JP2908454B2 - Thermally bonded nonwoven fabric with excellent bulkiness, easy compressibility, and easy recovery from compression - Google Patents
Thermally bonded nonwoven fabric with excellent bulkiness, easy compressibility, and easy recovery from compressionInfo
- Publication number
- JP2908454B2 JP2908454B2 JP63124648A JP12464888A JP2908454B2 JP 2908454 B2 JP2908454 B2 JP 2908454B2 JP 63124648 A JP63124648 A JP 63124648A JP 12464888 A JP12464888 A JP 12464888A JP 2908454 B2 JP2908454 B2 JP 2908454B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- easy
- hollow
- nonwoven fabric
- compression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Multicomponent Fibers (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は嵩高性,易圧縮性,圧縮易回復性に優れた熱
接着不織布に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat-bonded nonwoven fabric excellent in bulkiness, easy compressibility, and easy recovery from compression.
[従来の技術] 熱接着不織布用の熱接着性繊維については、例えば特
開昭57−6617号,同57−210015号,同57−95311号,同5
7−95312号,同58−23917号同58−41912号,同58−2031
17号,同61−201015号,同62−69822号,同62−156310
号,同62−184119号等に開示されている。これらに開示
されている熱接着性繊維の構造はシース・コア・コンジ
ュゲートあるいはサイド・バイ・サイド・コンジュゲー
ト構造になっていると共にいずれも中実となっているの
で嵩高性に劣り、また易圧縮性および圧縮易回復性にも
欠けるものであった。[PRIOR ART] Heat-bondable fibers for heat-bonding nonwoven fabrics are described in, for example, JP-A-57-6617, JP-A-57-210015, JP-A-57-95311, and JP-A-5-95311.
7-95312, 58-23917, 58-41912, 58-2031
No. 17, 61-201015, 62-69822, 62-156310
And No. 62-184119. The structure of the heat-adhesive fiber disclosed therein has a sheath-core conjugate structure or a side-by-side conjugate structure, and since both are solid, they are inferior in bulkiness and easy to use. It also lacked compressibility and recoverability from compression.
一方嵩高性,易圧縮性,圧縮易回復性に優れた中空複
合繊維が特公昭45−30048号,同45−20128号,同47−17
089号,特開昭61−152824号等の公報に開示されてお
り、これらの技術に関する改良研究は継続してなされて
いるが、未だ嵩高性,易圧縮性,圧縮易回復性に十分優
れているというものがないのが現状である。またこれら
の繊維は元々熱接着不織布用の熱接着性繊維として開発
されたものではないので、熱接着不織布用としての配慮
に欠け、当然上記繊維から得られる熱接着不織布は嵩高
性や易圧縮性,圧縮易回復性に十分優れているものでは
なく、また不織布を製造した場合には寸法安定性に欠け
るものであった。On the other hand, hollow composite fibers having excellent bulkiness, easy compressibility, and easy recovery from compression are disclosed in JP-B-45-30048, JP-B-45-20208, and JP-B-47-17.
No. 089, Japanese Patent Application Laid-Open No. Sho 61-152824, etc., and improvement studies on these techniques are continuously conducted, but they are still sufficiently excellent in bulkiness, easy compressibility, and easy recovery from compression. At present there is no such thing. Also, since these fibers were not originally developed as heat-adhesive fibers for heat-bonded non-woven fabrics, they lacked consideration for heat-bonded non-woven fabrics. Naturally, heat-bonded non-woven fabrics obtained from the above fibers were bulky and easily compressible. However, the non-woven fabric was not sufficiently excellent in compressibility / recoverability, and lacked dimensional stability when a nonwoven fabric was manufactured.
[発明が解決しようとする課題] そこで本発明においては嵩高性,易圧縮性,圧縮易回
復性に加えて寸法安定性にも優れた不織布を提供すべく
検討した。[Problems to be Solved by the Invention] Therefore, in the present invention, it has been studied to provide a nonwoven fabric which is excellent in dimensional stability in addition to bulkiness, easy compressibility, easy recovery from compression.
[課題を解決するための手段] 上記課題を解決することのできた本発明の嵩高性、易
圧縮性、及び圧縮易回復性に優れた熱接着不織布とは、
相溶性を有し融点または軟化点が39℃以上異なる二つの
重合体からなるサイドバイサイド型熱接着性複合繊維を
用いて得られる熱接着不織布であって、該繊維は前記二
つの重合体に跨がる連続中空を長さ方向に有し、該繊維
横断面における前記中空の中空率が10%以上であること
を構成要旨とするものである。ここで、融点または軟化
点が39℃以上異なる二つの重合体からなるものは、本発
明の好ましい態様である。更に、上記複合繊維を用いて
得られる熱接着不織布も本発明の範囲内に包含される。[Means for Solving the Problems] The heat-bonded nonwoven fabric having excellent bulkiness, easy compressibility, and easy recovery from compression according to the present invention, which can solve the above problems,
A heat-bonded nonwoven fabric obtained by using a side-by-side type heat-bondable conjugate fiber composed of two polymers having compatibility and a melting point or a softening point different from each other by 39 ° C. or more, wherein the fiber straddles the two polymers. A continuous hollow in the longitudinal direction, and the hollow ratio of the hollow in the cross section of the fiber is 10% or more. Here, a polymer composed of two polymers having different melting points or softening points by 39 ° C. or more is a preferred embodiment of the present invention. Furthermore, a heat-bonded nonwoven fabric obtained using the above-mentioned conjugate fiber is also included in the scope of the present invention.
[作用] 本発明に用いられる中空複合繊維とはその断面形状が
例えば第1図(a)または(b)に示すように、二つの
重合体A,Bが接合されたサイド・バイ・サイド型複合構
造となっており、中空1がこれら二つの重合体に跨がっ
て繊維の長さ方向に連続して形成されている。[Operation] The hollow conjugate fiber used in the present invention has a cross-sectional shape of, for example, a side-by-side type in which two polymers A and B are joined as shown in FIG. 1 (a) or (b). It has a composite structure, and the hollow 1 is formed continuously over the two polymers in the longitudinal direction of the fiber.
前記複合繊維を構成する二つの重合体は互いに相溶性
を有し、融点または軟化点が20℃以上異なるものであ
る。本発明に用いられる中空複合繊維は前記のようにサ
イド・バイ・サイド型となっているので、2つの重合体
に相溶性がないと、両重合体の接合剥離を生ずる。従っ
て二つの重合体の相溶性は特に重要である。The two polymers constituting the conjugate fiber are compatible with each other, and have different melting points or softening points by 20 ° C. or more. Since the hollow conjugate fiber used in the present invention is of the side-by-side type as described above, if the two polymers are not compatible, the separation of the two polymers occurs. Therefore, the compatibility of the two polymers is particularly important.
ところで中空複合繊維は例えば2種類の重合体を二機
の押出機で別々に溶融し、ブロックで合流させて第2図
に示すようなC型ノズルから両重合体をサイド・バイ・
サイド型に複合紡糸して得ることができ、その断面形状
は前述した様になる。この時C型ノズルを中心線で左右
A′,B′に分け、A′側から吐出される成分を重合体A
とし、B′側から吐出される成分を重合体Bとすると
A′側から吐出した重合体Aが流動して接着し第1図の
様な中空糸を形成する。(以下重合体Aを接着成分Aと
記す。一方重合体Bよりなる成分は半円状に湾曲し中空
複合繊維の軸に対して直角方向からの圧縮に対する回復
性を発揮する成分となるので骨格成分Bと記す)。By the way, as for the hollow conjugate fiber, for example, two kinds of polymers are separately melted by two extruders, merged by a block, and both polymers are side-by-side from a C-type nozzle as shown in FIG.
It can be obtained by compound spinning into a side mold, and its cross-sectional shape is as described above. At this time, the C-type nozzle is divided into left and right A 'and B' at the center line, and the component discharged from the A 'side is polymer A.
When the component discharged from the B 'side is a polymer B, the polymer A discharged from the A' side flows and adheres to form a hollow fiber as shown in FIG. (Hereinafter, the polymer A is referred to as an adhesive component A. On the other hand, the component composed of the polymer B is a component which exhibits a resilience to compression from a direction perpendicular to the axis of the hollow conjugate fiber because it is curved in a semicircular shape. Component B).
この際接着成分Aの融点または軟化点が骨格成分Bの
それよりも20℃以上低くないと十分に流動して接着する
ことができない。また中空率が10%以上、好ましくは20
%以上になるように形成させないと接着成分Aおよび骨
格成分Bに跨がるような中空が形成されないと共に、骨
格成分の湾曲性が不十分となり繊維の圧縮に対する回復
能(圧縮易回復性)が低下する。At this time, if the melting point or softening point of the adhesive component A is lower than that of the skeletal component B by 20 ° C. or more, the adhesive component A cannot sufficiently flow and adhere. The hollow ratio is 10% or more, preferably 20%
% Or less, a hollow straddling the adhesive component A and the skeleton component B is not formed, and the skeleton component is insufficiently curved, and the ability to recover the fiber from compression (easy to recover from compression) is reduced. descend.
上記接着成分および骨格成分として用いることのでき
る重合体は相溶性を有し融点または軟化点が20℃以上異
なっているものであれば良く、例えばポリエステル系で
はその酸成分がテレフタル酸/イソフタル酸95/5〜30/7
0である改質ポリエステルやこれにポリブチレンテレフ
タレートを混合したものを接着成分Aとし、ポリエチレ
ンテレフタレートを骨格成分Bとする。またポリオレフ
ィン系ではポリエチレン(接着成分A)とポリプロピレ
ン(骨格成分B)の組合せ、或は改質ポリエチレンや改
質ポリプロピレン(接着成分A)と非改質ポリエチレン
やポリプロピレン(骨格成分B)の組合わせ等が例示さ
れる。また用途との関連において吸水性を付与するため
にポリビニルアルコールを添加したり、その他相溶性の
良い第3成分を添加することができる。The polymer which can be used as the adhesive component and the skeletal component may be one having compatibility and different in melting point or softening point by 20 ° C. or more. For example, in the case of polyester, the acid component is terephthalic acid / isophthalic acid 95 / 5-30 / 7
The modified polyester which is 0 or a mixture of the modified polyester and polybutylene terephthalate is used as the adhesive component A, and the polyethylene terephthalate is used as the skeleton component B. For polyolefins, a combination of polyethylene (adhesive component A) and polypropylene (skeleton component B), or a combination of modified polyethylene or modified polypropylene (adhesive component A) with unmodified polyethylene or polypropylene (skeleton component B), etc. Is exemplified. Further, polyvinyl alcohol may be added to impart water absorption in relation to the use, or a third component having good compatibility may be added.
中空複合繊維を製造する際の紡糸ノズルとしては公知
のものを使用することができるが、繊維の断面形状は主
にノズル形状によって決まるのでノズルの選択は重要で
ある。また二つの溶融重合体のノズルからの吐出量や粘
度も中空部形状に大きな影響を及ぼすので紡糸時の重合
体の粘度やオリフィス流入配分も考慮して設定する必要
がある。例えば第1図(a)は接着成分が低粘度である
場合における繊維断面形状、(b)は接着成分が高粘度
である場合であり、(a)では骨格成分の湾曲度が大き
くなっており、(b)では骨格成分の湾曲度が小さくな
っている。Known spinning nozzles for producing hollow conjugate fibers can be used, but selection of the nozzle is important because the cross-sectional shape of the fiber is mainly determined by the nozzle shape. Also, the discharge amount and the viscosity of the two molten polymers from the nozzle have a great influence on the shape of the hollow portion. Therefore, it is necessary to consider the viscosity of the polymer during spinning and the distribution of the orifice flow. For example, FIG. 1 (a) shows a fiber cross-sectional shape when the adhesive component has a low viscosity, FIG. 1 (b) shows a case where the adhesive component has a high viscosity, and FIG. In (b), the degree of curvature of the skeleton component is small.
紡糸温度は前記ポリエステル系では、275〜290℃,ポ
リオレフィン系では180〜290℃が適切である。紡糸温度
は重合体の溶融粘度によって左右され、且つ繊維断面形
状を左右するので好適な紡糸温度を選ぶことは大切であ
る。The spinning temperature is suitably 275 to 290 ° C for the polyester type and 180 to 290 ° C for the polyolefin type. Since the spinning temperature depends on the melt viscosity of the polymer and affects the fiber cross-sectional shape, it is important to select a suitable spinning temperature.
紡糸速度は500〜6000m/分、好ましくは1500〜5000m/
分とする。6000m超/分では糸切れ等の問題が発生し、5
00m未満/分では生産性に劣る。Spinning speed is 500-6000m / min, preferably 1500-5000m /
Minutes. If the speed exceeds 6000m / min, problems such as thread breakage may occur.
If it is less than 00 m / min, productivity is poor.
前記のように紡糸して引取った後、ドローフレーム方
式やデイレクトドロー方式等で一段または二段延伸す
る。延伸温度は低融点側のまたは低軟化点側重合体が接
着しない温度例えばポリエステル系では50〜120℃、ポ
リオレフィン系では40〜100℃で行う。延伸倍率は未延
伸残を生じない為に破断延伸倍率の0.6倍以上、単糸切
れ,剥離を生じない為に0.85倍以下とすることが好まし
い。尚紡糸巻取時に立体巻縮が繊維に表われることがあ
るがカード通過性に問題を生じない程度の立体巻縮なら
ば不織布として用いることができるので、通常の紡糸速
度以上で且つ糸切れが発生しない程度の高速度で紡糸し
未延伸のままで直接巻き取ることもでき、この様な方法
であっても配向・結晶化した中空複合繊維を作成するこ
ともできる。繊維径は用途に応じて調整するものである
が、よりソフトなものとするには3デニール以下とする
のが好ましい。After spinning and drawing as described above, it is stretched in one or two steps by a draw frame method, a direct draw method, or the like. The stretching temperature is a temperature at which the polymer on the low melting point side or the polymer at the low softening point does not adhere, for example, 50 to 120 ° C. for a polyester type and 40 to 100 ° C. for a polyolefin type. The stretching ratio is preferably 0.6 times or more of the breaking stretching ratio so as not to cause unstretched residue, and 0.85 times or less so as not to cause breakage and peeling of a single yarn. In addition, three-dimensional crimps may appear on the fiber during spinning, but if the three-dimensional crimps are of a degree that does not cause a problem in card passability, they can be used as a nonwoven fabric. It can be spun at such a high speed that it does not occur and can be directly wound up in an undrawn state. Even with such a method, a hollow composite fiber oriented and crystallized can be produced. The fiber diameter is adjusted according to the application, but is preferably 3 denier or less to make the fiber softer.
以上のようにして二つの重合体よりなり、二つの重合
体に跨がり、繊維の長さ方向に連続した中空を有する接
合型複合繊維を得ることができる。該繊維は配向してお
り、熱収縮差の異なる二成分よりなるので熱処理に対し
て立体螺旋巻縮能を有する。このときの立体螺旋巻縮
は、繊維の接着温度より約10℃低い温度で無緊張下で熱
処理した時に発現する立体螺旋巻縮の曲率半径の逆数
(1/ρ)が0.5〜5mm-1となるようにするのが好ましく、
このような値が得られる収縮差となるように二つの重合
体を組合わせることが必要である。また骨格成分が湾曲
しているのでねじりモーメントを小さくすることがで
き、ことことは易圧縮性にとって好ましい特性である。As described above, it is possible to obtain a bonded conjugate fiber composed of two polymers, straddling the two polymers, and having a hollow continuous in the fiber length direction. Since the fibers are oriented and are composed of two components having different heat shrinkage differences, they have a three-dimensional helical crimping ability for heat treatment. In this case, the reciprocal (1 / ρ) of the radius of curvature of the three-dimensional helical crimp developed when heat-treated without tension at a temperature about 10 ° C. lower than the bonding temperature of the fiber is 0.5 to 5 mm −1 . Preferably
It is necessary to combine the two polymers so that such a value results in a shrinkage difference. In addition, since the skeleton component is curved, the torsional moment can be reduced, which is a preferable characteristic for easy compression.
さらに中空複合繊維に通常の方法例えば押込みクリン
パー等で機械巻縮を加え巻縮繊維とし、用途に応じた長
さに切断してステープルとする。巻縮数は8個以上/イ
ンチ,巻縮率は5%以上とするのが好ましい。なぜなら
ばこれら数値に達しないとカードウェブ化時における開
繊絡合性が維持できないことと、機械巻縮付与時におけ
る座屈点が熱処理時に立体螺旋巻縮発現の核となり、こ
の核が立体巻縮発現性をコントロールするからである。Further, the hollow conjugate fiber is mechanically crimped by a usual method, for example, a press crimper or the like, to be a crimped fiber, and cut into a length according to the application to form a staple. The number of crimps is preferably 8 or more / inch, and the crimp ratio is preferably 5% or more. The reason for this is that if these values are not reached, the spreading entanglement during card web formation cannot be maintained, and the buckling point at the time of mechanical crimping becomes the nucleus of the three-dimensional helical crimp during heat treatment. This is because shrinkage is controlled.
得られたステープルをカード開繊してウェブを作成
し、該ウェブを単層あるいは開繊方向に対して交互に積
層し、接着成分の融点または軟化点+20℃前後で1〜30
分間乾熱処理して熱接着不織布とする。この際前記の様
にして得た中空複合繊維以外の他の繊維を複合して用い
ても良いが接着性を有するものを選ぶ必要がある。また
カード開繊時の伸張歪は前述の立体螺旋巻縮発現能に加
えて立体螺旋巻縮発現の要因となる。この乾熱処理時複
合繊維自身の持つ立体螺旋巻縮が発現し、機械巻縮に立
体螺旋巻縮が付加されてよりバルキー性に富んだものと
なる。また繊維同士が接着する際は低融点あるいは低軟
化点成分同士のみが接着するだけであるから、圧縮変形
下における一本一本の繊維の動く自由度は大きくなり、
このことも中空複合繊維自体の嵩高性,易圧縮性,圧縮
易回復性および巻縮による嵩高性,易圧縮性と圧縮易回
復性に加味されるので、より嵩高性,易圧縮性,圧縮易
回復性に優れたものとなる。またこのようにして得られ
た不織布は繊維の巻縮(機械巻縮+立体巻縮)による絡
みあいと熱接着により寸法安定性に優れたものとなる。The obtained staples are opened by carding to form a web, and the webs are laminated in a single layer or alternately in the opening direction, and the melting point or softening point of the adhesive component is increased by about 1 to 30 at about + 20 ° C.
Heat-bonded non-woven fabric for 10 minutes. At this time, fibers other than the hollow composite fibers obtained as described above may be used in combination, but it is necessary to select a fiber having adhesiveness. In addition, the expansion strain at the time of opening the card causes the three-dimensional spiral crimping in addition to the above-mentioned three-dimensional spiral crimping ability. At the time of this dry heat treatment, the three-dimensional spiral crimp of the composite fiber itself appears, and the three-dimensional spiral crimp is added to the mechanical crimp, resulting in a more bulky property. Also, when fibers are bonded together, only the low melting point or low softening point components are bonded together, so the degree of freedom of movement of each fiber under compression deformation increases,
This is also taken into account the bulkiness, easy compressibility, easy compressibility and recoverability of the hollow composite fiber itself, and bulkiness due to crimping, easy compressibility, and easy compressibility and recovery. It becomes excellent in recoverability. Further, the nonwoven fabric thus obtained has excellent dimensional stability due to entanglement due to fiber crimping (mechanical crimping + three-dimensional crimping) and thermal bonding.
上記のようにして得た不織布を中綿,衛材,ディスポ
用品等に適用すると嵩高で、易圧縮性および圧縮易回復
性に優れたものとなると共に寸法安定性に優れた製品と
なる。When the nonwoven fabric obtained as described above is applied to batting, sanitary materials, disposable articles, and the like, the nonwoven fabric becomes bulky, has excellent compressibility and recoverability easily, and has excellent dimensional stability.
[実施例] 以下本発明の実施例について述べる。尚本発明におけ
る特性評価法は以下のごとくである。[Example] An example of the present invention will be described below. The characteristic evaluation method in the present invention is as follows.
(1)相溶性 異なる重合体よりなる二枚のフィルムを積層し、融点
以上,プレス圧5kg/cm2で30分以上熱処理した後、幅2c
m,長さ5cmフィルムにおける両成分の剥離強度が 500以上(g):相溶性ありとして○ 200〜500未満(g):相溶性やや有りとして△ 200以下(g):相溶性無しとして× とした。(1) Compatibility Two films composed of different polymers are laminated and heat-treated at a pressure of 5 kg / cm 2 for 30 minutes or more at a melting point or higher, and then a width 2c.
The peel strength of both components in a m, 5 cm long film is 500 or more (g): compatible 200 to less than 500 (g): slightly compatible △ 200 or less (g): not compatible did.
(2)融点差 二つの重合体試料2mgを示差熱測定装置(DSC)で300
℃で30分保持した後5℃/分で降温した時第1吸熱ピー
ク温度を温度をTm1,第2吸熱ピーク温度をTm2としTm1−
Tm2を二成分の融点差とした。(2) Melting point difference Two polymer samples (2 mg) were measured with a differential thermal analyzer (DSC).
After holding at 30 ° C. for 30 minutes, when the temperature was lowered at 5 ° C./min, the first endothermic peak temperature was Tm 1 and the second endothermic peak temperature was Tm 2 , and Tm 1 −
Tm 2 was taken as the difference between the two melting points.
(3)中空率 中空複合繊維をアクリル系樹脂で包みこみ、該樹脂を
40℃以下で硬化せしめた後5〜20μmの薄片に切り出し
200×10倍の繊維断面顕微鏡写真における繊維全体の断
面積Soと中空部断面積Siを求め次式で計算した。(3) Hollow ratio Wrapped hollow composite fiber with acrylic resin
After curing at 40 ° C or less, cut out into 5-20μm slices
The cross-sectional area So of the entire fiber and the cross-sectional area Si of the hollow portion in the fiber cross-sectional micrograph of 200 × 10 times were obtained and calculated by the following equation.
(4)立体螺旋巻縮発現能 中空複合繊維繊維を無緊張状態で低融点または低軟化
点成分の融点または軟化点−10℃で乾熱処理した後、第
3図に示すような投影図を得、ディメンジョンD,Lを求
め次式にて曲率半径の逆数1/ρ求めた。 (4) Three-dimensional helical crimping ability After the hollow conjugate fiber is subjected to dry heat treatment at a low melting point or a softening point of a low melting point component or a softening point of −10 ° C. in a non-tension state, a projection view as shown in FIG. 3 is obtained. , Dimensions D and L were determined, and the reciprocal 1 / ρ of the radius of curvature was determined by the following equation.
(5)嵩高性 ステープル化した繊維をカードで開繊し、目付量50g/
m2となるようにウェブを作成し、融点また軟化点+20℃
で10分間乾熱処理後冷却し、繊維の開繊方向に対して交
互に重ね合わせ、0.6g/m2荷重下における崇密度(cm3/
g)を求めた。この時 120以上(cm3/g):嵩高性良好として◎ 100〜120未満(cm3/g):嵩高性やや良好として○ 70〜100c未満(m3/g):嵩高性やや悪いとして△ 70未満(cm3/g):嵩高性悪いとして× とした。 (5) Bulkiness Open the staple fiber with a card, and weigh 50 g /
Create a web such that m 2, melting point also softening point + 20 ° C.
After drying and heat treatment for 10 minutes at room temperature, the fibers are alternately superposed in the fiber opening direction, and the density under a load of 0.6 g / m 2 (cm 3 /
g). At this time more than 120 (cm 3 / g): lower than ◎ 100 to 120 as bulky good (cm 3 / g): less than ○ 70~100C as bulkiness somewhat better (m 3 / g): was slightly inferior bulkiness △ Less than 70 (cm 3 / g): Poor bulkiness was evaluated as x.
(6)易圧縮性 前記(5)で作成したウェブを25g/cm2荷重下で測定
した嵩密度(cm3/g)と前記(5)で求めた嵩密度(cm3
/g)の差が 50以上(cm3/g):ソフト性良好として◎ 25〜50未満(cm3/g):ソフト性やや良好として○ 15〜25未満(cm3/g):ソフト性やや悪いとして△ 15未満(cm3/g):ソフト性悪いとして× で評価した (7)立体螺旋巻縮発現状態 前記(5)で得た乾熱処理後ウェブの繊維を実体顕微
鏡下50倍で観察し、下記のようにランクづけした。(6) Bulk density was determined by the the bulk density of the web created was measured under 25 g / cm 2 load (cm 3 / g) (5) with the easily compressible said (5) (cm 3
/ g) is 50 or more (cm 3 / g): good as softness ◎ 25 to less than 50 (cm 3 / g): slightly good as soft ○ 15 to less than 25 (cm 3 / g): soft Less than △ 15 (cm 3 / g) as slightly poor: poor in softness and evaluated with × (7) Three-dimensional helical crimping state The fiber of the web after the dry heat treatment obtained in (5) above was taken under a stereoscopic microscope at 50 × magnification. Observed and ranked as follows:
立体螺旋巻縮が良好に発現:◎ 立体螺旋巻縮が中程度に発現:○ 立体螺旋巻縮の発現が少ない:△ 立体螺旋巻縮の発現なし:× (8)圧縮易回復性 東洋ボールドウィン社製II型テンシロンを用い前記
(5)で作成したウェブに0〜100g/cm2の荷重を50回く
り返し加えた後、無負荷状態における厚みをti、ウェブ
作成直後無負荷状態における厚みをt0とし(t0−ti)/t
0を求めこの時 0.9以上:回復性良好として◎ 0.7〜0.9未満:回復性やや良好として○ 0.5〜0.7未満:回復性やや悪いとして△ 0.5未満:回復性悪いとして× とした。(但しn=5) 実験No.1〜7 共重合体を構成する酸成分がテレフタル酸/イソフタ
ル酸=70/30である共重合ポリエステル(融点133℃,固
有粘度0.610)を接着成分、ポリエチレンテレフタレー
ト(融点265℃,固有粘度0.620)を骨格成分として複合
比40/60となるようにノズル中空率を変えて、またブロ
ック位置を変えて紡糸温度285℃でC型ノズルより吐出
させ引取り速度1300m/分で引取後、ウェットバス70℃で
2.0〜2.6倍に延伸して中空複合繊維を得、該繊維に機械
巻縮を付与し61mmにカットしステープルを作成した。さ
らに該ステープルを開繊し目付50g/m2のウェブを作成
し、該ウェブを130〜160℃で10分間乾熱処理した。乾熱
処理したウェブを繊維の開繊方向に対して交互に重ねて
熱接着不織布を得た。この際前記工程中で得られる中空
複合繊維および熱接着不織布における各特性を第1表に
示す。Good steric spiral crimping: ◎ Medium steric spiral crimping: ○ Little steric spiral crimping: △ No steric spiral crimping: × (8) Easy recovery from compression Toyo Baldwin After applying a load of 0 to 100 g / cm 2 50 times repeatedly to the web prepared in the above (5) using Type II Tensilon, the thickness in the no-load state is ti, and the thickness in the no-load state immediately after the web preparation is t 0. And (t 0 −t i ) / t
0 was obtained and 0.9 or more at this time: good recoverability ◎ 0.7 to less than 0.9: slightly good recoverability ○ 0.5 to less than 0.7: slightly poor recoverability Δ less than 0.5: poor recoverability was evaluated as x. (Where n = 5) Experiment Nos. 1 to 7 Copolymerized polyester (melting point: 133 ° C., intrinsic viscosity: 0.610) having an acid component of terephthalic acid / isophthalic acid = 70/30 as an adhesive component, polyethylene terephthalate (Melting point: 265 ° C, intrinsic viscosity: 0.620) As a skeleton component, change the nozzle hollow ratio so that the composite ratio becomes 40/60, and change the block position to discharge from the C-type nozzle at a spinning temperature of 285 ° C and take off speed of 1300m / Min after pick-up at 70 ° C in a wet bath
The hollow composite fiber was drawn by a factor of 2.0 to 2.6 to obtain a staple by subjecting the fiber to mechanical crimping and cutting to 61 mm. Further, the staple was opened to prepare a web having a basis weight of 50 g / m 2 , and the web was subjected to dry heat treatment at 130 to 160 ° C. for 10 minutes. The heat-treated nonwoven fabric was obtained by alternately stacking the webs subjected to the dry heat treatment in the fiber opening direction. Table 1 shows the properties of the hollow conjugate fiber and the heat-bonded nonwoven fabric obtained in the above step.
実験No.8〜11 融点121℃の高密度ポリエチレン(MI20,東洋ソーダ社
製)を接着成分とし、融点160℃のポリプロピレン(MI3
0,三井東圧社製)を骨格成分とし紡糸温度220℃で紡糸
し50℃ウェットバスにて延伸する他は前記実験No.1〜7
と同様に処理して複合繊維を得た。各特性を第1表に示
す。Experiment No. 8-11 High-density polyethylene (MI20, manufactured by Toyo Soda Co., Ltd.) with a melting point of 121 ° C was used as an adhesive component, and polypropylene with a melting point of 160 ° C (MI3
0, Mitsui Toatsu Co., Ltd.) as a skeletal component, spinning at a spinning temperature of 220 ° C., and stretching in a 50 ° C. wet bath.
To obtain a composite fiber. Table 1 shows the characteristics.
実験No.12 低密度ポリエチレン(MI22,東洋ソーダ社製)を接着
成分とし高密度ポリエチレン(MI16,東洋ソーダ社製)
を骨格成分として用いる他は実験No.8〜11と同様に処理
した。各特性値を第1表に示す。尚第1表において本発
明で規制した限定内のものを実施例、限定外のものを比
較例とした。Experiment No.12 High-density polyethylene (MI16, manufactured by Toyo Soda) using low-density polyethylene (MI22, manufactured by Toyo Soda) as an adhesive component
Was treated in the same manner as in Experiments Nos. 8 to 11 except that was used as a skeleton component. Table 1 shows each characteristic value. In Table 1, those within the limits regulated by the present invention were regarded as Examples, and those outside the limitations were regarded as Comparative Examples.
第1表から明らかなように本発明の中空複合繊維から
熱接着不織布を作製すると諸特性に優れた不織布が得ら
れることがわかる。As is evident from Table 1, when a heat-bonded non-woven fabric is produced from the hollow conjugate fiber of the present invention, a non-woven fabric excellent in various properties can be obtained.
[発明の効果] 本発明は以上のように構成されているので、本発明の
中空複合繊維を用いると嵩高性,易圧縮性および圧縮易
回復性に、より優れた熱接着不織布を得ることができ、
該熱接着不織布は寸法安定性に優れたものとなる。 [Effect of the Invention] Since the present invention is configured as described above, the use of the hollow conjugate fiber of the present invention makes it possible to obtain a heat-bonded nonwoven fabric which is more excellent in bulkiness, easy compressibility, and easy recovery from compression. Can,
The heat-bonded non-woven fabric has excellent dimensional stability.
第1図(a),(b)は本発明に用いられる中空複合繊
維の横断面図、第2図は本発明に用いられる中空複合繊
維を得るためのノズル平面図、第3図は本発明に用いら
れる中空複合繊維を無緊張状態で熱処理した後における
投影図、第4図は第1表における繊維断面形状を示す図
である。 1……中空、2……接着部1 (a) and 1 (b) are cross-sectional views of the hollow conjugate fiber used in the present invention, FIG. 2 is a plan view of a nozzle for obtaining the hollow conjugate fiber used in the present invention, and FIG. 3 is the present invention. FIG. 4 is a projection view after heat treatment of the hollow conjugate fiber used in the step (1) without tension, and FIG. 4 is a view showing a fiber cross-sectional shape in Table 1. 1 ... hollow, 2 ... bonded part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 真二郎 大阪府大阪市北区堂島浜2丁目2番8号 東洋紡績株式会社本店内 (56)参考文献 特開 昭61−19815(JP,A) 特開 昭48−36418(JP,A) 特開 昭61−245327(JP,A) 特公 昭43−1776(JP,B1) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinjiro Yamazaki 2-2-2 Dojimahama, Kita-ku, Osaka-shi, Osaka Inside Toyobo Co., Ltd. (56) References JP-A-61-19815 (JP, A) JP-A-48-36418 (JP, A) JP-A-61-245327 (JP, A) JP-B-43-1776 (JP, B1)
Claims (1)
異なる二つの重合体からなるサイドバイサイド型熱接着
性複合繊維を用いて得られる熱接着不織布であって、 該繊維は前記二つの重合体に跨がる連続中空を長さ方向
に有し、 該繊維横断面における前記中空の中空率が10%以上であ
る ことを特徴とする嵩高性、易圧縮性、及び圧縮易回復性
に優れた熱接着不織布。1. A heat-bonded nonwoven fabric obtained by using a side-by-side type heat-bondable conjugate fiber composed of two polymers having compatibility and different melting points or softening points by 39 ° C. or more, wherein the fibers are composed of the two fibers. Having a continuous hollow spanning the polymer in the length direction, wherein the hollow ratio of the hollow in the fiber cross section is 10% or more. Excellent heat bonded nonwoven.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63124648A JP2908454B2 (en) | 1988-05-20 | 1988-05-20 | Thermally bonded nonwoven fabric with excellent bulkiness, easy compressibility, and easy recovery from compression |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63124648A JP2908454B2 (en) | 1988-05-20 | 1988-05-20 | Thermally bonded nonwoven fabric with excellent bulkiness, easy compressibility, and easy recovery from compression |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01298206A JPH01298206A (en) | 1989-12-01 |
JP2908454B2 true JP2908454B2 (en) | 1999-06-21 |
Family
ID=14890611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63124648A Expired - Fee Related JP2908454B2 (en) | 1988-05-20 | 1988-05-20 | Thermally bonded nonwoven fabric with excellent bulkiness, easy compressibility, and easy recovery from compression |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2908454B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011025062A2 (en) | 2009-08-27 | 2011-03-03 | Es Fibervisions Co., Ltd. | Thermal bonding conjugate fiber and nonwoven fabric using the same |
JP2013133560A (en) * | 2011-12-27 | 2013-07-08 | Toray Ind Inc | Polyester-based thermally bondable conjugate fiber and fiber structure |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03241055A (en) * | 1990-02-20 | 1991-10-28 | Toyobo Co Ltd | Bulky filament non-woven fabric |
SE514864C2 (en) | 1997-06-26 | 2001-05-07 | Sca Hygiene Prod Ab | Entry or transport layers for absorbent articles and absorbent articles comprising such a layer and use of the layer |
JP6066628B2 (en) * | 2012-08-27 | 2017-01-25 | 日本エステル株式会社 | Polyester hollow composite binder fiber |
CN105200664A (en) * | 2015-09-25 | 2015-12-30 | 佛山市南海必得福无纺布有限公司 | Spun-bonded hollow double-component non-woven fabric |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6119815A (en) * | 1984-07-04 | 1986-01-28 | Daiwa Spinning Co Ltd | Bicomponent conjugated hollow fiber and its production |
JPS61245327A (en) * | 1985-04-23 | 1986-10-31 | 帝人株式会社 | Polyester hollow crimped yarn and its production |
-
1988
- 1988-05-20 JP JP63124648A patent/JP2908454B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011025062A2 (en) | 2009-08-27 | 2011-03-03 | Es Fibervisions Co., Ltd. | Thermal bonding conjugate fiber and nonwoven fabric using the same |
US10100441B2 (en) | 2009-08-27 | 2018-10-16 | Es Fibervisions Co., Ltd. | Thermal bonding conjugate fiber and nonwoven fabric using the same |
JP2013133560A (en) * | 2011-12-27 | 2013-07-08 | Toray Ind Inc | Polyester-based thermally bondable conjugate fiber and fiber structure |
Also Published As
Publication number | Publication date |
---|---|
JPH01298206A (en) | 1989-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100436992B1 (en) | One-way stretchable nonwoven fabric and its manufacturing method | |
EP0747521B1 (en) | Continuous fiber nonwoven and method for producing the same | |
JPH01201564A (en) | Oriented melt blow fiber and its production and web | |
MXPA01010254A (en) | Microcreped wipers. | |
JP2005536647A (en) | Nonwoven web with improved necking uniformity | |
JP2001140158A (en) | Stretchable composite nonwoven fabric and absorbing article using the same | |
JP2908454B2 (en) | Thermally bonded nonwoven fabric with excellent bulkiness, easy compressibility, and easy recovery from compression | |
JPH083850A (en) | Multi-crease non-woven fabric | |
JPS62299514A (en) | Thermally bondable hollow conjugated yarn | |
EP1379718B1 (en) | Bonded layered nonwoven and method of producing same | |
JPH04146300A (en) | Laminated paper | |
JP2008144321A (en) | Nonwoven fabric | |
JP3124017B2 (en) | Thermal adhesive fibers and nonwovens | |
JPH04316608A (en) | Thermo-splittable conjugated fiber | |
US20050041312A1 (en) | Nonwoven web and method of making same | |
JP3161588B2 (en) | Stretchable long-fiber nonwoven fabric and method for producing the same | |
JP2508833B2 (en) | Thermal adhesive composite fiber | |
JPH09291457A (en) | Laminated nonwoven fabric of conjugate long fiber | |
JPH09111635A (en) | Laminated nonwoven fabric | |
JP3276578B2 (en) | Thermally bonded nonwoven fabric and method for producing the same | |
JPH0673613A (en) | Thermally separable conjugate fiber and its fiber assembly | |
JP2803165B2 (en) | Thermal adhesive composite fiber | |
JP4665364B2 (en) | Heat-fusible composite fiber, and fiber molded body and fiber product using the same | |
JP2002054069A (en) | Filament nonwoven fabric and fiber product using the same | |
JPH0192416A (en) | Heat-bondable conjugate fiber having excellent heat-bonding property and bulkiness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |