JP2920510B2 - A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition - Google Patents
A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partitionInfo
- Publication number
- JP2920510B2 JP2920510B2 JP31870196A JP31870196A JP2920510B2 JP 2920510 B2 JP2920510 B2 JP 2920510B2 JP 31870196 A JP31870196 A JP 31870196A JP 31870196 A JP31870196 A JP 31870196A JP 2920510 B2 JP2920510 B2 JP 2920510B2
- Authority
- JP
- Japan
- Prior art keywords
- partition wall
- substance
- thermal
- heating
- cylindrical partition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主として流体の測
定対象物質(以下、測定物質と称する。)の熱定数(熱
伝導率λ、熱拡散率κ、及びそれらの組み合わせで定義
される物性値の熱浸透率(λ2/κ)1/2 )を円筒仕切壁
内面加熱により簡便に測定する方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a physical property value defined by a thermal constant (thermal conductivity λ, thermal diffusivity κ, and a combination thereof) of a substance to be measured (hereinafter, referred to as a measuring substance) of a fluid. The method relates to a method for easily measuring the thermal permeability (λ 2 / κ) 1/2 ) by heating the inner surface of a cylindrical partition wall.
【0002】[0002]
【従来の技術】従来から、流体物質の熱定数の測定方法
として用いられている非定常細線加熱法は、円筒と見立
てた細線中に発生させた熱エネルギを細線に接した測定
物質に伝導・拡散させて細線の温度上昇を測定するもの
である。この測定方法では、測定条件が細線の半径aを
基準にとった無次元数、すなわち熱の伝導の速さを規定
するフーリエ数κt/a2 が1に比べて十分に大きい
(すなわち、細線半径が十分に小さい)場合に限定され
る。また、この測定方法では、測定に用いる回帰関数に
時間の対数( ln κt/a2 )が中心的な項として含ま
れ、測定開始の基準点(時刻t=0)の近傍のデータが
無効となり、更に、その初期条件(時間t=0)の平衡
点を抵抗ブリッジ等を用いてその平衡条件から求めねば
ならない。2. Description of the Related Art Unsteady thin wire heating method, which has been conventionally used as a method for measuring the thermal constant of a fluid substance, conducts heat energy generated in a thin wire that looks like a cylinder to a measuring substance in contact with the thin wire. This is to measure the temperature rise of the fine wire by diffusion. In this measurement method, the measurement condition is a dimensionless number based on the radius a of the fine wire, that is, the Fourier number κt / a 2 that defines the speed of heat conduction is sufficiently larger than 1 (that is, the radius of the fine wire). Is sufficiently small). In this measurement method, the logarithm of time (lnκt / a 2 ) is included as a central term in the regression function used for measurement, and data near the reference point (time t = 0) at the start of measurement becomes invalid. Further, the equilibrium point of the initial condition (time t = 0) must be obtained from the equilibrium condition using a resistor bridge or the like.
【0003】[0003]
【発明が解決しようとする課題】本発明の技術的課題
は、電気伝導性物質の熱定数測定や、フーリエ数が1よ
り小さい範囲の測定に適用でき、また、上記初期条件
(初期平衡点)を未知数として回帰関数に含ませること
ができ、それにより、測定開始直前に初期平衡点を特別
に求める必要がない熱定数の測定手段を提供することに
ある。The technical problem of the present invention is that it can be applied to the measurement of the thermal constant of an electrically conductive substance and the measurement in the range where the Fourier number is smaller than 1, and the above initial condition (initial equilibrium point) Is included in the regression function as an unknown, thereby providing a means for measuring a thermal constant that does not require a special determination of an initial equilibrium point immediately before the start of measurement.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
の本発明の熱定数の測定法は、熱定数が既知の電気絶縁
体製円筒仕切壁で、その外側の測定対象物質と内側の発
熱用ヒータ・測温体とを区画し、上記測定対象物質、円
筒仕切壁及び発熱用ヒータ・測温体が熱平衡状態にある
時点から、円筒仕切壁を通じて、その仕切壁面に一様な
分布になるように、内部の発熱用ヒータによる非定常加
熱により仕切壁外側の測定対象物質に熱エネルギーを投
入して、熱平衡を破り、その直後からの測温体における
温度を、熱の伝導の速さを規定するフーリエ数が、1よ
り小さい領域、1より大きい領域で時間tに関する応答
関数として測定し、その温度を、測定対象物質の熱定数
を未知の回帰係数として含む既知の温度に関する関数に
回帰し、その回帰係数から測定対象物質の熱定数を測定
することを特徴とするものである。According to the present invention, there is provided a method for measuring a thermal constant according to the present invention, which comprises a cylindrical partition wall made of an electrical insulator having a known thermal constant, and a substance to be measured on the outside and a heat generation on the inside. and partitions the use heater temperature sensing element, the measurement substance, cylindrical partition wall and the heat generating heater temperature sensing element is in thermal equilibrium
From the point in time, through the cylindrical partition wall, heat energy is applied to the substance to be measured outside the partition wall by unsteady heating by the internal heating heater so that the partition wall has a uniform distribution, breaking the thermal equilibrium, Immediately after that,
The Fourier number that defines the speed of heat conduction is 1
Is measured as a response function with respect to time t in a region smaller than 1 and a region larger than 1 and the temperature is regressed to a function relating to a known temperature including the thermal constant of the substance to be measured as an unknown regression coefficient. It is characterized by measuring the thermal constant of a substance.
【0005】このような本発明の測定法おいては、測定
物質、円筒仕切壁及び発熱用ヒータ・測温体が一様な温
度の熱平衡状態から、発熱用ヒータによる非定常加熱に
より仕切壁面に一様な分布で熱エネルギーを投入し、測
温体においてこの間の温度を時間の関数として測定し、
測定初期からの時間に対応する発熱用ヒータ・測温体の
温度、熱流束の測定データの回帰分析により、測定物質
の熱定数を得る。このような測定に際し、電気絶縁体製
の円筒仕切壁で測定物質と発熱用ヒータ・測温体とを区
画しているので、電気伝導性物質の熱定数測定にも適用
することができ、また、以下に詳述するように、フーリ
エ数が1より小さい範囲の測定に適用することができ
る。更に、上記初期平衡点を未知数として回帰関数に含
ませることができるので、測定開始直前に初期平衡点を
特別に求める必要がない点で有利な測定手段を提供でき
る。In the measurement method of the present invention, the substance to be measured, the cylindrical partition wall, and the heating heater / thermometer are placed on the partition wall by the non-stationary heating by the heating heater from a thermal equilibrium state at a uniform temperature. Inject thermal energy in a uniform distribution, measure the temperature during this period as a function of time in a thermometer,
The thermal constant of the substance to be measured is obtained by regression analysis of the measured data of the temperature of the heating heater / temperature measuring body and the heat flux corresponding to the time from the beginning of the measurement. In such a measurement, the measurement substance and the heating heater / thermometer are separated by a cylindrical partition wall made of an electrical insulator, so that the measurement substance can be applied to the measurement of the thermal constant of an electrically conductive substance. As described in detail below, the present invention can be applied to the measurement in a range where the Fourier number is smaller than 1. Furthermore, since the above-mentioned initial equilibrium point can be included in the regression function as an unknown, it is possible to provide an advantageous measuring means in that it is not necessary to specifically determine the initial equilibrium point immediately before the start of measurement.
【0006】[0006]
【発明の実施の形態】本発明の測定法について詳細に説
明すると、まず、その測定原理は、熱定数が既知の円筒
仕切壁の内側に発熱用ヒータ・測温体を収容して、それ
を測定物質中に挿入し、それらが熱平衡状態にある時点
から、内部の発熱用ヒータによる非定常加熱により仕切
壁を通して外側の測定物質に熱エネルギーを投入して、
測温体の温度応答を測定することにより、測定物質の熱
定数を測定しようとするものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The measuring method according to the present invention will be described in detail. First, the measuring principle is as follows. A heating heater / thermometer is housed inside a cylindrical partition wall having a known heat constant, Inserted into the measurement substance, from the time when they are in thermal equilibrium state, input thermal energy to the outer measurement substance through the partition wall by unsteady heating by the internal heating heater,
It is intended to measure the thermal constant of a substance to be measured by measuring the temperature response of a temperature measuring element.
【0007】更に具体的に説明すると、温度応答の測定
時間を数秒位にすることが適当であり、そのためには、
例えば直径が0.2mm〜1mmで壁の厚さが0.1〜
0.3mmの石英ガラスあるいは硬質ガラス管等の材料
が好適である。その円筒仕切壁の内側に、周囲に一様の
熱エネルギーを放出する発熱ヒータ・測温体を収容す
る。この場合、条件によって、仕切壁の内側に水銀、ガ
リウム等の液体金属を導入することで発熱体・測温体の
兼用が可能となる。また、同様にして、金属細線を発熱
ヒータ・測温体として兼用する場合は、細線表面に適当
な方法で、電気的絶縁膜を密着させることで条件を満た
すことが可能となる。More specifically, it is appropriate to set the temperature response measurement time to about several seconds.
For example, the diameter is 0.2 mm to 1 mm and the thickness of the wall is 0.1 to
Materials such as 0.3 mm quartz glass or hard glass tubes are suitable. Inside the cylindrical partition wall, an exothermic heater and a temperature measuring element for emitting uniform thermal energy to the periphery are accommodated. In this case, depending on the conditions, by introducing a liquid metal such as mercury or gallium into the inside of the partition wall, the heating element and the temperature measuring element can be used together. Similarly, when a thin metal wire is used as both a heating heater and a temperature measuring element, the condition can be satisfied by bringing an electrical insulating film into close contact with the thin wire surface by an appropriate method.
【0008】熱定数の測定に際しては、恒温槽内等にお
いて、上記測定物質、円筒仕切壁及び発熱用ヒータ・測
温体が熱平衡状態にある時点(時刻t=0) から、円筒
仕切壁の内部の発熱用ヒータによる非定常加熱により、
その仕切壁を通して、仕切壁面に一様な熱分布になるよ
うに、仕切壁外側の測定物質に熱エネルギーQ(s) を投
入して、上記熱平衡を破り、円筒仕切壁内の測温体にお
いて、その間の温度を時間の関数F(t) として測定す
る。その温度は、測定物質の熱定数を未知の回帰係数と
して含む既知の温度に関する関数に回帰し、その回帰係
数から測定物質の熱定数(熱伝導率λ、熱拡散率κ、及
びそれらの組み合わせで定義される物性値の熱浸透率
(λ2/κ)1/2 等)を測定する。In the measurement of the thermal constant, the inside of the cylindrical partition wall is started from the time when the substance to be measured, the cylindrical partition wall and the heating heater / thermometer are in a thermal equilibrium state (time t = 0) in a thermostat or the like. Unsteady heating by the heater for heating
Through the partition wall, thermal energy Q (s) is applied to the measurement substance outside the partition wall so as to have a uniform heat distribution on the partition wall. , The temperature during that time is measured as a function of time F (t). The temperature is regressed to a function related to a known temperature, which includes the thermal constant of the test substance as an unknown regression coefficient. From the regression coefficient, the heat constant (thermal conductivity λ, thermal diffusivity κ, and a combination thereof) of the test substance is obtained. The thermal permeability (λ 2 / κ) 1/2 of the defined physical property value is measured.
【0009】次に、上記測定原理を数学的に記述する。
上記測定原理は、図1に示すように、円筒仕切壁外面側
から測定物質側を覗いた測定物質の熱定数をパラメータ
として含むところの熱的インピーダンスZx(s)[ラプラ
ス変換の形式で表した温度T(s) と、同形式の熱エネル
ギー関数Q(s)との比で、このインピーダンスを定義す
る。即ち、Z(s) =T(s) /Q(s) である(sは時間に
関する微分パラメータ)。]を、それに縦続接続された
円筒仕切壁の熱的性質を表す四端子等価回路を通して、
円筒仕切壁内側から求めることである。即ち、発熱用ヒ
ータ・測温体側から測定物質の方を覗いた熱的インピー
ダンスZin(s) は、次式で与えられる。Next, the measurement principle will be described mathematically.
As shown in FIG. 1, the above-described measurement principle is based on the thermal impedance Z x (s) [which is expressed in the form of Laplace transform, which includes the thermal constant of the measured substance as a parameter when the measured substance side is viewed from the outer surface of the cylindrical partition wall. This impedance is defined by the ratio of the temperature T (s) obtained and the thermal energy function Q (s) of the same type. That is, Z (s) = T (s) / Q (s) (s is a differential parameter with respect to time). ] Through a four-terminal equivalent circuit representing the thermal properties of the cylindrical partition wall cascaded to it.
It is determined from the inside of the cylindrical partition wall. That is, the thermal impedance Z in (s) as viewed from the heating heater / thermometer side to the measurement substance is given by the following equation.
【0010】[0010]
【数1】 ここで、Za(s)は円筒仕切壁の内側面側から外側を見た
円筒仕切壁のその熱定数を含む熱的影像インピーダン
ス、Zb(s)は円筒仕切壁の外側面側から内側を見た円筒
仕切壁の熱的影像インピーダンスであり、θ(s) は円筒
仕切壁の厚さと熱定数に依存する熱的影像伝播定数であ
る。(Equation 1) Here, Z a (s) is thermally image impedance including the thermal constant of the cylindrical partition wall viewed outward from the inner surface side of the cylindrical partition wall, Z b (s) the inner from the outer surface side of the cylindrical partition wall Is the thermal image impedance of the cylindrical partition wall, and θ (s) is the thermal image propagation constant depending on the thickness and thermal constant of the cylindrical partition wall.
【0011】(1)式を展開し、測定に用いる熱的イン
ピーダンスZin(s) を求めると、Developing equation (1) to find the thermal impedance Z in (s) used for measurement,
【数2】 と近似式で表せる。(Equation 2) It can be expressed by an approximate expression.
【0012】ここで、Zx(s)は、理論的に次式で定義さ
れる。Here, Z x (s) is theoretically defined by the following equation.
【数3】 (Equation 3)
【0013】但し、K0(qxb),K1(qxb)は、それぞれ、
第0次、第1次の第二種変形ベッセル関数、qx =(s
/κx )1/2 ,κx =λx /Cx ,Λx =qx λx (κ
x は測定物質の熱拡散率、λx は測定物質の熱伝導率、
Cx は測定物質の単位体積当たりの熱容量、bは円筒仕
切壁の外半径)である。However, K 0 (q x b) and K 1 (q x b) are
Modified Bessel function of the second kind of the 0th and 1st order, q x = (s
/ Κ x ) 1/2 , κ x = λ x / C x , Λ x = q x λ x (κ
x is the thermal diffusivity of the test substance, λ x is the thermal conductivity of the test substance,
C x is the heat capacity per unit volume of the substance to be measured, and b is the outer radius of the cylindrical partition wall.
【0014】この熱的インピーダンスZx(s)は、対象と
する系における熱の伝導・拡散の問題を特徴づけるフー
リエ数の小さい領域、大きい領域で、展開近似式が次の
ように異なる。The thermal impedance Z x (s) differs in the expansion approximation formula as follows between a small Fourier number region and a large Fourier number region characterizing the problem of heat conduction and diffusion in the target system.
【0015】[0015]
【数4】 また、(4)及び(5)式の係数A及びB(n) は、測定
誤差を考慮した測定に有効な範囲の項の次数までを数学
的に求める。(Equation 4) Further, the coefficients A and B (n) in the equations (4) and (5) are mathematically obtained up to the order of terms in a range effective for measurement in consideration of a measurement error.
【0016】温度の応答式は、(3)式の代わりに
(4)及び(5)式を用いて、 T(s) =Zin(s) ・Q(s) (6) と表すことができる。この(6)式の逆ラプラス変換を
行い、時間tに関する応答関数を求めて、測定の回帰関
数として用いる。The temperature response equation can be expressed as T (s) = Z in (s) · Q (s) (6) using equations (4) and (5) instead of equation (3). it can. The inverse Laplace transform of the equation (6) is performed, a response function relating to time t is obtained, and used as a regression function for measurement.
【0017】投入する熱流関数Q(s) は、任意の時間関
数として選択できる。その代表例として、 1)ステップ加熱の場合、 Q(s) =Q0 /s (7) となる。但し、Q0 は円筒仕切壁内部の発熱用ヒータの
単位長さ当たりに加えられる熱流束である。 2)パルス加熱の場合、 Q(s) =QT (8) となる。但し、QT は円筒仕切壁内部の発熱用ヒータの
単位長さ当たりに加えられる総熱量である。The input heat flow function Q (s) can be selected as an arbitrary time function. As typical examples, 1) In the case of step heating, Q (s) = Q 0 / s (7) Here, Q 0 is a heat flux applied per unit length of the heating heater inside the cylindrical partition wall. 2) In the case of pulse heating, Q (s) = Q T (8). However, Q T is the total amount of heat applied to per unit length of the heating heater inside the cylindrical partition wall.
【0018】実際の測定系で、(4)及び(5)式のど
ちらが有効となるかは、測定装置の寸法、測定時間の範
囲によって異なる。本発明では、その特徴とする時間t
が零に近いデータを有効な測定データとして用い、即
ち、(4)式が有効な範囲の測定データから、更に、
(5)式が有効となる領域でのデータまでを有効とする
コンピュータアルゴリズムを用いて、(4)及び(5)
式を橋渡しし、一つの有効な回帰関数として用いるもの
である。Which of equations (4) and (5) is effective in an actual measuring system depends on the dimensions of the measuring device and the range of the measuring time. In the present invention, the characteristic time t
Is used as valid measurement data, that is, from the measurement data in the range where Expression (4) is valid,
Using a computer algorithm that validates data up to the region where the expression (5) is valid, (4) and (5)
It bridges the formula and uses it as one valid regression function.
【0019】[0019]
【発明の効果】以上に詳述した本発明の熱定数の測定法
によれば、電気伝導性物質の熱定数測定や、フーリエ数
が1より小さい範囲の測定に適用でき、また、初期平衡
点を未知数として回帰関数に含ませることができるの
で、測定開始直前に初期平衡点を特別に求める必要がな
い点で有利なものである。According to the method for measuring the thermal constant of the present invention described in detail above, the method can be applied to the measurement of the thermal constant of an electrically conductive substance and the measurement in the range where the Fourier number is smaller than 1. Can be included as an unknown in the regression function, so that it is not necessary to specifically determine the initial equilibrium point immediately before the start of measurement.
【図1】本発明に係る熱定数を測定する方法についての
説明図である。FIG. 1 is an explanatory diagram of a method for measuring a thermal constant according to the present invention.
Claims (1)
で、その外側の測定対象物質と内側の発熱用ヒータ・測
温体とを区画し、上記測定対象物質、円筒仕切壁及び発
熱用ヒータ・測温体が熱平衡状態にある時点から、円筒
仕切壁を通じて、その仕切壁面に一様な分布になるよう
に、内部の発熱用ヒータによる非定常加熱により仕切壁
外側の測定対象物質に熱エネルギーを投入して、熱平衡
を破り、その直後からの測温体における温度を、熱の伝
導の速さを規定するフーリエ数が、1より小さい範囲、
1より大きい範囲で時間tの関数として測定し、その温
度を、測定対象物質の熱定数を未知の回帰係数として含
む既知の温度に関する関数に回帰し、その回帰係数から
測定対象物質の熱定数を測定することを特徴とする円筒
仕切壁内面加熱による物質の熱定数の測定法。In 1. A thermal constant is known an electrical insulator made of cylindrical partition wall, and partitions the outside of the analyte and an inner heat generating heater temperature sensing element, the measurement substance, cylindrical partition wall and heating From the point in time when the heater / thermometer in thermal equilibrium is in a state of equilibrium, the material inside the cylindrical partition wall is subjected to unsteady heating by the internal heating heater so that the material to be measured outside the partition wall is uniformly distributed on the partition wall. Heat energy is applied to break the thermal equilibrium, and the temperature in the
A range in which the Fourier number defining the speed of conduction is smaller than 1;
The temperature is measured as a function of time t in a range greater than 1 , and the temperature is regressed to a function relating to a known temperature including the thermal constant of the substance to be measured as an unknown regression coefficient, and the thermal constant of the substance to be measured is calculated from the regression coefficient. A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition wall, which is characterized by measuring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31870196A JP2920510B2 (en) | 1996-11-14 | 1996-11-14 | A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31870196A JP2920510B2 (en) | 1996-11-14 | 1996-11-14 | A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10142178A JPH10142178A (en) | 1998-05-29 |
JP2920510B2 true JP2920510B2 (en) | 1999-07-19 |
Family
ID=18102043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31870196A Expired - Lifetime JP2920510B2 (en) | 1996-11-14 | 1996-11-14 | A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2920510B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4792274B2 (en) * | 2004-10-29 | 2011-10-12 | パナソニック株式会社 | Equivalent material constant calculation system, equivalent material constant calculation program, equivalent material constant calculation method, design system, and structure manufacturing method |
-
1996
- 1996-11-14 JP JP31870196A patent/JP2920510B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10142178A (en) | 1998-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4630938A (en) | Method of determination of thermal conduction coefficient and heat capacity of materials and the apparatus for measurements of thermal conduction coefficient and heat capacity of material | |
CA2011659C (en) | Measuring sensor for fluid state determination and method for measurement using such sensor | |
JP2976015B2 (en) | Heat capacity measurement method | |
CN114585885A (en) | Non-invasive thermometer | |
JP2920510B2 (en) | A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition | |
Balko et al. | Measurement and computation of thermojunction response times in the submillisecond range | |
JP2866929B2 (en) | Measurement method of thermal constant of substance by heating the wall of cylindrical measuring cell | |
Hammerschmidt | Thermal transport properties of water and ice from one single experiment | |
JP3146357B2 (en) | Precise measurement method of thermal conductivity of liquid material using short-time microgravity environment | |
SU783664A1 (en) | Apparatus for determining heat-conduction factor | |
JP2961244B2 (en) | A method for measuring thermal diffusivity using a parallel three-layer model. | |
JP3539624B2 (en) | Thermal conductivity measuring method and measuring device | |
Vasileff | On the Calorimetric Heat Exchange Correction | |
JPH0143903B2 (en) | ||
JP2794347B2 (en) | Gas concentration detection method, detection element and detection device | |
SU741125A1 (en) | Device for measuring solid material heat conductivity | |
JP3246861B2 (en) | Thermal characteristic measuring device and soil moisture content measuring device using the same | |
JPH0465972B2 (en) | ||
RU2261418C2 (en) | Calorimeter | |
Labudová et al. | Hot wire and hot plate apparatuses for the measurement of the thermophysical properties | |
JPH0317542A (en) | Measuring method of thermal conductivity | |
SU1742697A1 (en) | Method of moisture content measurement in loose materials | |
JP2706416B2 (en) | How to measure the kinematic viscosity of a fluid | |
JPH0862116A (en) | Method for measuring surface temperature of heating element sensor | |
SU1270660A1 (en) | Device for determining thermal physical characteristics of materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |