JP2910493B2 - Stabilization method of sodium hypochlorite solution - Google Patents
Stabilization method of sodium hypochlorite solutionInfo
- Publication number
- JP2910493B2 JP2910493B2 JP5077961A JP7796193A JP2910493B2 JP 2910493 B2 JP2910493 B2 JP 2910493B2 JP 5077961 A JP5077961 A JP 5077961A JP 7796193 A JP7796193 A JP 7796193A JP 2910493 B2 JP2910493 B2 JP 2910493B2
- Authority
- JP
- Japan
- Prior art keywords
- sodium hypochlorite
- hypochlorite solution
- sodium
- solution
- precipitate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B11/00—Oxides or oxyacids of halogens; Salts thereof
- C01B11/04—Hypochlorous acid
- C01B11/06—Hypochlorites
- C01B11/068—Stabilisation by additives other than oxides, hydroxides, carbonates of alkali or alkaline-earth metals; Coating of particles; Shaping; Granulation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は次亜塩素酸ナトリウム溶
液を不安定にしている分解起因物質である不純物を除去
して次亜塩素酸ナトリウム溶液を安定化する方法に関係
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stabilizing a sodium hypochlorite solution by removing impurities which are decomposition-causing substances that make the sodium hypochlorite solution unstable.
【0002】[0002]
【従来の技術】次亜塩素酸ナトリウムは従来より紙・パ
ルプ・繊維類の漂白や、上・下水道の水処理に大量に用
いられているほか、家庭用の殺菌・カビ取り・洗浄・脱
臭等に広く使用されているものである。次亜塩素酸ナト
リウムは通常その有効塩素濃度が12重量%以上の水溶
液としてメーカーからタンクローリーやポリエチレン容
器で出荷され各種用途に供されるものであるが、製造さ
れてから消費されるまでに長期間の期日を経るものは種
々のトラブルを起こすことがある。たとえば有効成分の
濃度が容器に明記されている数値に満たないことや、密
閉された容器内で分解ガスが発生することによる栓の吹
き飛びや容器の膨れによる容器の転倒等である。2. Description of the Related Art Sodium hypochlorite has been used in large quantities for the bleaching of paper, pulp, and fibers, and for the treatment of water for sewage and sewer systems. It is widely used for Sodium hypochlorite is usually shipped from manufacturers in tank lorries or polyethylene containers as an aqueous solution with an effective chlorine concentration of 12% by weight or more for various uses. Those that pass the deadline may cause various troubles. For example, the concentration of the active ingredient is less than the value specified in the container, the plug is blown off due to generation of a decomposition gas in a closed container, and the container is overturned due to swelling of the container.
【0003】次亜塩素酸ナトリウムは本来不安定な化合
物であり、徐々に分解することが知られている。その分
解反応は主として次の二つの反応によるものである。 3NaClO→2NaCL+NaClO3 ‥‥‥‥‥(A) 2NaClO→2NaCL+O2 ‥‥‥‥‥(B) (A)の反応は次亜塩素酸ナトリウムが本来不安定であ
るという理由になっている自己分解反応であり、反応速
度は日光の照射や成分濃度あるいはpHおよび温度に影
響されるものである。当然、濃度が高いほどあるいは温
度が高いほど反応速度は増し、日光に曝されるとやはり
分解は促進される。従って、次亜塩素酸ナトリウム溶液
の保存は冷暗所でというのが常識であり、かつ家庭用の
末端製品は有効塩素濃度は6重量%程度に希釈したもの
が出回っている。[0003] Sodium hypochlorite is inherently an unstable compound and is known to decompose gradually. The decomposition reaction is mainly due to the following two reactions. 3NaClO → 2NaCL + NaClO 3 ‥‥‥‥‥ (A) 2NaClO → 2NaCL + O 2 ‥‥‥‥‥ (B) The reaction (A) is a self-decomposition reaction which is the reason that sodium hypochlorite is inherently unstable. The reaction rate is affected by sunlight irradiation, component concentration or pH and temperature. Naturally, the higher the concentration or the higher the temperature, the faster the reaction rate, and when exposed to sunlight, the decomposition is also promoted. Therefore, it is common knowledge that the sodium hypochlorite solution is stored in a cool and dark place, and end products for household use have been diluted with an effective chlorine concentration of about 6% by weight.
