely pulverized raw material are formed into a fired graphite after forming as a raw material, and that the resulting product has high characteristics.

すなわち、本発明の要旨は、光学的異方性組織の割合
が60%以上であるコールタール系原料を機械的エネルギ
ーを付与しながら熱処理して、揮発分(VM)が20重量%
以下で3重量%以上であり、光学的異方性組織の平均の
大きさが50μ以下でかつその割合が30%以下のものとす
る熱処理工程、及びこの熱処理工程を経たものを微粉砕
する粉砕工程の各工程を含むことを特徴とする炭素材用
原料粉の製造方法にある。なお、光学的異方性組織の割
合は偏向顕微鏡観察下での異方性組織の面積の割合をい
う。
That is, the gist of the present invention is that a coal tar-based raw material having an optically anisotropic structure ratio of 60% or more is heat-treated while applying mechanical energy, and the volatile matter (VM) is 20% by weight.
A heat treatment step in which the average size of the optically anisotropic structure is 50 μm or less and the proportion thereof is 30% or less, and pulverization for finely pulverizing the material after the heat treatment step A method for producing a raw material powder for a carbon material, comprising the steps of: Note that the ratio of the optically anisotropic structure refers to the ratio of the area of the anisotropic structure under a polarizing microscope.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

まず、本発明におけるコールタール系原料は、石炭乾
留時に副生するコールタール又はこれより得られるコー
ルタールピッチであり、VMは30重量%を超えてもよいが
30重量%を超えると目標の物性に調整する熱処理時間が
長く、処理能力が落ち、コストが高くなるので該原料の
VMは30重量%以下が望ましい。
First, the coal tar-based raw material in the present invention is coal tar by-produced during coal carbonization or coal tar pitch obtained therefrom, and the VM may exceed 30% by weight.
If it exceeds 30% by weight, the heat treatment time for adjusting to the target physical properties is long, the processing capacity is reduced, and the cost is increased.
VM is desirably 30% by weight or less.

また、これらの原料は光学的異方性組織の割合が60%
未満であれば熱処理が不十分のため、軽沸点留分が多く
熱処理時に融着して処理が不均一となりやすいので、光
学的異方性組織の割合が60%以上のものを用いる。これ
らのコールタール系原料は、ディレードコーカー、オー
トクレーブ等により350〜480℃、1〜72時間程度熱処理
することにより得られる。
These materials have an optically anisotropic structure ratio of 60%.
If it is less than 30, the heat treatment is insufficient, so that the fraction having a light boiling point is large and the treatment is likely to be uneven due to fusion during the heat treatment. These coal tar-based raw materials can be obtained by heat treatment at 350 to 480 ° C. for about 1 to 72 hours using a delayed coker, an autoclave, or the like.

本発明によりこれらのコールタール系原料を熱処理す
るに際しては、通常200〜350℃、0.5〜24時間程度から
選ばれるが、処理を均一に行なうために熱処理時に機械
的エネルギーを付与した方が効果が大きい。機械エネル
ギーの付与の方法としては撹拌、超音波等が挙げられ
る。
When heat treating these coal tar-based raw materials according to the present invention, it is usually selected from about 200 to 350 ° C. and about 0.5 to 24 hours, but it is more effective to apply mechanical energy during the heat treatment in order to uniformly perform the treatment. large. Examples of a method of applying mechanical energy include stirring, ultrasonic waves, and the like.

生成物のVMは3〜20重量%であることが必要であり、
該処理物のVMが20重量%を超えると焼成の重量変化が大
きく、特性が悪化する。一方、3重量%未満では焼結性
が悪く特性が悪化する。
The VM of the product needs to be 3-20% by weight,
If the VM of the treated product exceeds 20% by weight, the change in weight during firing is large, and the properties are deteriorated. On the other hand, if it is less than 3% by weight, the sinterability is poor and the properties are deteriorated.

また該処理物の光学的異方性組織の大きさが50μを超
え、その割合が、30%を超えると、製品の組織も異方性
組織が多く、不均一となり特性が悪化するので、該光学
的異方性組織の大きさは50μ以下、その割合は30%以下
とする。また熱処理は、アルゴン、窒素等の不活性ガス
中、自生圧下で行なっても良いが、空気の存在下で行な
っても良い。
Further, when the size of the optically anisotropic structure of the processed product exceeds 50μ and the ratio exceeds 30%, the structure of the product also has many anisotropic structures, becomes non-uniform, and the characteristics are deteriorated. The size of the optically anisotropic structure is 50 μm or less, and the ratio is 30% or less. The heat treatment may be performed in an inert gas such as argon or nitrogen under autogenous pressure, or may be performed in the presence of air.

また上記のコールタール系原料の熱処理は、得られた
熱処理物を平均粒度15〜20μに粉砕したもののトルエン
可溶物が10重量%以下で1重量%以上となるように行う
のが好ましい。γ−レジン量を10重量%以下とすること
により成形体焼成時の発泡割れの傾向が低下し、また1
重量%以上とすることにより焼結特性が向上する。
Further, the heat treatment of the coal tar-based raw material is preferably performed such that the obtained heat-treated product is pulverized to an average particle size of 15 to 20 μm, but the toluene-soluble matter is 10% by weight or less and 1% by weight or more. By reducing the amount of γ-resin to 10% by weight or less, the tendency of foam cracking during firing of the molded article is reduced.
The sintering characteristics are improved by setting the content to not less than% by weight.

次いで、上記熱処理物を微粉砕して原料粉を得る。良
好な成形品を得るためには原料粉の平均粒度は50μ以下
が望ましいが、製品組織の均一性をさらに向上させるた
めには、好ましくは30μ以下、さらに好ましくは20μ以
下、最も好ましくは10μ以下に微粉砕したが望ましい。
成形は通常のモールド成形、冷間等方圧成形等が用いら
れる。また焼成は不活性ガス中、コークスブリーズ中い
ずれも可能であり、800〜1300℃の温度でなされる。さ
らに黒鉛化はタンマン炉、アチソン炉、誘導加熱等によ
る常法が使用でき、通常2000〜3000℃でなされる。
Next, the heat-treated product is finely pulverized to obtain a raw material powder. In order to obtain a good molded product, the average particle size of the raw material powder is desirably 50μ or less, but in order to further improve the uniformity of the product structure, it is preferably 30μ or less, more preferably 20μ or less, and most preferably 10μ or less. It is desirable to finely pulverize.
As the molding, ordinary molding, cold isostatic pressing and the like are used. Calcination can be performed in an inert gas or in a coke breeze, and is performed at a temperature of 800 to 1300 ° C. Further, graphitization can be performed by a conventional method such as a Tamman furnace, an Acheson furnace, or induction heating, and is usually performed at 2000 to 3000 ° C.

〔実施例〕〔Example〕

以下に、実施例で本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 コールタールを熱処理して得たVMが24.4重量%でかつ
光学的異方性組織を90%含むコールタール系原料を、空
気の存在下で機械的エネルギーを付与しながら230℃、7
5分間で熱処理を行なった。生成物中のγレジン量は5.9
重量%であり異方性組織の大きさは平均20μでその割合
は10%であった。この生成物を微粉砕し平均粒径18μと
し、モールドプレスにて成形体を得た。この成形体を酸
化防止のためコークスブリーズ中、1000℃まで焼成後、
タンマン炉で2800℃まで黒鉛化して製品を得た。黒鉛製
品の嵩密度は1.87であり、放電加工時の消耗率は0.8%
であった。
Example 1 A coal tar-based raw material containing 24.4% by weight of VM and 90% of an optically anisotropic structure obtained by heat-treating coal tar was heated at 230 ° C. and 7 ° C. while applying mechanical energy in the presence of air.
Heat treatment was performed for 5 minutes. The amount of γ resin in the product is 5.9
%, The average size of the anisotropic structure was 20 μm, and the ratio was 10%. This product was finely pulverized to an average particle size of 18 μm, and a molded product was obtained by a mold press. After firing this molded body to 1000 ° C in coke breeze to prevent oxidation,
The product was graphitized to 2800 ° C in a Tamman furnace to obtain a product. The bulk density of graphite products is 1.87, and the wear rate during EDM is 0.8%
Met.

実施例2 実施例1と同じ原料を熱処理(約230℃、85分間)し
てγレジン量5.1重量%のものを得た。この生成物の異
方性組織の大きさは平均粒径20μでありその割合は10%
であった。この生成物を微粉砕し平均粒度16μとし、実
施例1と同一方法で黒鉛製品を製造した。その嵩密度は
1.94、放電加工時の消耗率は1.1重量%であった。
Example 2 The same raw material as in Example 1 was heat-treated (about 230 ° C., 85 minutes) to obtain a γ-resin having a content of 5.1% by weight. The size of the anisotropic structure of this product is an average particle size of 20μ, and its proportion is 10%
Met. This product was pulverized to an average particle size of 16 μm, and a graphite product was produced in the same manner as in Example 1. Its bulk density is
1.94, the consumption rate at the time of electric discharge machining was 1.1% by weight.

比較例1 実施例1と同じ原料を熱処理してγレジン量14.7重量
%のものを得、微粉砕して平均粒径17μとし、実施例1
と同一方法で成形体を製造したが発泡のため割れてしま
った。
Comparative Example 1 The same raw material as in Example 1 was heat-treated to obtain a resin having a γ-resin amount of 14.7% by weight, and was finely pulverized to an average particle size of 17 μm.
A molded article was produced by the same method as that described above, but was broken due to foaming.

比較例2 実施例1と同じ原料を熱処理してγレジン量6.9%の
ものを得た。この生成物の異方性組織の大きさは平均粒
径100μでありその割合は80%であった。この生成物を
微粉砕し平均粒度17μとし実施例1と同一方法で黒鉛製
品を製造した。その嵩密度は1.77、放電加工時の消耗率
は3.5重量%であった。
Comparative Example 2 The same raw material as in Example 1 was heat-treated to obtain a resin having a γ resin content of 6.9%. The size of the anisotropic structure of this product was 100 μm in average particle size, and the ratio was 80%. The product was pulverized to an average particle size of 17 μm to produce a graphite product in the same manner as in Example 1. Its bulk density was 1.77, and the consumption rate during electric discharge machining was 3.5% by weight.

比較例3 市販黒鉛製品の嵩密度、放電加工時の消耗率を同時に
測定したらそれぞれ1.84、4.4重量%であった。
Comparative Example 3 The bulk density and the consumption rate during electric discharge machining of a commercially available graphite product were simultaneously measured to be 1.84 and 4.4% by weight, respectively.

〔発明の効果〕〔The invention's effect〕

本発明の方法による原料粉を用いた炭素材は嵩密度が
高く、放電加工特性(消耗率が低い)が非常に良い。
The carbon material using the raw material powder according to the method of the present invention has a high bulk density and very good electric discharge machining characteristics (low consumption rate).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−126789(JP,A) 特開 昭64−81890(JP,A) 特開 昭64−29493(JP,A) 特開 平3−2298(JP,A) (58)調査した分野(Int.Cl.6,DB名) C10C 1/19 C10C 3/00 - 3/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-126789 (JP, A) JP-A-64-81890 (JP, A) JP-A-64-29493 (JP, A) 2298 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C10C 1/19 C10C 3/00-3/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光学的異方性組織の割合が60%以上である
コールタール系原料を機械的エネルギーを付与しながら
熱処理して、揮発分(VM)が20重量%以下で3重量%以
上であり、光学的異方性組織の平均の大きさが50μ以下
でかつその割合が30%以下のものとする熱処理工程、及
びこの熱処理工程を経たものを微粉砕する粉砕工程の各
工程を含むことを特徴とする炭素材用原料粉の製造方
法。
1. A coal tar-based raw material having an optically anisotropic structure ratio of 60% or more is heat-treated while applying mechanical energy, and the volatile matter (VM) is 20% by weight or less and 3% by weight or more. And includes a heat treatment step in which the average size of the optically anisotropic structure is 50 μm or less and the proportion thereof is 30% or less, and a pulverization step of finely pulverizing the material after the heat treatment step. A method for producing a raw material powder for a carbon material, comprising:
【請求項2】コールタール系原料の揮発分が30重量%以
下であることを特徴とする請求項1記載の製造方法。
2. The method according to claim 1, wherein the volatile content of the coal tar-based raw material is 30% by weight or less.
【請求項3】熱処理工程を、熱処理物を平均粒度15〜20
μに粉砕したもののトルエン可溶分が10重量%以下で1
重量%以上となるように行うことを特徴とする請求項1
又は2記載の製造方法。
3. A heat treatment step, wherein the heat-treated material has an average particle size of 15 to 20.
1% when the soluble matter in toluene is 10% by weight or less
2. The method according to claim 1, wherein the concentration is set to be not less than% by weight.
Or the production method according to 2.
【請求項4】粉砕工程を、得られる微粉砕物の平均粒度
が30μ以下となるように行うことを特徴とする請求項1
ないし3のいずれかに記載の製造方法。
4. The method according to claim 1, wherein the pulverizing step is performed such that the average particle size of the obtained finely pulverized product is 30 μm or less.
4. The method according to any one of items 1 to 3.
JP2084699A 1990-03-30 1990-03-30 Production method of raw material powder for carbon material Expired - Lifetime JP2924062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2084699A JP2924062B2 (en) 1990-03-30 1990-03-30 Production method of raw material powder for carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2084699A JP2924062B2 (en) 1990-03-30 1990-03-30 Production method of raw material powder for carbon material

Publications (2)

Publication Number Publication Date
JPH03281691A JPH03281691A (en) 1991-12-12
JP2924062B2 true JP2924062B2 (en) 1999-07-26

Family

ID=13837915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084699A Expired - Lifetime JP2924062B2 (en) 1990-03-30 1990-03-30 Production method of raw material powder for carbon material

Country Status (1)

Country Link
JP (1) JP2924062B2 (en)

Also Published As

Publication number Publication date
JPH03281691A (en) 1991-12-12

Similar Documents

Publication Publication Date Title
JP4311777B2 (en) Method for producing graphite material
JP2924062B2 (en) Production method of raw material powder for carbon material
JPH0234508A (en) Preparation of isotropic carbon material having high density
JPS6172610A (en) Production of high-density graphite material
JP2924061B2 (en) Production method of raw material powder for carbon material
JP2808807B2 (en) Production method of raw material powder for carbon material
JP2910002B2 (en) Special carbon material kneading method
JP2001130963A (en) Method for producing isotropic high-density carbon material
JP2635996B2 (en) Powder for molded high-density carbon material and method for producing high-density carbon material
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JPS6272508A (en) Preparation of starting material for high density isotropic carbon material
JPS6144704A (en) Production of high-strength and high-density carbonaceous material
CN110562953B (en) Production and manufacturing technology of high-density carbon
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPH05163008A (en) Production of raw material powder for carbonaceous material
KR100217850B1 (en) Process for production of active carbon
JPH0798333B2 (en) Binderless molding method for anisotropic carbon products
JPH01317109A (en) Production of carbon sliding material
JPH05163011A (en) Production of raw material powder for carbonaceous material
JPS60103011A (en) Manufacture of easily-graphitizable high-density carbonaceous material
JPH01239058A (en) Production of isotropic high-density carbon material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

EXPY Cancellation because of completion of term