【0004】(B)の反応は自己分解反応ではなく、次
亜塩素酸ナトリウム溶液中に混入した不純物による触媒
的な作用による分解反応である。媒体物質としては鉄、
ニッケル、コバルト、銅等の金属酸化物が知られてい
る。事実、プロセス中の次亜塩素酸ナトリウム溶液中に
はこれらの金属成分を含んだ浮遊固形物が存在し、その
原因は原料である苛性ソーダからくるものである。有効
塩素の低下は(A)および(B)の双方の分解が関係す
るが、ガスの発生は(B)の分解反応のみに基づくもの
である。次亜塩素酸ナトリウムのメーカーでは、製造プ
ロセスにろ過器や冷却器を組み込んだり、製品タンク並
びに製品容器に遮光手段を講じたりして製品の安定化お
よび分解防止につとめている。また効率よく重金属を捕
捉し分離するためにけい酸ナトリウムを添加し不溶性物
を生ぜしめる方法(特公昭42−531号)や、次亜塩
素酸ナトリウム溶液にアルカリ金属けい酸塩及び水溶性
マグネシウム塩を順次添加し生じた不溶性沈澱物をろ過
する方法(特公昭53−37835号)が提案されてい
る。[0004] The reaction (B) is not a self-decomposition reaction but a decomposition reaction by a catalytic action of impurities mixed in a sodium hypochlorite solution. Iron is the medium substance,
Metal oxides such as nickel, cobalt, and copper are known. In fact, suspended solids containing these metal components are present in the sodium hypochlorite solution during the process, and are caused by the raw material caustic soda. The reduction of available chlorine involves both (A) and (B) decomposition, whereas gas evolution is based solely on the decomposition reaction of (B). Manufacturers of sodium hypochlorite work to incorporate filters and coolers in the manufacturing process and provide light-blocking measures in product tanks and containers to ensure product stability and prevent degradation. Also, in order to efficiently capture and separate heavy metals, sodium silicate is added to generate an insoluble substance (Japanese Patent Publication No. 42-531), or an alkali metal silicate and a water-soluble magnesium salt are added to a sodium hypochlorite solution. Are successively added and the resulting insoluble precipitate is filtered (Japanese Patent Publication No. 53-37835).
【0005】[0005]
【発明が解決しようとする課題】しかしながら単にけい
酸ナトリウムを添加し不溶性物を生ぜしめる方法では不
純物の除去が十分でなく、また次亜塩素酸ナトリウム溶
液にアルカリ金属けい酸塩及び水溶性マグネシウム塩を
順次添加し生じた不溶性沈澱物をろ過する方法は、二種
類の添加剤を加える操作によってろ過性の良い沈澱が得
られない等の問題点があった。本発明が解決しようとす
る問題点は(B)の分解反応の起因物質の痕跡量までも
除去しようということにある。次亜塩素酸ナトリウムの
メーカーでは、前述のごとく製造プロセス内にろ過器を
設け、製品のろ過をおこなっている。However, the method of simply adding sodium silicate to generate an insoluble substance does not sufficiently remove impurities, and further, an alkali metal silicate and a water-soluble magnesium salt are added to a sodium hypochlorite solution. The method of filtering the insoluble precipitate formed by successively adding, has problems such as that a precipitate having good filterability cannot be obtained by the operation of adding two kinds of additives. The problem to be solved by the present invention is to remove even trace amounts of the substance causing the decomposition reaction (B). As mentioned above, sodium hypochlorite manufacturers install a filter in the manufacturing process to filter products.
【0006】本発明者らは鋭意この次亜塩素酸ナトリウ
ム溶液のろ過について、検討を重ねた結果、次亜塩素酸
ナトリウム溶液中には上記分解反応の媒体物質となる金
属酸化物の内の大部分は懸濁して浮遊している固形分で
あるのでろ過によって除去可能のはずであるが、ろ過後
もなお同種の金属のごく微量のものが溶解している事実
をつきとめた。しかもこの溶解している不純溶解金属分
は時間が経過するとその一部が析出し新たな分解反応媒
体固形分として存在するようになることも発見した。こ
の固形分の組成分析を行ったところ、上記分解反応媒体
金属成分は小量しか含まれておらず、主成分はアルカリ
土類金属の炭酸塩および水酸化物であることが判明し
た。すなわち分解反応媒体金属成分はこれらアルカリ土
類金属の炭酸塩および水酸化物に吸蔵された状態で新た
に生成した固形分に含まれてくるものであると推定され
るものであるが、分解反応媒体金属成分が微量しか含ま
れていないにもかかわらず媒体効果を発揮するのは該金
属分が固形物の表面近くに集中的に存在していることに
よるものと思われる。The present inventors have intensively studied the filtration of this sodium hypochlorite solution. As a result, in the sodium hypochlorite solution, a large amount of the metal oxide serving as a medium substance of the decomposition reaction was contained. Since the part was suspended and suspended solids, it should have been removed by filtration. However, it was found that a very small amount of the same kind of metal was still dissolved after filtration. In addition, it has also been discovered that a part of the dissolved impurity dissolved metal is precipitated as time passes, and the metal is present as a new solid content of the decomposition reaction medium. The composition analysis of this solid content revealed that the decomposition reaction medium metal component contained only a small amount, and the main components were alkaline earth metal carbonates and hydroxides. That is, the metal component of the decomposition reaction medium is presumed to be contained in newly generated solid content in the state of being occluded by the carbonates and hydroxides of these alkaline earth metals. It is considered that the reason why the medium effect is exhibited even though the medium metal component is contained only in a trace amount is that the metal component is concentrated near the surface of the solid.
【0007】[0007]
【課題を解決するための手段】本発明はすなわち次亜塩
素酸ナトリウム溶液にアルミン酸ナトリウムおよびにけ
い酸ナトリウムを加えて不溶性沈澱物を生ぜしめ、これ
をろ過することを特徴とする次亜塩素酸ナトリウム溶液
の安定化方法である。本発明に使用されるアルミン酸ナ
トリウムは分子式Na2O.AL2O3で示される白色粉
末かまたはNa2O/AL2O3=0.8〜2.6(モル
比)の溶液で供されるものであるが溶液のものが取扱い
が容易である。けい酸ナトリウムは分子式Na2O.m
SiO2・nH2Oで示されSiO2/Na2O=0.45
〜3.3(モル比)の溶液または無色の粉末(モル比
3.3)で供されるものでこれも溶液のものが取扱いが
容易である。本発明においてアルミン酸ナトリウムとけ
い酸ナトリウムのいずれを次亜塩素酸ナトリウム溶液に
先に加えるかはさほど重要な問題ではなく、いずれか一
方を先に全量加えた後に残りの方を加えるか、同時に加
えてもよく、また一方を加えた次亜塩素酸ナトリウム溶
液と他方を加えた次亜塩素酸ナトリウム溶液を混合する
方式でもよい。加える比率はSiO2/AL2O3=1〜
10が良い。これより外れた比率でも幾分かの効果は発
揮されるが効率的ではない。加える量はSiO2として
5〜2000ppmが効果的であるが、好ましくは5〜
1500ppmが良い。5ppm未満では効果が不十分
となり2000ppmを越えると不経済なばかりか後の
ろ過の負荷が増し得策でない。According to the present invention, there is provided a hypochlorite solution comprising adding sodium aluminate and sodium silicate to a sodium hypochlorite solution to form an insoluble precipitate, which is filtered. This is a method for stabilizing a sodium acid solution. Sodium aluminate to be used in the present invention is the molecular formula Na 2 O. White powder or Na 2 O / AL 2 O 3 = 0.8~2.6 but is intended to be subjected with a solution (molar ratio) that of the solution is easy to handle represented by AL 2 O 3 . Sodium silicate has the molecular formula Na 2 O. m
Indicated by SiO 2 · nH 2 O, SiO 2 / Na 2 O = 0.45
-3.3 (molar ratio) or a colorless powder (3.3 molar ratio), which is also a solution and is easy to handle. In the present invention, it does not matter whether sodium aluminate or sodium silicate is added to the sodium hypochlorite solution first, and it is not important to add the other one after adding one of them and then add the other simultaneously. Alternatively, a method of mixing a sodium hypochlorite solution to which one is added and a sodium hypochlorite solution to which the other is added may be used. Ratio SiO 2 / AL 2 O 3 = 1~ added
10 is good. A ratio outside this range may have some effect but is not efficient. Add The amount is 5~2000ppm effective as SiO 2, preferably 5 to
1500 ppm is good. If it is less than 5 ppm, the effect is insufficient, and if it exceeds 2,000 ppm, not only is it uneconomical, but also the load of subsequent filtration increases, which is not an appropriate measure.
【0008】本発明においてアルミン酸ナトリウムとけ
い酸ナトリウムは次亜塩素酸ナトリウム溶液中で反応
し、けい酸アルミニウムの沈澱を生成する。このけい酸
アルミニウムは非常に多孔質な形で生成し後のろ過が非
常にスムーズに行える特徴があり、しかも次亜塩素酸ナ
トリウム溶液中に溶解している前記不純溶解金属分を強
固に吸着する性質があるため、生成した沈澱をろ過分離
すると次亜塩素酸ナトリウム溶液中にはもはや分解反応
媒体金属分は痕跡量さえ存在しなくなるのである。ま
た、特筆すべきことは、生成したけい酸アルミニウムの
沈澱は、ろ過で完全に次亜塩素酸ナトリウム溶液から除
去されず液中に残存した場合でも、もはや次亜塩素酸ナ
トリウムの分解能力を有しないものに変化している点で
ある。したがって、たとえ操作ミスによりろ過が不完全
であった場合でも安定性に悪影響を及ぼすものではな
い。本発明を実施するにあたっては、製造直後の次亜塩
素酸ナトリウム溶液に適用してもよく、従来法でろ過し
た後に適用してもよい。ろ過精度も通常の精密ろ過程度
でよく、2ミクロンの粒子が除去できる簡易ろ過でも安
全性の面では相当の効果が期待されるが望ましくは、
0.1ミクロンの粒子が除去できるものであれば品質の
面でも申し分ないものといえる。本発明を実施するにあ
たっての重要な点はけい酸アルミニウムを生成する段階
では次亜塩素酸ナトリウム溶液の攪拌を充分に行うこと
である。局所的な反応では予期した効果が得られない。In the present invention, sodium aluminate and sodium silicate react in a sodium hypochlorite solution to form a precipitate of aluminum silicate. This aluminum silicate has a feature that it is formed in a very porous form and that the subsequent filtration can be performed very smoothly, and furthermore, it strongly adsorbs the above-mentioned impure dissolved metal component dissolved in the sodium hypochlorite solution. Due to the nature, even if the formed precipitate is separated by filtration, even trace amounts of the metal of the decomposition reaction medium are no longer present in the sodium hypochlorite solution. It should also be noted that even if the precipitate of aluminum silicate formed is not completely removed from the sodium hypochlorite solution by filtration and remains in the solution, it has the ability to decompose sodium hypochlorite. It is changing to something that does not. Therefore, even if the filtration is incomplete due to an operation error, it does not adversely affect the stability. In carrying out the present invention, it may be applied to a sodium hypochlorite solution immediately after production, or may be applied after filtration by a conventional method. Filtration accuracy is about the same as normal microfiltration, and simple filtration that can remove particles of 2 microns can be expected to have a considerable effect in terms of safety.
If it can remove particles of 0.1 micron, it can be said that quality is satisfactory. An important point in carrying out the present invention is to sufficiently agitate the sodium hypochlorite solution at the stage of producing aluminum silicate. Local reactions do not have the expected effect.
【0009】[0009]
【作用】本発明において生成するけい酸ナトリウムの沈
澱の形態はかならずしも明かではないが、実際に次亜塩
素酸ナトリウム溶液中で生成した沈澱の組成分析を行っ
た結果によると、Si、AL以外に問題となっているF
e、Niの他に多量のNa、Ca、Mg等のカチオン物
質が含まれていて非常に吸着性のよい化合物が生成して
いると考えられる。しかしながら、予め希薄な苛性ソー
ダ溶液中でアルミン酸ナトリウムとけい酸ナトリウムを
反応させてこの沈澱を生成させ、これを次亜塩素酸ナト
リウム溶液に加えても同様の効果はうすく、次亜塩素酸
ナトリウム溶液中で反応生成する沈澱に格別の効果を生
む作用が存在すると思われる。Although the form of the precipitate of sodium silicate formed in the present invention is not always clear, according to the result of the composition analysis of the precipitate actually formed in the sodium hypochlorite solution, it was found that other than Si and AL, F in question
It is considered that a large amount of cationic substances such as Na, Ca, and Mg are contained in addition to e and Ni, so that a compound having a very high adsorptivity is generated. However, the same effect can be obtained by reacting sodium aluminate and sodium silicate in a dilute sodium hydroxide solution in advance to form this precipitate, and adding this to the sodium hypochlorite solution. It seems that there is an effect that produces a special effect on the precipitate formed by the reaction.
【0010】[0010]
【実施例】次に実施例および比較例により本発明を説明
する。なお、例中%は断りのないかぎり重量%を示す。 実施例1 イオン交換膜電解法で製造し、濃縮装置を用いて濃縮さ
れた48.5%苛性ソーダから製造した、有効塩素濃度
13.55%の低食塩次亜塩素酸ナトリウム溶液(以下
の実施例比較例においても同じ溶液を使用した)2.5
キログラムに対しアルミン酸ナトリウム (モル比:N
a2O/AL2O3=1.42、AL2O3:22%、以下
の実施例比較例においても同じ溶液を使用した)75ミ
リグラムを加え10分間かき混ぜた後、3号けい酸ナト
リウム(モル比:SiO2/Na2O=3.3、 SiO
2:29%、以下の実施例比較例においても同じ溶液を
使用した)を87ミリグラムを次亜塩素酸ナトリウム溶
液をかき混ぜながら1分間かけて加えた。白色の沈澱が
生じた。これをグラス繊維フィルター(アドバンテック
製GF−100;ろ過孔径1ミクロン)でろ過して濁り
のない次亜塩素酸ナトリウム溶液を得た。Next, the present invention will be described with reference to Examples and Comparative Examples. In the examples,% indicates weight% unless otherwise specified. Example 1 A low-sodium sodium hypochlorite solution having an effective chlorine concentration of 13.55% manufactured from 48.5% caustic soda manufactured by an ion exchange membrane electrolysis method and concentrated using a concentrator (the following example) The same solution was used in the comparative example) 2.5
Sodium aluminate per kilogram (molar ratio: N
a 2 O / AL 2 O 3 = 1.42, AL 2 O 3 : 22%, the same solution was used in the following Examples and Comparative Examples), 75 mg was added, and the mixture was stirred for 10 minutes. (Molar ratio: SiO 2 / Na 2 O = 3.3, SiO
(29: 29%, the same solution was used in the following Examples and Comparative Examples) was added over 1 minute while stirring the sodium hypochlorite solution. A white precipitate formed. This was filtered through a glass fiber filter (GF-100 manufactured by Advantech; filtration pore size: 1 micron) to obtain a turbidity-free sodium hypochlorite solution.
【0011】比較例1 低食塩次亜塩素酸ナトリウム溶液をグラス繊維フィルタ
ーでろ過して濁りのない次亜塩素酸ナトリウム溶液を得
た。Comparative Example 1 A low-sodium sodium hypochlorite solution was filtered through a glass fiber filter to obtain a cloudless sodium hypochlorite solution.
【0012】比較例2 低食塩次亜塩素酸ナトリウム溶液2.5キログラムに対
しアルミン酸ナトリウム 100ミリグラムを加え10
分間かき混ぜた後、グラス繊維フィルターでろ過して濁
りのない次亜塩素酸ナトリウム溶液を得た。Comparative Example 2 100 mg of sodium aluminate was added to 2.5 kg of a low salt sodium hypochlorite solution, and
After stirring for minutes, the mixture was filtered through a glass fiber filter to obtain a cloudless sodium hypochlorite solution.
【0013】比較例3 低食塩次亜塩素酸ナトリウム溶液2.5キログラムに対
し3号けい酸ナトリウムを100ミリグラムを加え10
分間かき混ぜた後、グラス繊維フィルターでろ過して濁
りのない次亜塩素酸ナトリウム溶液を得た。Comparative Example 3 100 mg of No. 3 sodium silicate was added to 2.5 kg of a low salt sodium hypochlorite solution, and
After stirring for minutes, the mixture was filtered through a glass fiber filter to obtain a cloudless sodium hypochlorite solution.
【0014】比較例4 低食塩次亜塩素酸ナトリウム溶液2.5キログラムに対
し塩化マグネシウムの10%溶液500ミリグラムを加
え10分間かき混ぜた後、生じた白色の沈澱ををグラス
繊維フィルターでろ過して濁りのない次亜塩素酸ナトリ
ウム溶液を得た。Comparative Example 4 500 mg of a 10% magnesium chloride solution was added to 2.5 kg of a low-sodium sodium hypochlorite solution, and the mixture was stirred for 10 minutes. The resulting white precipitate was filtered through a glass fiber filter. A turbid sodium hypochlorite solution was obtained.
【0015】比較例5 低食塩次亜塩素酸ナトリウム溶液2.5キログラムに対
し3号けい酸ナトリウムを100ミリグラム加え10分
間かき混ぜた後、塩化マグネシウムの10%溶液500
ミリグラムを次亜塩素酸ナトリウム溶液をかき混ぜなが
ら1分間かけて加えた。生じた白色の沈澱をグラス繊維
フィルターでろ過して濁りのない次亜塩素酸ナトリウム
溶液を得た。Comparative Example 5 100 mg of No. 3 sodium silicate was added to 2.5 kg of a low-sodium sodium hypochlorite solution, and the mixture was stirred for 10 minutes.
Milligrams were added over 1 minute while stirring the sodium hypochlorite solution. The resulting white precipitate was filtered through a glass fiber filter to obtain a cloudless sodium hypochlorite solution.
【0016】比較例6 低食塩次亜塩素酸ナトリウム溶液に対しとくになんら処
理を施さなかった。わずかに赤みを帯びた色調を呈して
いる他、沈降しにくい非常に微細な浮遊固形分の存在か
確認された。Comparative Example 6 No treatment was applied to the low salt sodium hypochlorite solution. In addition to having a slightly reddish color tone, the presence of very fine suspended solids that did not easily settle was confirmed.
【0017】実施例2〜8 また次亜塩素酸ナトリウム溶液に対しアルミン酸ナトリ
ウム と3号けい酸ナトリウムの添加量および比率(モ
ル比)を(表1)のように変化させて調整し実施例1と
同様にろ過を行った。Examples 2 to 8 In addition, the amounts and the ratios (molar ratios) of sodium aluminate and sodium silicate No. 3 to the sodium hypochlorite solution were adjusted as shown in Table 1 and adjusted. Filtration was performed as in 1.
【0018】[0018]
【表1】 [Table 1]
【0019】以上のようにして準備した各種次亜塩素酸
ナトリウム溶液をイオン交換水を用いて有効塩素濃度6
%に希釈したのち、容量1Lのガス発生速度測定瓶に入
れ、50℃の恒温槽に浸し、大気圧と均圧下に測定瓶上
部の目盛付きシリンダーに発生ガスを集め経時変化を測
定した。結果を(図1)(図2)に示す。The various sodium hypochlorite solutions prepared as described above were subjected to an effective chlorine concentration of 6 using ion-exchanged water.
%, The mixture was put into a 1 L gas generation rate measuring bottle, immersed in a 50 ° C. constant temperature bath, and the generated gas was collected in a cylinder with a scale above the measuring bottle under atmospheric pressure and pressure equalization, and the change with time was measured. The results are shown in FIG. 1 and FIG.
【0020】(図1)(図2)に示されるように各実施
例のものは24時間後において酸素発生量は少量であ
り、他方各比較例のものは12時間後においても酸素発
生量は多いことが判る。As shown in FIG. 1 and FIG. 2, each of the examples has a small amount of oxygen generated after 24 hours, while each of the comparative examples has a small amount of generated oxygen even after 12 hours. It turns out that there are many.
【0021】また、別に保存した次亜塩素酸ナトリウム
溶液を10日後に観察すると、実施例1〜8のものはな
んら変化が観察されなかったのに対し、比較例1〜6の
ものは微量ではあるが新たに浮遊固形物が生成している
ことが認められた。When the separately stored sodium hypochlorite solution was observed 10 days later, no change was observed in Examples 1 to 8, whereas a slight amount was observed in Comparative Examples 1 to 6. However, it was confirmed that suspended solids were newly formed.
【0022】[0022]
【発明の効果】本発明の方法によれば次亜塩素酸ナトリ
ウム溶液の酸素ガス発生を伴う分解反応を著しく抑制し
て安定化させることができる。また本発明の方法で生成
された沈澱は多孔質で、不純物を強固に吸着し容易にろ
過を行うことができる。According to the method of the present invention, the decomposition reaction of the sodium hypochlorite solution accompanying the generation of oxygen gas can be remarkably suppressed and stabilized. Further, the precipitate formed by the method of the present invention is porous and strongly adsorbs impurities and can be easily filtered.
【図1】実施例1と各比較例の酸素ガス発生量の経時変
化を示すグラフである。FIG. 1 is a graph showing the change over time in the amount of generated oxygen gas in Example 1 and Comparative Examples.
【図2】実施例2〜8の酸素ガス発生量の経時変化を示
すグラフである。FIG. 2 is a graph showing the change over time in the amount of generated oxygen gas in Examples 2 to 8.
Claims (2)
ナトリウムおよびけい酸ナトリウムを加え不溶性沈澱を
生ぜしめ、これをろ過することを特徴とする次亜塩素酸
ナトリウム溶液の安定化方法。1. A method for stabilizing a sodium hypochlorite solution, comprising adding sodium aluminate and sodium silicate to a sodium hypochlorite solution to form an insoluble precipitate and filtering the precipitate.
ムのモル比が実質的にSiO2/AL2O3=1〜10とな
るように加えることを特徴とする請求項1に記載の次亜
塩素酸ナトリウム溶液の安定化方法。2. The hypochlorous acid according to claim 1, wherein the sodium silicate and the sodium aluminate are added in such a manner that the molar ratio thereof is substantially SiO 2 / AL 2 O 3 = 1 to 10. Method of stabilizing sodium solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5077961A JP2910493B2 (en) | 1993-04-05 | 1993-04-05 | Stabilization method of sodium hypochlorite solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5077961A JP2910493B2 (en) | 1993-04-05 | 1993-04-05 | Stabilization method of sodium hypochlorite solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06293502A JPH06293502A (en) | 1994-10-21 |
JP2910493B2 true JP2910493B2 (en) | 1999-06-23 |
Family
ID=13648578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5077961A Expired - Fee Related JP2910493B2 (en) | 1993-04-05 | 1993-04-05 | Stabilization method of sodium hypochlorite solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2910493B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0743279A1 (en) * | 1995-05-16 | 1996-11-20 | The Procter & Gamble Company | Process for the manufacture of hypochlorite bleaching compositions |
EP0743280A1 (en) * | 1995-05-16 | 1996-11-20 | The Procter & Gamble Company | Process for the manufacture of hypochlorite bleaching compositions |
JP5379399B2 (en) * | 2008-04-24 | 2013-12-25 | 株式会社ワイドハーバー | Storage device for sodium hypochlorite solution added to tap water |
-
1993
- 1993-04-05 JP JP5077961A patent/JP2910493B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06293502A (en) | 1994-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0085592A1 (en) | Boehmites and extremely pure pseudoboehmites, and process for their manufacture | |
CA2736379C (en) | Process for the production of high purity magnesium hydroxide | |
AU2009202715A1 (en) | Method of producing decolored sodium aluminate solution | |
JP2910493B2 (en) | Stabilization method of sodium hypochlorite solution | |
US4337236A (en) | Process for manufacture of calcium hypochlorite | |
US4274929A (en) | Chemical removal of silicon from waste brine stream for chlor-alkali cell | |
US4490337A (en) | Preparation of cupric hydroxide | |
CZ293656B6 (en) | Process for preparing polyaluminium chlorosulfate of high basicity and use of such compound | |
KR100404970B1 (en) | Co-production method of calcium carbonate and sodium hydroxide | |
CN109195905B (en) | Surface modified sodium hypochlorite pentahydrate crystal and method for producing same | |
JP3229277B2 (en) | Wastewater treatment method | |
JP6682714B1 (en) | Method for producing highly basic aluminum chloride | |
EP0673879B1 (en) | Process for the preparation of calcium salts with a small content of aluminium | |
US3872219A (en) | Process for manufacturing of chlorinated lime solution | |
US4108792A (en) | Calcium hypochlorite composition containing magnesium and process for making same | |
JP2020050540A (en) | Highly basic aluminum chloride and method for producing the same | |
JP4468568B2 (en) | Water treatment flocculant, method for producing the same, and water treatment method | |
US6746592B1 (en) | Process for removing aluminum species from alkali metal halide brine solutions | |
US5356610A (en) | Method for removing impurities from an alkali metal chlorate process | |
US5254321A (en) | Process for chromium removal using an inorganic sulfur compound | |
CN114873620B (en) | Adsorbent, method for preparing aluminum hydroxide and application | |
JPH0234881B2 (en) | ||
JPS60195024A (en) | Preparaion of cobalt hydroxide | |
US3557010A (en) | Removal of iron from hypochlorite solutions | |
CN115231685B (en) | Method for removing heavy metal nickel ions in wastewater by oxidation/adsorption method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |