JP2903375B2 - Method and apparatus for producing injection liquid for ground consolidation and ground injection method - Google Patents
Method and apparatus for producing injection liquid for ground consolidation and ground injection methodInfo
- Publication number
- JP2903375B2 JP2903375B2 JP16447995A JP16447995A JP2903375B2 JP 2903375 B2 JP2903375 B2 JP 2903375B2 JP 16447995 A JP16447995 A JP 16447995A JP 16447995 A JP16447995 A JP 16447995A JP 2903375 B2 JP2903375 B2 JP 2903375B2
- Authority
- JP
- Japan
- Prior art keywords
- suspension
- tank
- ground
- classification
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は粒径の異なる地盤固結用
粉体を含む懸濁液を粒径に応じた分布状態に分級、分取
して複数の注入液を得る地盤固結用注入液の製造方法、
この注入液の製造装置およびこの注入液を地盤中に注入
して該地盤を固結する地盤注入工法に係り、特に、短時
間で、簡単な作業により、高い固結強度を保持した浸透
性注入液を得る地盤固結用注入液の製造方法、装置およ
びこの注入液を用いた地盤注入工法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for soil consolidation in which a suspension containing ground consolidation powders having different particle diameters is classified and sorted into a distribution state corresponding to the particle diameter to obtain a plurality of injection liquids. Manufacturing method of infusion liquid,
The present invention relates to a manufacturing apparatus for the injection liquid and a ground injection method for injecting the injection liquid into the ground to consolidate the ground. The present invention relates to a method and an apparatus for manufacturing an injection liquid for ground consolidation to obtain a liquid, and a ground injection method using the injection liquid.
【0002】[0002]
【従来の技術】地盤中に注入液(グラウト)を注入して
該地盤を固結するに際して、該注入液として従来、懸濁
型グラウトあるいは浸透型グラウトが一般に知られてい
る。2. Description of the Related Art When injecting a grout into a ground to consolidate the ground, a suspension grout or a permeation grout is generally known as the grout.
【0003】このうち、懸濁型グラウトは高い強度を呈
するが、浸透性が悪く、また、溶液型グラウトは浸透性
は良いが、強度が低いという問題があった。[0003] Among them, the suspension type grout has high strength but poor permeability, and the solution type grout has good permeability but low strength.
【0004】このため従来、粗粒土層や、大きな空隙を
有する軟弱層には、通常、懸濁型グラウトが用いられ、
また、細粒土層には溶液型で、かつ、ゲル化時間の長い
浸透性グラウトが用いられていた。For this reason, conventionally, suspended grout is usually used for coarse-grained soil layers and soft layers having large voids.
For the fine-grained soil layer, a solution-type permeable grout having a long gelation time was used.
【0005】また、上述懸濁型グラウトの浸透性をでき
るだけ良くするために、グラウト中の地盤固結用粉体を
細粒化することも考えられていた。[0005] In order to improve the permeability of the above-mentioned suspended grout as much as possible, it has been considered to make the ground consolidating powder in the grout finer.
【0006】ところで、地盤固結用注入液の固結強度あ
るいは浸透性は一般に、注入液に存在する地盤固結用粉
体の粒径の分布状態に大きく影響されると言われてい
る。すなわち、注入液中に存在する粉体の粒径の分布幅
を小さくすることにより、注入液の固結強度や浸透性が
改善される。Meanwhile, it is generally said that the consolidation strength or permeability of the ground consolidation liquid is greatly affected by the distribution of the particle size of the ground consolidation powder present in the liquid. That is, the consolidation strength and permeability of the injection liquid are improved by reducing the distribution width of the particle diameter of the powder present in the injection liquid.
【0007】例えば、平均粒径5μmの懸濁液は10μm
以上の粒子をカットしたものの方が浸透性が良いのはも
ちろんであるが、10μm以上の粒子をカットし、かつ、
2μm以下の粒子をカットした懸濁液の方がさらに細粒
土への浸透性が良い。For example, a suspension having an average particle size of 5 μm is 10 μm
Of course, those that cut the above particles have better permeability, but cut particles of 10 μm or more, and
A suspension obtained by cutting particles of 2 μm or less has better permeability to fine-grained soil.
【0008】そこで、従来、このような粒径分布幅のせ
まい注入液の製造が種々試みられている。この一例を示
せば、懸濁液の上澄液を分取する方法であって、具体的
には、炭酸カルシウム、セメント、スラグ等の粉体を含
む懸濁液を解膠剤と一緒に攪拌、混合した後、沈降槽中
で所定時間静置して大きな粒子を沈降せしめた後、上澄
液を抜き取る方法が提案されている。Therefore, various attempts have been made in the past to produce an injection solution having such a narrow particle size distribution width. One example of this is a method of collecting the supernatant of the suspension, specifically, stirring a suspension containing powder such as calcium carbonate, cement, and slag together with a deflocculant. A method has been proposed in which, after mixing, the mixture is allowed to stand in a settling tank for a predetermined time to settle large particles, and then the supernatant is removed.
【0009】[0009]
【発明が解決しようとする問題点】この方法では、炭酸
カルシウムのような比較的比重の小さい粉体の場合に
は、粉体の粒径に応じた液体分布が可能である。しか
し、セメントやスラグのように比較的比重の大きな粉体
の場合には、沈降槽中で短時間のうちに懸濁液中の固形
分(粉体)が沈降してしまって上澄液には固形分がほと
んど残らなくなり、したがって、粉体の粒径に応じた液
体分布が困難になる。According to this method, in the case of a powder having a relatively small specific gravity such as calcium carbonate, a liquid distribution according to the particle size of the powder is possible. However, in the case of powder having a relatively large specific gravity, such as cement or slag, the solid content (powder) in the suspension settles in a short time in the settling tank and becomes a supernatant. Almost no solid content remains, and therefore, it is difficult to distribute the liquid according to the particle size of the powder.
【0010】このため、この場合には、沈降槽中の液体
レベルや液体分取の時期を調整してもなお、所定の粒径
分布を有して注入液として充分な強度を呈し得る懸濁液
は得られない。For this reason, in this case, even if the liquid level in the sedimentation tank and the timing of liquid separation are adjusted, the suspension having a predetermined particle size distribution and sufficient strength as an injection liquid can be obtained. No liquid is obtained.
【0011】しかも、上述の方法では、沈降槽から上澄
液を抜き取る操作が厄介であるのみならず、懸濁液を静
置して大きな粒径の粉体を沈降せしめた時点で、沈降槽
中の所定レベルより上方の上澄液を抜き出すため、沈降
時間によって注入作業が制約されるという問題点を有し
ている。Moreover, in the above-mentioned method, not only is the operation of extracting the supernatant liquid from the sedimentation tank troublesome, but also at the time when the suspension is allowed to stand and the powder having a large particle diameter is settled, There is a problem that the injecting operation is restricted by the settling time because the supernatant liquid above the predetermined level is taken out.
【0012】すなわち、実際の注入作業では、注入液は
注入速度に応じて連続的に準備されなければならないに
もかかわらず、上述の方法では、沈降の待ち時間によっ
て注入が制約されてしまう。That is, in the actual injection operation, the injection liquid must be continuously prepared according to the injection speed. However, in the above-described method, the injection is restricted by the waiting time for sedimentation.
【0013】そこで、本発明の目的は粒径の異なる地盤
固結用粉体を含む懸濁液を粒径に応じた分布状態に分
級、分取して複数の注入液を調製するに際して、短時間
でかつ簡単な作業により調製し得、しかもこの得られた
注入液を地盤中に注入するに際して、浸透性に優れ、か
つ高い固結強度を呈し得、上述の公知技術に存する欠点
を改良した地盤固結用注入液の製造方法、この注入液の
製造装置およびこの注入液を用いた地盤注入工法を提供
することにある。Accordingly, an object of the present invention is to prepare a plurality of injection solutions by classifying and separating a suspension containing ground consolidating powders having different particle sizes into a distribution state corresponding to the particle size. It can be prepared in a short time and by a simple operation, and when the obtained injection liquid is injected into the ground, it has excellent permeability and can exhibit high compaction strength, which has solved the above-mentioned disadvantages of the known art. It is an object of the present invention to provide a method for producing an injection liquid for ground consolidation, an apparatus for producing the injection liquid, and a ground injection method using the injection liquid.
【0014】[0014]
【問題点を解決するための手段】上述の目的を達成する
ため、本発明の地盤固結用注入液の製造方法によれば、
粒径の異なる地盤固結用粉体を含む懸濁液を分級槽中
で、特に、流動状態下で、前記粉体の粒径に応じた分布
状態に分級し、次いで前記分級槽から前記分級された各
懸濁液をそれぞれ分取して粒径の異なる地盤固結用粉体
を含有した複数の注入液を製造することを特徴とする。In order to achieve the above-mentioned object, according to the method for producing a ground consolidation injection liquid of the present invention,
The suspension containing the ground consolidation powders having different particle diameters is classified in a classification tank, particularly under a fluidized state, into a distribution state according to the particle diameter of the powder, and then the classification is performed from the classification tank. Each of the obtained suspensions is fractionated to produce a plurality of injection solutions containing ground consolidation powders having different particle diameters.
【0015】さらに、上述の目的を達成するため、本発
明の地盤固結用注入液の製造装置によれば、粒径の異な
る地盤固結用粉体を含む懸濁液が填充され、前記懸濁液
を流動状態に維持する設備の設けられた分級槽と、前記
分級槽から粒径の分布状態を異にした懸濁液を分別して
貯蔵する複数の貯蔵槽と、前記貯蔵槽と分級槽をそれぞ
れ連通する、バルブの備えられた導管とからなることを
特徴とする。Further, in order to achieve the above-mentioned object, according to the apparatus for producing a ground consolidation injection liquid of the present invention, a suspension containing ground consolidation powders having different particle diameters is filled and the suspension is filled. A classification tank provided with equipment for maintaining the suspension in a fluidized state, a plurality of storage tanks for separating and storing suspensions having different particle size distributions from the classification tank, and the storage tank and the classification tank And a conduit provided with a valve and communicating with each other.
【0016】さらに、上述の目的を達成するため、本発
明の地盤固結用注入液の製造装置によれば、粒径の異な
る地盤固結用粉体を含む懸濁液が填充され、前記懸濁液
を流動状態に維持する設備の設けられた分級槽と、前記
分級槽とバルブの備えられた導管により連通され、粒径
の分布状態を異にした懸濁液を分別する分離槽と、前記
分級槽と、前記分級槽とバルブの備えられた導管により
連通され、前記分級槽中の懸濁液を前記分級槽から分別
して貯蔵する貯蔵槽と、前記分離槽とバルブの備えられ
た導管により連通され、前記分離槽中の前記分別された
懸濁液を前記分離槽から分別して貯蔵する貯蔵槽とを備
えてなることを特徴とする。Furthermore, in order to achieve the above-mentioned object, according to the apparatus for manufacturing a ground consolidation injection liquid of the present invention, a suspension containing ground consolidation powders having different particle diameters is filled and the suspension is filled. A classification tank provided with equipment for maintaining the suspension in a fluidized state, and a separation tank that is connected to the classification tank and a conduit equipped with a valve, and separates suspensions having different particle size distribution states, A storage tank that is communicated with the classification tank, a conduit provided with the classification tank and a valve, and that separately stores the suspension in the classification tank from the classification tank and stores the separation tank and a valve; And a storage tank for separating and storing the separated suspension in the separation tank from the separation tank.
【0017】さらにまた、上述の目的を達成するため、
本発明の地盤注入工法によれば、粒径の異なる地盤固結
用粉体を含む懸濁液を分級槽中で前記粉体の粒径に応じ
た分布状態に分級し、次いで前記分級された各懸濁液を
それぞれ分散して粒径の異なる複数の地盤固結用注入液
を作液し、該作液された注入液の一種または複数種を地
盤中に注入することを特徴とする。Furthermore, in order to achieve the above-mentioned object,
According to the ground injection method of the present invention, the suspension containing the powder for ground consolidation having different particle diameters is classified into a distribution state according to the particle diameter of the powder in a classification tank, and then the classification is performed. Each of the suspensions is dispersed to form a plurality of ground consolidation infusions having different particle diameters, and one or a plurality of the prepared infusions are injected into the ground.
【0018】[0018]
【発明の具体的説明】本発明に用いられる地盤固結用粉
体は例えば、スラグ、セメント、炭酸カルシウム、石
灰、石膏、ポゾラン類(フライアッシュ、シリカフュー
ム、ホワイトカーボン、粘土、珪藻土、酸性白土等)等
であって、これらをそれぞれ単独で、または併用して用
いられる。DETAILED DESCRIPTION OF THE INVENTION The ground consolidating powder used in the present invention is, for example, slag, cement, calcium carbonate, lime, gypsum, pozzolans (fly ash, silica fume, white carbon, clay, diatomaceous earth, acid clay, etc.). ), Etc., which are used alone or in combination.
【0019】これらの粉体はそれぞれ、粒径の異なる粒
子によって形成されている。例えば、スラグを例に挙げ
れば、これは通常、比重2.85〜2.94、ブレーン比表
面積3500〜4400cm2/g、最大粒子径48〜150μm、平均
粒子径10〜16μmであって、10μm以下が33〜50%、44
μm残分が0.8〜15.3%(平均8.9%)である。ま
た、ブレーン比表面積が8000〜15000cm2/g級のものの
平均粒子径は2〜5μmであって、10μm以下が90〜1
00%である。Each of these powders is formed of particles having a different particle size. For example, taking slag as an example, this usually has a specific gravity of 2.85 to 2.94, a Blaine specific surface area of 3500 to 4400 cm 2 / g, a maximum particle diameter of 48 to 150 μm, an average particle diameter of 10 to 16 μm, and 10 μm 33-50% below, 44
The μm residue is 0.8-15.3% (average 8.9%). The average particle diameter of the particles having a specific surface area of 8000 to 15000 cm 2 / g is 2 to 5 μm, and 90 to 1 μm or less is 90 to 1 μm.
00%.
【0020】これらの粉体を粉砕して微粒子化すると、
全体としての粒度は小さくなるので、平均粒径は確実に
小さくなるが、粒度分布幅は殆ど変化しないのが一般的
である。When these powders are pulverized into fine particles,
Since the overall particle size is reduced, the average particle size is surely reduced, but the width of the particle size distribution generally does not substantially change.
【0021】また、通常のスラグ粉体(ブレーン比表面
積3500〜4400cm2/g)をブレーン比表面積8000cm2/g付
近まで微粒子化するのは比較的容易であるが、それ以上
に微粉化するには製造上極めて高価となる。また、製品
そのものも多くの空気を含み、包装、運搬、現場の取扱
いが難しくなり、かつ微粒子にする程、電気的に凝集し
やすくなり、逆に、浸透を阻害するという逆効果を生ず
る。It is relatively easy to atomize ordinary slag powder (blaine specific surface area: 3500 to 4400 cm 2 / g) to the vicinity of 8000 cm 2 / g of brane specific surface area. Is extremely expensive to manufacture. In addition, the product itself contains a lot of air, which makes packaging, transportation, and handling on site difficult, and the finer the particles, the more easily they are electrically aggregated, and conversely, the effect of inhibiting permeation is produced.
【0022】上述の地盤固結用粉体は水等の液体に懸濁
され、本発明にかかる懸濁液を得る。この懸濁液はさら
に、上述粉体に加えて、水ガラス、コロイダルシリカ、
アルカリ反応剤(アルミン酸ソーダ、水溶性アルカリ
等)等を含むこともできる。The ground consolidating powder is suspended in a liquid such as water to obtain the suspension according to the present invention. The suspension further contains water glass, colloidal silica,
An alkali reactant (sodium aluminate, water-soluble alkali, etc.) can also be included.
【0023】本発明では、上述の懸濁液は分級槽中で、
攪拌、通気または循環により、またはこれらを併用する
ことにより流動状態を維持しながら分級、分取される。
具体的には、後述のとおりである。In the present invention, the above-mentioned suspension is placed in a classification tank.
Classification and fractionation are performed while maintaining a fluidized state by stirring, aeration, circulation, or a combination thereof.
Specifically, it is as described later.
【0024】上述のようにして作液された複数の地盤固
結用注入液はそれぞれ単独で、またはこれらを併用して
地盤中に注入される。さらに、これら注入液はこれらの
一種または複数種を水ガラス、アルカリ液、水ガラスを
イオン交換樹脂で処理して得られるコロイダルシリカ、
または酸性シリカゾルと混合し、さらに石灰、重曹等の
ゲル化剤または助剤と混合して地盤中に注入することも
できる。The plurality of ground consolidation infusions prepared as described above are injected into the ground independently or in combination. Further, these infusions are obtained by treating one or more of these with water glass, an alkali solution, and colloidal silica obtained by treating water glass with an ion exchange resin.
Alternatively, it may be mixed with an acidic silica sol, further mixed with a gelling agent or an auxiliary such as lime or sodium bicarbonate and injected into the ground.
【0025】以下、本発明を添付図面を用いてさらに詳
述する。Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
【0026】図1および図2は本発明にかかる一方の形
式の製造装置の具体例を表した略図であり、図3および
図4は本発明にかかる他方の形式の製造装置の具体例を
表した略図である。FIGS. 1 and 2 are schematic views showing a specific example of a manufacturing apparatus of one type according to the present invention, and FIGS. 3 and 4 are specific examples of a manufacturing apparatus of the other type according to the present invention. FIG.
【0027】まず、一方の形式の製造装置について図1
および図2を用いて説明すると、1は分級槽であって、
この中に粒径の異なる地盤固結用粉体を含む懸濁液2を
填充する。懸濁液2は前記粉体を水の装填された分級槽
1に投入した後、分級槽1に備えられた攪拌機3あるい
はエアコンプレッサー4を稼動し、充分に混合して分級
槽1中で調製するが、分級槽1の外で調製されてもかま
わない。First, one type of manufacturing apparatus is shown in FIG.
Referring to FIG. 2, reference numeral 1 denotes a classification tank,
A suspension 2 containing ground consolidation powders having different particle sizes is filled therein. The suspension 2 is prepared in the classification tank 1 by charging the powder into the classification tank 1 charged with water, and then operating the stirrer 3 or the air compressor 4 provided in the classification tank 1 to mix the powder sufficiently. However, it may be prepared outside the classification tank 1.
【0028】なお、懸濁液2中の地盤固結用粉体は上述
のとおり、スラグ、セメント、炭酸カルシウム、石灰、
石膏、ポゾラン類等である。これらは単独で、あるいは
複数種を組み合わせて使用に供される。また、懸濁液2
はメラミン樹脂、ナフタリン系化合物、ポリリン酸系塩
類等の解膠剤、あるいは起泡剤、補収剤、活性剤、分散
剤等の浮遊選鉱試薬を少量含むことにより前記粉体が容
易に分散され、良好な懸濁液となる。The ground consolidation powder in the suspension 2 includes slag, cement, calcium carbonate, lime,
Gypsum, pozzolans and the like. These are used alone or in combination of two or more. In addition, suspension 2
The powder is easily dispersed by containing a small amount of a flotation reagent such as a deflocculant such as a melamine resin, a naphthalene compound, or a polyphosphate salt, or a foaming agent, a collecting agent, an activator, or a dispersant. , Good suspension.
【0029】次いで、前述の懸濁液2を分級槽1中で攪
拌機3による弱い攪拌下またはエアコンプレッサー4に
よる弱い通気下に置くと、懸濁液2中の地盤固結用粉体
は細粒径のもの(2a)、すなわち、低比重のものが上
方にとどまり、粗粒径のもの(2b)、すなわち、高比
重のものが下方に沈降し、粒径の大きさに順じて移動す
る。この結果、分級槽1中では、粉体の粒径が上方から
下方に向けて徐々に大きくなる分布状態の懸濁液が形成
される。Next, when the above-mentioned suspension 2 is placed in the classification tank 1 under weak stirring by the stirrer 3 or under weak ventilation by the air compressor 4, the powder for ground consolidation in the suspension 2 becomes fine particles. Those having a diameter (2a), that is, those having a low specific gravity, stay at the upper side, and those having a coarse particle diameter (2b), that is, those having a high specific gravity, settle down and move according to the size of the particle diameter. . As a result, in the classification tank 1, a suspension having a distribution state in which the particle diameter of the powder gradually increases from above to below is formed.
【0030】図1中、9、11は貯蔵槽であって、これら
貯蔵槽9、11はそれぞれ、バルブ7の備えられた導管12
およびバルブ8の備えられた導管13を介して、分級槽1
の底部のバルブ6の備えられた導管14と連結することに
より、分級槽1と底部で連通される。バルブ6は通常は
閉じられた状態にあるが、上述のように分級槽1中に粒
径の異なる分布状態の懸濁液が形成された後では、コン
トローラ5に内蔵されるセンサ(以下同様)からの情報
を受けてバルブ7と一緒に開き、同時にバルブ8を閉
じ、分級槽1中の下部の懸濁液2、すなわち、粗い粒径
の分布された懸濁液2を貯蔵槽9に導く。In FIG. 1, reference numerals 9 and 11 denote storage tanks, and these storage tanks 9 and 11 are each provided with a conduit 12 provided with a valve 7.
And a classification tank 1 through a conduit 13 provided with a valve 8.
By being connected to a conduit 14 provided with a valve 6 at the bottom of the tank, the tank is in communication with the classification tank 1 at the bottom. The valve 6 is normally in a closed state, but after a suspension having a distribution having a different particle size is formed in the classification tank 1 as described above, a sensor built in the controller 5 (the same applies hereinafter). And the valve 7 is opened together with the valve 7, and at the same time, the valve 8 is closed, and the lower suspension 2 in the classification tank 1, that is, the suspension 2 having a coarse particle size is distributed to the storage tank 9. .
【0031】やがて、分級槽1中の懸濁液2の液面2c
が電磁棒10の先端10aに達したときに、コントローラ5
からの情報を受けて、バルブ7を閉じると同時にバルブ
8を開き、分級槽1中の上部の懸濁液、すなわち、細か
い粒径の分布された懸濁液2を貯蔵槽11に導く。この結
果、分級槽1中の懸濁液2は分級槽1の底部から順次に
別々の貯蔵槽9、11中に取り出され、分別される。この
場合、液面からの所定深度と、この間の粒度分布および
固形分濃度との関係をあらかじめ調べておく。電磁棒10
はその深度に先端10aが位置するように配置する。Eventually, the liquid level 2 c of the suspension 2 in the classification tank 1
When the robot reaches the tip 10a of the electromagnetic rod 10, the controller 5
In response to this information, the valve 7 is closed and the valve 8 is opened at the same time, and the upper suspension in the classification tank 1, that is, the suspension 2 having a fine particle size is distributed to the storage tank 11. As a result, the suspension 2 in the classification tank 1 is sequentially taken out from the bottom of the classification tank 1 into separate storage tanks 9 and 11 and separated. In this case, the relationship between the predetermined depth from the liquid surface and the particle size distribution and solid content concentration during this period is checked in advance. Electromagnetic rod 10
Are arranged so that the tip 10a is located at that depth.
【0032】コントローラ5に内蔵されるセンサは懸濁
液の分級度合を検知するものであり、この方法として
は、上述の電磁棒10を配置するほかに次のことが考えら
れる。The sensor incorporated in the controller 5 detects the degree of classification of the suspension. As a method for this, in addition to the arrangement of the above-described electromagnetic rod 10, the following may be considered.
【0033】(1)タイマーによる方法 分級槽1中の懸濁液2を攪拌機3により所定の回転数で
攪拌してのち、この攪拌を中断し、分級するまでの時間
と、分取された懸濁液中の粉体の粒径分布および固形分
濃度との関係をあらかじめ調べておけば、所定時間にバ
ルブ操作を行うことにより分級できる。(1) Method Using a Timer After the suspension 2 in the classification tank 1 is stirred by the stirrer 3 at a predetermined number of revolutions, the stirring is interrupted, and the time required for classification and the amount of the separated suspension are measured. If the relationship between the particle size distribution and the solid content concentration of the powder in the suspension is checked in advance, the classification can be performed by performing a valve operation for a predetermined time.
【0034】(2)分級槽中の懸濁液重量を測定する方
法 分級槽中の懸濁液重量を測定しながら懸濁液を排出し続
け、所定の重量に達したときに排出を中断することによ
り、分取を行う。例えば、分級槽中にラジオアイソトー
プ等の密度計を設置しておき、所定の高さにおける懸濁
液の密度が所定の値を呈したときに懸濁液を所定量排出
することにより分取できる。(2) Method of Measuring the Weight of the Suspension in the Classification Tank The suspension is continuously discharged while measuring the weight of the suspension in the classification tank, and the discharge is interrupted when a predetermined weight is reached. In this way, fractionation is performed. For example, a density meter such as a radioisotope is installed in a classification tank, and when the density of the suspension at a predetermined height exhibits a predetermined value, a predetermined amount of the suspension can be discharged to separate the suspension. .
【0035】(3)濃度検出方法 分級槽に設けられたのぞき窓、あるいはバイパス管から
懸濁液をサンプリングし、この懸濁液の濃度を吸光度測
定機で測定する。この測定値にもとづいてバルブを操作
し、懸濁液を分取する。(3) Concentration detection method A suspension is sampled from a viewing window or a bypass tube provided in a classification tank, and the concentration of the suspension is measured by an absorbance meter. The valve is operated on the basis of the measured value to collect the suspension.
【0036】したがって、貯蔵槽9中には、粗粒径の前
記粉体を含む懸濁液(注入液)が分別され、また、貯蔵
槽11には、細粒径の前記粉体を含む懸濁液(注入液) が
分別され、異なる粒径の分布された複数の地盤固結用注
入液を製造する。図1中、15、16はそれぞれバルブであ
る。Therefore, a suspension (injection liquid) containing the powder having a coarse particle diameter is separated into the storage tank 9, and a suspension containing the powder having a fine particle diameter is stored in the storage tank 11. The suspended liquid (injection liquid) is separated to produce a plurality of ground consolidation injection liquids having different particle sizes. In FIG. 1, 15 and 16 are valves, respectively.
【0037】上述の懸濁液2は上述のとおり、上述地盤
固結用粉体とともに、さらに水ガラス、アルカリ、反応
剤等の一種または複数種を併用して含有することもでき
る。これら水ガラス、アルカリ、反応剤等は分級槽1中
の懸濁液2に含有せしめることはもちろん、分級槽1か
ら分離された貯蔵槽9、11中の地盤固結用注入液に含有
せしめても良い。As described above, the suspension 2 may contain one or more of water glass, an alkali, a reactant and the like in addition to the ground consolidation powder. These water glass, alkalis, reactants and the like are contained not only in the suspension 2 in the classification tank 1 but also in the ground consolidation injection liquid in the storage tanks 9 and 11 separated from the classification tank 1. Is also good.
【0038】上述の水ガラスとしては、3号水ガラス、
これよりも低モル比の水ガラス、あるいはこれよりも高
モル比の水ガラスが挙げられ、アルカリとしては、苛性
ソーダ、セメント、消石灰等が挙げられ、また、反応剤
としては上述のとおり、アルミン酸ソーダ、炭酸や重炭
酸のアルカリ金属塩等のアルカリ性塩が挙げられる。As the above-mentioned water glass, No. 3 water glass,
Water glass with a lower molar ratio than this, or water glass with a higher molar ratio than this, may be mentioned, and as the alkali, caustic soda, cement, slaked lime, etc. may be mentioned. Alkaline salts such as alkali metal salts of soda, carbonic acid and bicarbonate.
【0039】図2は図1の装置の変形例であって、分級
槽1の側壁1aでそれぞれ導管19、20を介して貯蔵槽1
7、18と連通され、かつ底部で導管14を介して貯蔵槽9
と連通される。導管14は上述と同様、バルブ6を備え、
導管19はバルブ21a、21b、21cをそれぞれ備え、導管
20はバルブ22を備えたものである。FIG. 2 shows a modification of the apparatus of FIG. 1, in which the storage tank 1 is connected to the side wall 1a of the classification tank 1 via conduits 19 and 20, respectively.
7, 18 and at the bottom via conduit 14
Is communicated with. The conduit 14 is provided with the valve 6 as described above,
The conduit 19 comprises valves 21a, 21b, 21c, respectively,
20 is provided with a valve 22.
【0040】懸濁液の分別に際しては、まず、バルブ22
だけを開き、他は閉じた状態で、分級槽1中の上部を導
管20を通して貯蔵槽18に導入し、次いで、バルブ21a、
21b、21cを開き、他は閉じた状態で分級槽1中の中間
部を導管19を通して貯蔵槽17に導入し、このようにして
分級槽1中の各部を最上部から順次にバルブ操作によっ
てそれぞれの貯蔵槽に分別する。そして、最下部は図1
と同様、分級槽1の底部から、バルブ6だけを開き、他
は閉じた状態で導管14を通して貯蔵槽9に導入して分別
するが、上述と同様、図示しないが、側壁から分別して
もかまわない。When separating the suspension, first, the valve 22
Only, with the others closed, the upper part of the classification tank 1 is introduced into the storage tank 18 via the conduit 20 and then the valves 21a,
21b and 21c are opened, and the other part is closed and the intermediate part in the classification tank 1 is introduced into the storage tank 17 through the conduit 19, and each part in the classification tank 1 is sequentially operated from the uppermost part by a valve operation. Separate into storage tanks. And the bottom is Fig. 1.
Similarly to the above, only the valve 6 is opened from the bottom of the classification tank 1, and the other is closed and introduced into the storage tank 9 through the conduit 14 for separation, but similar to the above, although not shown, separation from the side wall is also possible. Absent.
【0041】なお、上述の分級槽1としては、任意の形
状のものが使用可能であるが、特に、図5に示されるよ
うに、逆円錐形状であることが粒径の分布状態を異にし
た懸濁液を形成する上で好ましい。なお、図2におい
て、31、32はそれぞれバルブである。The classifying tank 1 can be of any shape, but in particular, as shown in FIG. 5, it has an inverted conical shape so that the particle size distribution differs. It is preferable in forming a suspended suspension. In FIG. 2, reference numerals 31 and 32 denote valves.
【0042】次いで、他方の形式の製造装置について図
3および図4を用いて説明すると、分級槽1中には図1
と同様、粒径の異なる上述地盤固結用粉体を含む懸濁液
2を填充する。懸濁液2は図1と同様、分級槽1に備え
られた攪拌機3およびエアコンプレッサー4の稼動によ
って分級槽1中で調製することもできる。もちろん、懸
濁液2は図1と同様、上述の解膠剤、浮遊選鉱試薬等を
含んでも良い。Next, the other type of manufacturing apparatus will be described with reference to FIGS. 3 and 4. FIG.
In the same manner as described above, the suspension 2 containing the ground consolidation powder having a different particle size is filled. The suspension 2 can also be prepared in the classification tank 1 by operating the stirrer 3 and the air compressor 4 provided in the classification tank 1 as in FIG. Needless to say, the suspension 2 may contain the above-described peptizer, flotation reagent, and the like, as in FIG.
【0043】上述の懸濁液2は、図1と同様、分級槽1
中で攪拌機3やエアコンプレッサー4をゆるやかに稼動
して、粒径が上方から下方に向けて徐々に大きくなる分
布状態の懸濁液を形成する。The above-mentioned suspension 2 is supplied to the classification tank 1 as in FIG.
In the inside, the stirrer 3 and the air compressor 4 are slowly operated to form a suspension in a distribution state in which the particle diameter gradually increases from above to below.
【0044】23は分離槽であって、図3に示されるよう
に、側壁23aの任意の個所で分級槽1の側壁1aの任意
の個所と、バルブ24の備えられた導管25を介して連通さ
れ、あるいは図4に示されるように、底部で、分級槽1
の底部と、バルブ26の備えられた導管27を介して連通さ
れる。Reference numeral 23 denotes a separation tank, which communicates with an arbitrary part of the side wall 1a of the classification tank 1 at an arbitrary part of the side wall 23a through a conduit 25 provided with a valve 24, as shown in FIG. Or at the bottom, as shown in FIG.
And a conduit 27 provided with a valve 26.
【0045】さらに、分級槽1は底部でバルブ6の備え
られた導管14を介して貯蔵槽9と連通され、また、分離
槽13もまた、底部でバルブ28の備えられた導管29を介し
て貯蔵槽30と連通される。なお、図3、4において、33
はバルブである。Furthermore, the classification tank 1 is connected at the bottom to the storage tank 9 via a conduit 14 provided with a valve 6, and the separation tank 13 is also provided via a conduit 29 provided at the bottom with a valve 28. It is communicated with the storage tank 30. In FIGS. 3 and 4, 33
Is a valve.
【0046】上述の構成からなる形式の製造装置では、
図3に示される構成の場合には、コントローラ5からの
情報を受けて、まず、バルブ6およびバルブ28を閉じ、
かつバルブ24を開け、分級槽1中の導管25よりも上方の
懸濁液、すなわち、小さな粒径の前記粉体が分布された
懸濁液2aを分級槽1から導管25を通して分離槽23に導
入し、分別する。34は攪拌機である。In the manufacturing apparatus of the type having the above configuration,
In the case of the configuration shown in FIG. 3, upon receiving information from the controller 5, first, the valve 6 and the valve 28 are closed,
And, the valve 24 is opened, and the suspension above the conduit 25 in the classification tank 1, that is, the suspension 2 a in which the powder having a small particle size is distributed, is passed from the classification tank 1 to the separation tank 23 through the conduit 25. Introduce and separate. 34 is a stirrer.
【0047】次いで、分級槽1に残った懸濁液2、すな
わち、大きな粒径の前記粉体が分布された懸濁液2は、
コントローラ5からの情報を受けてバルブ6が開かれ、
導管14を通して貯蔵槽9に分別され、また、分離槽23の
小さな粒径の前記粉体が分布された懸濁液2aはコント
ローラ5からの情報を受けてバルブ28が開かれ、導管29
を通して貯蔵槽30に分別される。Next, the suspension 2 remaining in the classification tank 1, that is, the suspension 2 in which the powder having a large particle size is distributed,
Upon receiving the information from the controller 5, the valve 6 is opened,
The suspension 2a, which is separated into the storage tank 9 through the conduit 14 and in which the powder having a small particle size in the separation tank 23 is distributed, receives the information from the controller 5, the valve 28 is opened, and the conduit 29 is opened.
Through the storage tank 30.
【0048】なお、図3では、分離槽23を一個設けた例
を示したが、これを複数個設けてそれぞれ、粒径の異な
る粉体が分布された複数の懸濁液を各貯蔵槽に導入、分
離することもできる。Although FIG. 3 shows an example in which one separation tank 23 is provided, a plurality of the separation tanks are provided, and a plurality of suspensions in which powders having different particle sizes are distributed are stored in each storage tank. It can be introduced and separated.
【0049】また、図4に示される構成の場合には、コ
ントローラ5からの情報を受けて、まず、バルブ6およ
びバルブ28を閉じ、かつバルブ26を開け、分級槽1中の
下方の懸濁液、すなわち、大きな粒径の前記粉体が分布
された懸濁液2bを分級槽1から導管27を通して分離槽
23に導入し、分別する。In the case of the configuration shown in FIG. 4, upon receiving the information from the controller 5, first, the valve 6 and the valve 28 are closed, and the valve 26 is opened, so that the lower suspension in the classification tank 1 The liquid, that is, the suspension 2b in which the powder having a large particle size is distributed is separated from the classification tank 1 through a conduit 27 into a separation tank.
Introduce to 23 and separate.
【0050】次いで、分級槽1に残った懸濁液2、すな
わち、小さな粒径の前記粉体が分布された懸濁液2はコ
ントローラ5からの情報を受けてバルブ6が開かれ、導
管14を通して貯蔵槽9に分別され、また、分離槽23の大
きな粒径の前記粉体が分布された懸濁液2bはコントロ
ーラ5からの情報を受けてバルブ28が開かれ、導管29を
通して貯蔵槽30に分離される。Next, the suspension 2 remaining in the classification tank 1, that is, the suspension 2 in which the powder having a small particle size is distributed receives the information from the controller 5, the valve 6 is opened, and the conduit 14 is opened. The suspension 2b, in which the powder having a large particle size is distributed in the separation tank 23, receives the information from the controller 5, the valve 28 is opened, and the storage tank 30 is passed through the conduit 29. Is separated into
【0051】なお、図3では、分級槽1と分離槽23の大
きさが同じ例を示したが、これらは必ずしも同じである
必要はなく、図4に示されるように、分離槽23の大きさ
が分級槽1よりも小さいものであってもかまわない。ま
た、分級槽1は上述と同様、逆円錐形状であることが粒
径の分布状態を異にした懸濁液を形成する上で好まし
い。Although FIG. 3 shows an example in which the size of the classification tank 1 and the size of the separation tank 23 are the same, these are not necessarily the same, and as shown in FIG. May be smaller than the classification tank 1. As described above, it is preferable that the classification tank 1 has an inverted conical shape in order to form a suspension having different particle size distributions.
【0052】図6は本発明にかかる分級槽1の変形例を
示した説明図である。図6において、分級槽1中の懸濁
液2を攪拌機3による弱い攪拌下、あるいはエアコンプ
レッサー4による弱い通気下で流動状態に置くと、懸濁
液2中の地盤固結用粉体は粒径の大きさに順じて移動
し、粉体の粒径が上方から下方に向けて徐々に大きくな
る分布状態の複数段の懸濁液に分級される。FIG. 6 is an explanatory view showing a modification of the classification tank 1 according to the present invention. In FIG. 6, when the suspension 2 in the classification tank 1 is placed in a fluidized state under weak stirring by the stirrer 3 or under weak ventilation by the air compressor 4, the ground consolidation powder in the suspension 2 becomes granular. The suspension is moved in accordance with the size of the diameter, and classified into a plurality of suspensions in a distribution state in which the particle diameter of the powder gradually increases from above to below.
【0053】この分級された懸濁液を吸引管35により、
吸引ポンプ36を稼動させて下方から吸引し、それぞれ図
示しない貯蔵槽に分取して注入液を形成する。37はバル
ブである。The classified suspension is supplied through a suction tube 35.
By operating the suction pump 36, suction is performed from below, and the liquid is dispensed into storage tanks (not shown) to form an infusate. 37 is a valve.
【0054】なお、本発明において、分級槽1中の懸濁
液2は図7に示されるように、分級槽1中の下方に抜出
口38、上方に導入口39をそれぞれ有する循環パイプ40に
よって、この循環パイプ40に配置された循環ポンプ41を
作動させ、循環させることにより流動状態を維持するこ
ともできる。図7中、42、43はバルブである。In the present invention, as shown in FIG. 7, the suspension 2 in the classification tank 1 is circulated by a circulation pipe 40 having an outlet 38 below and an inlet 39 above. By operating and circulating the circulating pump 41 disposed in the circulating pipe 40, the fluidized state can be maintained. In FIG. 7, 42 and 43 are valves.
【0055】さらに、本発明において、分級槽1中の懸
濁液2は図8に示されるように、分級槽1の相対する側
壁のほぼ同じ高さの位置に抜出口38および導入口39をそ
れぞれ有する循環パイプ40によって、この循環パイプ40
に配置された循環ポンプ41を作動させ、循環させること
により、流動状態を維持しても良い。Further, in the present invention, as shown in FIG. 8, the suspension 2 in the classification tank 1 has an outlet 38 and an inlet 39 at substantially the same height on the opposite side walls of the classification tank 1. Each of the circulation pipes 40 has
The fluid state may be maintained by activating and circulating the circulation pump 41 arranged in the circumstance.
【0056】図8はこの形式の循環方式による地盤固結
用注入液の製造装置を用いた地盤注入工法の一例のフロ
ーシートである。FIG. 8 is a flow sheet showing an example of a ground injection method using an apparatus for producing an injection liquid for ground consolidation by this type of circulation system.
【0057】まず、混合容器44中に、スラグ、セメン
ト、炭酸カルシウム、石灰、石膏、ポゾラン類等の一種
または複数種を含む懸濁液2を調整する。この混合容器
44中の懸濁液2には水ガラス、コロイダルシリカ、苛性
アルカリ等のアルカリ類、アルミン酸ソーダ等の反応剤
を含有しても良い。First, a suspension 2 containing one or more of slag, cement, calcium carbonate, lime, gypsum, pozzolans and the like is prepared in a mixing vessel 44. This mixing container
The suspension 2 in 44 may contain a reactant such as water glass, colloidal silica, alkalis such as caustic alkali, and sodium aluminate.
【0058】混合容器44中の懸濁液2は、次いで、エア
コンプレッサー4の作動により導管45、46、47を介し
て、分級槽1の底部から、あるいは循環パイプ40から分
級槽1に装填される。48、49、50はバルブである。これ
らバルブ48、49、50はエアコンプレッサー4とともにそ
れぞれコントローラ5に連絡され、コントローラ5から
の情報を受けてバルブ48、49、50の開閉により、あるい
はエアコンプレッサー4の作動により、懸濁液2の分級
槽1への装填が自動操作される。The suspension 2 in the mixing vessel 44 is then loaded into the classification tank 1 from the bottom of the classification tank 1 via conduits 45, 46, 47 by the operation of the air compressor 4 or from the circulation pipe 40. You. 48, 49, and 50 are valves. These valves 48, 49, and 50 are communicated to the controller 5 together with the air compressor 4, and receive the information from the controller 5 to open and close the valves 48, 49, and 50, or to operate the air compressor 4 to operate the suspension 2. Loading into the classification tank 1 is automatically operated.
【0059】分級槽1に装填された懸濁液2は循環ポン
プ41の作動により、抜出口38から導入口39に向かって循
環パイプ40を循環し、流動状態を維持する。このとき、
懸濁液2中の粉体は浮遊しながら粒径に応じた分布状態
に分級され、分級槽1の上方に分級された懸濁液が循環
ポンプ41のバルブ49から導管51を通って貯蔵槽52に分布
され、また、分級槽1の下方に分級された懸濁液が分級
槽1の底部のバルブ50から、導管52を通って貯蔵槽9に
分布される。The suspension 2 charged in the classification tank 1 is circulated through the circulation pipe 40 from the outlet 38 to the inlet 39 by the operation of the circulation pump 41, and maintains a fluid state. At this time,
The powder in the suspension 2 is classified into a distribution state according to the particle size while floating, and the classified suspension above the classification tank 1 is passed through the conduit 49 from the valve 49 of the circulation pump 41 to the storage tank. The suspension distributed in the classification tank 1 and classified below the classification tank 1 is distributed from the valve 50 at the bottom of the classification tank 1 to the storage tank 9 through the conduit 52.
【0060】これらバルブ49、50は循環ポンプ41ととも
にそれぞれコントローラ5に連絡され、コントローラ5
からの情報を受けてバルブ49、50の開閉により、あるい
は循環ポンプ41の作動により懸濁液2の貯蔵槽9、52へ
の分取が自動操作される。なお、図8において、上述の
循環操作に加えて、攪拌機3を併用させてもよい。The valves 49 and 50 are connected to the controller 5 together with the circulating pump 41, respectively.
In response to the information from, the dispensing of the suspension 2 into the storage tanks 9 and 52 is automatically operated by opening and closing the valves 49 and 50 or by operating the circulation pump 41. In FIG. 8, the stirrer 3 may be used in addition to the circulation operation described above.
【0061】貯蔵槽9および52に分取された懸濁液はそ
れぞれポンプ53、53の作動により、導管55のバルブ56に
導かれ、合流されて注入管57を通して地盤58中に注入さ
れる。The suspensions collected in the storage tanks 9 and 52 are guided to the valve 56 of the conduit 55 by the operation of the pumps 53 and 53, respectively, merged and injected into the ground 58 through the injection pipe 57.
【0062】なお、上述の合流された懸濁液は導管55に
連結された貯蔵槽59からの水ガラス、アルカリ液、水ガ
ラスをイオン交換樹脂で処理して得られるコロイダルシ
リカ、酸性シリカゾル等と導管55中で混合されて地盤に
注入されてもよく、さらに、導管55に連結された貯蔵槽
60からの重曹、石灰等のゲル化剤、各種助剤等と導管55
中で混合されて地盤中に注入されてもよい。The above-mentioned combined suspension is mixed with water glass, alkali solution, colloidal silica, acidic silica sol, etc. obtained by treating water glass from a storage tank 59 connected to a conduit 55 with an ion exchange resin. It may be mixed in conduit 55 and injected into the ground, and furthermore a storage tank connected to conduit 55
Gelling agent such as baking soda and lime from 60, various auxiliaries and conduit 55
And mixed into the ground.
【0063】本発明にかかる上述懸濁液はスラグ、セメ
ント、炭酸カルシウム、石膏、ポゾラン類(フライアッ
シュ、シリカフューム、ホワイトカーボン、粘土、珪藻
土、酸性白土等)等の地盤固結用粉体を含むものである
ことは上述したとおりである。The above-mentioned suspension according to the present invention contains ground consolidation powder such as slag, cement, calcium carbonate, gypsum, pozzolans (fly ash, silica fume, white carbon, clay, diatomaceous earth, acid clay, etc.). This is as described above.
【0064】このうち、セメントはそれ自体で硬化する
ので、懸濁液を分級、分取してそれぞれ注入すれば良い
が、他の懸濁液はそれ自体では硬化しないので、反応剤
を加える必要がある。もちろん、これらを反応剤として
他の材料を硬化せしめることもできるが、ここでは懸濁
液と反応する他の材料を反応剤と表現する。Of these, cement hardens by itself, so it is sufficient to classify and dispense the suspension, and then inject each. However, since other suspensions do not harden by themselves, it is necessary to add a reactant. There is. Of course, these can be used as a reactant to cure other materials, but here, other materials that react with the suspension are referred to as reactants.
【0065】スラグはそれ自体では固化しないが、これ
に水ガラス、特に低モル比水ガラス、水ガラスをイオン
交換樹脂に通してほとんどのアルカリを除去して得られ
たシリカコロイド液、アルカリ性を呈する塩類、例えば
アルミン酸ソーダ、重炭酸ソーダ、炭酸ソーダ、アルカ
リ、例えば苛性アルカリ、石灰、セメント等を加えるこ
とによって潜在水硬性を刺激して硬化する。そして、ス
ラグは微粒子化することにより活性が向上し、水ガラス
やアルカリとの反応性が増大する。Although the slag does not solidify by itself, it exhibits water glass, particularly a low-molar-ratio water glass, a silica colloid solution obtained by removing most alkali by passing water glass through an ion exchange resin, and exhibits alkalinity. Potential hydraulic properties are stimulated and hardened by adding salts such as sodium aluminate, sodium bicarbonate, sodium carbonate, alkalis such as caustic, lime, cement and the like. The activity of the slag is improved by making the slag into fine particles, and the reactivity with water glass or alkali increases.
【0066】ポゾラン類はそれ自体では硬化しないが、
アルカリの存在下で石灰やスラグと混合するとシリカ分
を溶出してゲル化する。Although pozzolans do not cure by themselves,
When mixed with lime or slag in the presence of alkali, silica is eluted and gelled.
【0067】スラグとしては、高炉スラグ、スラグとセ
メントの混合物、等任意のものを用いることができ、さ
らに、珪酸カルシウムを用いることもできる。As the slag, any blast furnace slag, a mixture of slag and cement, and the like can be used, and calcium silicate can also be used.
【0068】また、反応剤としては、水ガラスと反応す
る酸、塩、グリオキザール、多価酢酸エステル、エチレ
ンカーボネート等のエステル、有機塩、有機酸等の反応
剤、水ガラスをイオン交換樹脂を通してアルカリを除去
して得られたシリカコロイド等を用いることができる。As the reactant, an acid, salt, glyoxal, ester such as polyhydric acetic acid ester, ethylene carbonate, etc., a reactant such as an organic salt, an organic acid, etc., which react with water glass, and water glass are passed through an ion exchange resin to form an alkali. Can be used.
【0069】本発明にかかる上述の地盤固結用粉体は上
述の分級操作により粒径に応じた分布状態に分級され
る。分取された各懸濁液中の粒度分布はもとの粉体の粒
度分布幅よりも小さくなっている。得られた懸濁液はそ
のまま、または水ガラス、アルカリ(苛性ソーダ、アル
ミン酸ソーダ、炭酸ナトリウム、重炭酸ナトリウム、リ
ン酸ソーダ等)、コロイダルシリカ(イオン交換樹脂に
より水ガラス中の大部分のアルカリを除去して得られた
安定したコロイド状シリカ)、酸性シリカゾル(酸と水
ガラスの混合によって得られる強酸性の安定化したシリ
カゾル)や各種硬化剤と配合することにより、浸透性、
ゲル化時間、固結強度の異なった注入液(グラウト)と
なる。これらグラウトを併用することによって複雑な地
盤を効果的に固結することができる。The ground consolidating powder according to the present invention is classified into a distribution state according to the particle size by the above-described classification operation. The particle size distribution in each fractionated suspension is smaller than the particle size distribution width of the original powder. The obtained suspension may be used as it is, or water glass, alkali (caustic soda, sodium aluminate, sodium carbonate, sodium bicarbonate, sodium phosphate, etc.), colloidal silica (most of alkali in water glass by ion exchange resin). By mixing with stable colloidal silica obtained by removal, acidic silica sol (strongly acidic stabilized silica sol obtained by mixing acid and water glass) and various curing agents,
Injections (grout) with different gelation times and consolidation strengths. By using these grouts together, complex ground can be effectively consolidated.
【0070】本発明は上述のとおり、地盤固結用粉体を
固結特性、流動性の異なる懸濁液として分級、分取され
るので、これら懸濁液を単独で、あるいは併用すること
により、複雑な地盤に対して、適切な強度ならびに浸透
性を効果的に発揮する。また、本発明では、上記粉体を
平均粒径の異なる分布に分級、分取して用いるので、無
駄が生じない。According to the present invention, as described above, the ground consolidation powder is classified and fractionated as suspensions having different consolidation characteristics and fluidity, so that these suspensions can be used alone or in combination. Effectively exhibits appropriate strength and permeability to complex ground. Further, in the present invention, the powder is classified and sorted into distributions having different average particle diameters, so that no waste occurs.
【0071】なお、本発明では、例えば、ブレーン比表
面積が4000cm2/gのスラグを分級した場合、比表面積80
00cm2/g相当の優れた反応性を有する懸濁液が容易に調
製される。また、比表面積8000cm2/gの微粒子化された
スラグを分級した場合、標準砂に浸透し得る比表面積1
0000cm2/g以上の超微粒子スラグ懸濁液が得られる。さ
らに、比表面積10000cm2/g以上の超微粒子スラグを分
級すると、シルト混じり砂に浸透固結せしめる懸濁液が
得られる。In the present invention, for example, when a slag having a Blaine specific surface area of 4000 cm 2 / g is classified, a specific surface area of
Suspensions with excellent reactivity, equivalent to 00 cm 2 / g, are easily prepared. When the slag having a specific surface area of 8000 cm 2 / g is classified, the specific surface area which can penetrate the standard sand is 1%.
An ultrafine slag suspension of 0000 cm 2 / g or more is obtained. Further, when the ultra-fine particle slag having a specific surface area of 10,000 cm 2 / g or more is classified, a suspension mixed with silt and penetrating into sand is obtained.
【0072】[0072]
【作用】上述の本発明は攪拌機構、通気機構あるいは循
環機構等の備えられた分級槽中に、粒径の異なる地盤固
結用粉体を含む懸濁液を填充してまず、前記機構の作動
により前記懸濁液を流動状態に維持する。この流動によ
り懸濁液中の前記粉体は浮遊状態となり、粒径に応じた
複数の分布状態に分級される。According to the present invention, a suspension containing a ground consolidating powder having a different particle size is filled in a classification tank provided with a stirring mechanism, a ventilation mechanism or a circulation mechanism. Actuation maintains the suspension in a fluid state. Due to this flow, the powder in the suspension becomes a floating state, and is classified into a plurality of distribution states according to the particle size.
【0073】上述の分級された懸濁液は、次いで、直接
貯蔵槽に、あるいは分離槽を介して貯蔵槽にそれぞれ分
取され、粒径の異なる粉体を含有した複数の注入液を得
る。この分級操作により、粉体は粒径に応じて分級さ
れ、粒度分布幅が小さくなる。The classified suspension described above is then separated directly into a storage tank or into a storage tank via a separation tank to obtain a plurality of injection solutions containing powders having different particle sizes. By this classification operation, the powder is classified according to the particle size, and the particle size distribution width is reduced.
【0074】一般に、流体中に分散している粒子は自重
力や遠心力のほかに、流動の抵抗力および流体による浮
力も受けている。したがって、粒子の分離速度、すなわ
ち、懸濁液中の沈降速度はこのようないくつかの力のつ
り合いによって決まるものである。すなわち、本発明で
は、粒径が大きい程、また、粒子の比重の大きい程、沈
降速度は速くなるという原理にもとづき、懸濁液の流動
状態で比重の軽い粒子を懸浮させ、重い粒子を沈降させ
る。さらに、比重による分級と同時に粒径による分級も
起こり、軽い粒子でも粒径の大きいものは沈降し、重い
粒子でも細粒は懸浮する。Generally, particles dispersed in a fluid are subjected to resistance to flow and buoyancy due to the fluid in addition to gravity and centrifugal force. Thus, the rate of separation of the particles, ie, the rate of settling in the suspension, is determined by the balance of these several forces. That is, in the present invention, based on the principle that the larger the particle size and the higher the specific gravity of the particles, the higher the sedimentation speed, the lower the specific gravity of the particles in the fluidized state of the suspension, and the lower the sedimentation of the heavy particles. Let it. Furthermore, classification based on the particle size occurs at the same time as classification based on the specific gravity, and even light particles having a large particle diameter settle out, and fine particles float even with heavy particles.
【0075】地盤固結用粉体は一般に、粒径が微細な
程、浸透性が向上するが、固結強度が低下する。一方、
これは粒径が微細な程、化学的あるいは電気的反応が活
性化される。また、これは粒度分布幅を小さくし、なお
かつ、粒径を小さくする程、浸透性が向上する。粒度分
布幅が大きい場合には、平均粒径が小さくても、大きい
粒径の粒子が律則段階となって浸透を防げる。小さな粒
子は電気的に互いに凝集し、あるいは大きな粒子を中心
にして凝集して浸透性を阻害する。In general, the finer the particle size of the ground consolidation powder, the better the permeability, but the lower the consolidation strength. on the other hand,
The chemical or electrical reaction is activated as the particle size becomes smaller. In addition, the permeability is improved as the particle size distribution width is reduced and the particle size is reduced. When the particle size distribution width is large, even if the average particle size is small, particles having a large particle size are in a ruled stage and can prevent penetration. Small particles electrically aggregate with each other or around large particles, impairing permeability.
【0076】粉体を分級して粒度分布幅を小さくする
と、浸透性が良くなる。この理由はもとの粉体に存する
細粒分による凝集作用が防げるためと思われる。したが
って、粒度分布幅を小さくすればする程、平均粒径が大
きくてもそのわりには優れた浸透性を示す。さらに、分
級して得られた複数の注入液を重ね合わせた方が分級し
ない前の注入液をそのまま注入するよりも優れた浸透性
を示す。強度的にも優れた均質体が得られる。When the powder is classified and the particle size distribution width is reduced, the permeability is improved. This is presumably because the coagulation effect of the fine particles present in the original powder can be prevented. Therefore, the smaller the particle size distribution width, the more excellent the permeability even if the average particle size is large. Further, when a plurality of injection solutions obtained by classification are superimposed, superior permeability is exhibited as compared with injection of the injection solution before classification without any change. A homogeneous body excellent in strength can be obtained.
【0077】[0077]
【発明の実施例】以下、本発明を具体的に詳述する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail.
【0078】1.使用材料 (1)スラグ 表1に示す平均粒径、ブレーン比表面積、粒度分布幅を
もった3種類の水砕スラグを使用した。これら3種類の
粒子径(μm)と通過率との関係を図9に示す。1. Materials used (1) Slag Three types of granulated slag having the average particle size, the specific surface area of the brane, and the width of the particle size distribution shown in Table 1 were used. FIG. 9 shows the relationship between these three types of particle diameters (μm) and the transmittance.
【0079】[0079]
【表1】 [Table 1]
【0080】ここで、平均粒径は粒径分布の累積値が50
%を示す粒径、すなわち、メジアン径で表し、粒度分布
幅は分布の上下それぞれ2.5%づつを除外した全粉体の
95%を占める粒径の範囲を示す。Here, the average particle size is such that the cumulative value of the particle size distribution is 50.
%, Ie, the median diameter, and the particle size distribution width is 2.5% for each of the upper and lower parts of the distribution.
Indicates the range of particle size that accounts for 95%.
【0081】(2)水ガラス モル比がほぼ4.0〜1.0の各種の水ガラスが適用でき
る。ここでは、表2に示す2種類の水ガラスを使用し
た。(2) Water Glass Various water glasses having a molar ratio of about 4.0 to 1.0 can be applied. Here, two types of water glass shown in Table 2 were used.
【0082】[0082]
【表2】 [Table 2]
【0083】(3)セメント ブレーン比表面積8600cm2/g、平均粒径8.2μmのポル
トランドセメントを使用した。(3) Cement Portland cement having a specific surface area of brane of 8600 cm 2 / g and an average particle size of 8.2 μm was used.
【0084】(4)炭酸水素ナトリウム 試薬一級(NaHCO3)を使用した。(4) Sodium hydrogencarbonate Primary reagent (NaHCO 3 ) was used.
【0085】(5)消石灰 平均粒径8μmの微粒子の水酸化カルシウムを使用し
た。(5) Slaked lime Fine calcium hydroxide having an average particle size of 8 μm was used.
【0086】(6)アルミン酸ナトリウム液 次の組成からなるアルミン酸ナトリウム液を使用した。 Na2 O:22.47%、 Al2 O3 :1.59%(6) Sodium aluminate solution A sodium aluminate solution having the following composition was used. Na 2 O: 22.47%, Al 2 O 3 : 1.59%
【0087】2.スラグの分級試験 (1)図1に示される分級槽1を用いてスラグの分級試
験を行った。スラグとして、図9の試料No.1のものを用
いた。まず、分級槽1中に水250lを入れ、この中に上
記スラグ150kgを投入し、攪拌機3によって充分に分散
懸濁せしめた。その後、弱い攪拌を保持したまま、懸濁
液の濁度測定による分級度合をコントローラ5で検知し
た。2. Slag classification test (1) A slag classification test was performed using the classification tank 1 shown in FIG. The slag used was the sample No. 1 in FIG. First, 250 l of water was put into the classification tank 1, 150 kg of the slag was put into the tank, and the mixture was sufficiently dispersed and suspended by the stirrer 3. After that, the controller 5 detected the degree of classification by measuring the turbidity of the suspension while maintaining weak stirring.
【0088】この濁度測定による分級度合に従って、数
分間放置後、バルブ6をコントローラ5の指示により自
動的に開き、粒径の分布状態に応じた懸濁液を4種類、
すなわち、粒径の大きいものから、下層から上層にかけ
て順次に別々の貯蔵槽に分取した。After leaving for several minutes according to the classification degree by the turbidity measurement, the valve 6 is automatically opened according to the instruction of the controller 5, and four kinds of suspensions according to the particle size distribution state are prepared.
That is, the particles were sorted into different storage tanks sequentially from the lower layer to the upper layer, starting from the one having the largest particle size.
【0089】最下層から順次に、懸濁液a、b、c、d
とし、これらの粒子径と通過率との関係を図10に示し
た。さらに、これらa、b、c、d、および原スラグ
(図9の試料No.1) について比較を行い、結果を表3に
示した。The suspensions a, b, c and d are sequentially arranged from the lowermost layer.
FIG. 10 shows the relationship between the particle diameter and the passage rate. Further, comparison was made between these a, b, c, d, and the raw slag (sample No. 1 in FIG. 9), and the results are shown in Table 3.
【0090】[0090]
【表3】 [Table 3]
【0091】(2)図3の分級槽を用いてスラグの分級
試験を行った。スラグとして図9の試料No.2のものを用
いた。まず、分級槽1中に水250lを入れ、この中に上
記スラグ150kgを投入し、攪拌機3によって充分に分散
懸濁せしめた。その後、弱い攪拌を保持したまま、懸濁
液の吸光度測定による分級度合をコントローラ5で検知
した。(2) A slag classification test was performed using the classification tank shown in FIG. The slag used was sample No. 2 in FIG. First, 250 l of water was put into the classification tank 1, 150 kg of the slag was put into the tank, and the mixture was sufficiently dispersed and suspended by the stirrer 3. After that, the controller 5 detected the degree of classification by measuring the absorbance of the suspension while maintaining weak stirring.
【0092】この分光度測定による分級度合に従って、
数分間放置後、バルブ24をコントローラ5の指示により
自動的に開き、導管25を通して細粒子懸濁液を自動的に
分離槽23に移行した後、貯蔵槽11に分取した。この試料
を試料Cとした。According to the classification degree obtained by the spectrophotometry,
After standing for several minutes, the valve 24 was automatically opened according to the instruction of the controller 5, and the fine particle suspension was automatically transferred to the separation tank 23 through the conduit 25, and was then collected in the storage tank 11. This sample was designated as Sample C.
【0093】この結果、分級槽1には粗粒子懸濁液が残
る。この残留懸濁液を図1の電磁棒を用いてさらに、中
粒子懸濁液および粗粒子懸濁液の2種類に分級し、それ
ぞれ貯蔵槽に別々に分取した。最下層の試料をA、その
上の中粒子懸濁液試料をBとした。As a result, the coarse particle suspension remains in the classification tank 1. This residual suspension was further classified into two types, a medium particle suspension and a coarse particle suspension, using the electromagnetic rod shown in FIG. 1 and separately classified into storage tanks. The sample in the lowermost layer was designated as A, and the medium particle suspension sample thereon was designated as B.
【0094】これら試料A、B、Cの粒子径(μm)と
通過率(%)との関係を図11に示した。さらに、これら
試料A、B、Cおよび原スラグ(図9の試料No.2) につ
いて比較を行い、結果を表4に示した。FIG. 11 shows the relationship between the particle size (μm) of each of Samples A, B and C and the transmittance (%). Further, a comparison was made between Samples A, B, and C and the raw slag (Sample No. 2 in FIG. 9), and the results are shown in Table 4.
【0095】[0095]
【表4】 [Table 4]
【0096】(3)図6の分級槽を用いてスラグの分級
試験を行った。スラグとして、図9の試料No.3のものを
用いた。まず、分級槽1中に水250lを入れ、この中に
上記スラグ150kgを投入し、攪拌機3によって充分に分
散懸濁せしめた。その後、懸濁液を弱い攪拌を保持した
まま粒径に応じた分布状態に分級した。(3) A slag classification test was performed using the classification tank shown in FIG. As the slag, that of sample No. 3 in FIG. 9 was used. First, 250 l of water was put into the classification tank 1, 150 kg of the slag was put into the tank, and the mixture was sufficiently dispersed and suspended by the stirrer 3. Thereafter, the suspension was classified into a distribution state according to the particle size while maintaining weak stirring.
【0097】次いで、分級された各層からサンプリング
し、これらの密度を測定して分級度合を確認した。その
後、懸濁液の液面を空気で加圧し、吸引管35により上層
(細粒子懸濁液)、中間層、下層(粗粒子懸濁液)にわ
たって分取した。下層からそれぞれイ、ロ、ハの懸濁液
を得た。Next, sampling was performed from each of the classified layers, and their densities were measured to confirm the degree of classification. Thereafter, the liquid surface of the suspension was pressurized with air, and the suspension was fractionated into an upper layer (fine particle suspension), an intermediate layer, and a lower layer (coarse particle suspension) by a suction tube 35. Suspensions of I, B and C were obtained from the lower layer, respectively.
【0098】これら試料イ、ロ、ハの粒子径と通過率と
の関係を図12に示した。さらにこれら試料イ、ロ、ハお
よび原スラグ(図9の試料No.3) について比較を行い、
結果を表5に示した。FIG. 12 shows the relationship between the particle diameters of these samples A, B, and C and the transmittance. Furthermore, these samples A, B, C, and raw slag (Sample No. 3 in FIG. 9) were compared,
Table 5 shows the results.
【0099】[0099]
【表5】 [Table 5]
【0100】以上から、懸濁液は大きい粒径の層から小
さい粒径の層に分別され、これら分別された各層の粒度
分布幅は原スラグに比べれば極めて小さく、粒度の揃っ
たスラグの懸濁液が得られていることがわかる。From the above, the suspension is separated from a layer having a large particle size into a layer having a small particle size. The width of the particle size distribution of each of the separated layers is extremely smaller than that of the original slag, and the suspension of the slag having a uniform particle size is obtained. It can be seen that a suspension was obtained.
【0101】3.配合試験 以上の分取試験で分取した各懸濁液ならびに対照として
原スラグを用いて、各種配合による試験を行った。3. Combination test Using each suspension fractionated in the above fractionation test and the raw slag as a control, tests were conducted with various formulations.
【0102】(1)表3(図10)の懸濁液を使用。表
2のNO.2の水ガラスと表3のスラグを含む懸濁液と、炭
酸水素ナトリウムまたは消石灰からなる系について試験
を行った。結果を表6に示す。(1) The suspension shown in Table 3 (FIG. 10) was used. Tests were performed on a system consisting of a suspension containing the water glass of No. 2 in Table 2 and the slag of Table 3 and sodium bicarbonate or slaked lime. Table 6 shows the results.
【0103】ゲル化時間はカップ倒立法により測定し
た。一軸圧縮強度はモールド中に豊浦標準砂と配合液を
混合しながら填充して得たサンドゲルについて土質工学
会基準「土の一軸圧縮試験方法」に従って測定した。10
日強度はモールド中に10日間養生したもの、50日強度は
モールド中に10日間養生した後40日間水中に養生したも
のの強度を示す。100日、1年強度も上記に準ずる。The gel time was measured by a cup inverted method. The unconfined compressive strength was measured for a sandgel obtained by mixing and filling the Toura standard sand and the compounding liquid in a mold in accordance with the Japan Society of Soil Engineering Standard "unconfined compression test method for soil". Ten
The day strength indicates the strength of a product cured in a mold for 10 days, and the 50-day strength indicates the strength of a product cured in a mold for 10 days and then cured in water for 40 days. On the 100th day, the intensity for one year is the same as above.
【0104】[0104]
【表6】 [Table 6]
【0105】表6から、粒度分布の大きい原スラグを使
用した実施No.1、6、11、16では、本発明にかかる実施
No.2〜5、7〜10、12〜15、17〜20と比較してゲル化時
間が短いにもかかわらず、固結強度が小さいことがわか
る。From Table 6, it can be seen that in Examples 1, 6, 11, and 16 using raw slag having a large particle size distribution,
It can be seen that the compaction strength is small in spite of the short gelation time as compared with Nos. 2 to 5, 7 to 10, 12 to 15, and 17 to 20.
【0106】特に注目すべきは、本発明にかかる系で
は、たとえ、スラグの平均粒径が原スラグの平均粒径よ
りも大きい場合でも、ゲル化時間が長くなり、かつ固結
強度も大きいことがわかる。It should be particularly noted that, in the system according to the present invention, even when the average particle size of the slag is larger than the average particle size of the raw slag, the gelation time is long and the consolidation strength is large. I understand.
【0107】(2)表4(図11)の懸濁液を使用。表4
の原スラグは上記の表3の原スラグに比べると平均粒
径、粒度分布幅ともに非常に小さい。したがって、分取
されたスラグも平均粒径、粒度分布幅ともに非常に小さ
い。これらスラグを含む懸濁液と、表2のNo.2の水ガラ
スと、アルミン酸ナトリウム液とからなる系について試
験を行った。結果を表7に示す。ゲル化時間、一軸圧縮
強度は上述と同様に測定した。(2) The suspension shown in Table 4 (FIG. 11) was used. Table 4
The original slag is very small in both the average particle size and the particle size distribution width as compared with the original slag in Table 3 above. Therefore, the fractionated slag is also very small in both the average particle size and the particle size distribution width. A test was conducted on a system consisting of the suspension containing the slag, the water glass No. 2 in Table 2, and a sodium aluminate solution. Table 7 shows the results. The gel time and the uniaxial compressive strength were measured as described above.
【0108】[0108]
【表7】 [Table 7]
【0109】表7から明らかなように、この実験でも、
上述の表7と同様な傾向を示している。As is clear from Table 7, in this experiment,
It shows the same tendency as in Table 7 described above.
【0110】(3)表5(図12)の懸濁液を使用。表5
の原スラグはスラグ自体、相当に微粒子化されている。
このため、分級操作によってさらに平均粒径、粉度分布
幅ともに小さくなる。(3) Use the suspension shown in Table 5 (FIG. 12). Table 5
Slag itself is considerably finely divided.
Therefore, both the average particle size and the fineness distribution width are further reduced by the classification operation.
【0111】これらのスラグを含む懸濁液と、表2のN
o.1の水ガラスと、セメントと、アルミン酸ナトリウム
液とからなる系について試験を行った。結果を表8に示
す。ゲル化時間、一軸圧縮強度は上述に準じて測定し
た。The suspension containing these slags and N in Table 2
A test was conducted on a system consisting of o.1 water glass, cement, and a sodium aluminate solution. Table 8 shows the results. The gel time and the uniaxial compressive strength were measured according to the above.
【0112】[0112]
【表8】 [Table 8]
【0113】表8から明らかなように、いずれの試料で
も高固結強度を示している。これはセメントとして、自
硬性のセメントを用いたためである。また、いずれの試
料もゲル化時間は短い。全体的な傾向としては上述の表
6、表7と同様である。As is evident from Table 8, all the samples show high consolidation strength. This is because self-hardening cement was used as the cement. In addition, all samples have a short gelation time. The overall tendency is the same as in Tables 6 and 7 described above.
【0114】以上の試験から、スラグの平均粒径を小さ
くし、同時に、分級操作によって粒度分布幅を小さくす
ることにより、ゲル化時間が長くなり、かつ固結強度が
大きくなることがわかる。また、平均粒径がたとえ大き
くても、粒度分布幅を小さくする方がゲル化時間ならび
に固結強度等に関して好ましいこともこれら試験からわ
かる。なお、ゲル化時間が長くなれば、浸透性も向上す
る。From the above tests, it can be seen that the gelation time is increased and the consolidation strength is increased by reducing the average particle size of the slag and, at the same time, reducing the particle size distribution width by the classification operation. These tests also show that even if the average particle size is large, it is preferable to reduce the particle size distribution width with respect to the gelation time and the consolidation strength. The longer the gelation time, the higher the permeability.
【0115】4.粘性試験 上述のとおり、グラウト(注入液)のゲル化時間を長く
すれば、浸透に要する時間を長く保つので、浸透性の向
上につながるものである。また、グラウトの粘性が高け
れば、浸透性は劣化する。そこで、ここではグラウトの
ゲル化に至るまでの粘性について検討した。4. Viscosity test As described above, if the gelation time of the grout (injection liquid) is made longer, the time required for permeation is kept longer, which leads to an improvement in permeability. In addition, if the viscosity of the grout is high, the permeability deteriorates. Therefore, here, the viscosity up to gelation of the grout was examined.
【0116】表6の各試料の粘性とゲル化時間にもとづ
き、配合後の経過時間(ゲル化に達した時間を1とし、
このゲル化に至るまでの時間を比率(割合)で示し
た。)に対する粘性(cps)を測定し、結果を図13の
グラフに表わした。Based on the viscosity and gelation time of each sample in Table 6, the elapsed time after blending (the time when gelation was reached was 1,
The time until the gelation was shown by a ratio (ratio). ) Was measured, and the results are shown in the graph of FIG.
【0117】粘性はB型粘度計で測定した。図13におい
て、本発明にかかる分級スラグを含む実施例No.2〜5、
7〜10、12〜15、17〜20では、すべてが実線の範囲内で
あるのに対し、原スラグを含む実施例No.1、6、11、16
では破線近辺であった。The viscosity was measured with a B-type viscometer. In FIG. 13, Examples No. 2 to 5 including the classification slag according to the present invention,
Examples 7 to 10, 12 to 15, and 17 to 20 all fall within the range indicated by the solid line, while Examples Nos. 1, 6, 11, and 16 including the original slag were used.
Then, it was near the broken line.
【0118】すなわち、本発明にかかる分級操作により
分取されたスラグ懸濁液は原スラグの場合と比較して、
ゲル化に至るまでの粘性が低く保持されていることが図
13からわかる。この事実は本発明の操作を行うことによ
り、懸濁液(グラウト)のゲル化時間の遅延と相俟っ
て、浸透性の向上をも達成することを示すものである。That is, the slag suspension fractionated by the classification operation according to the present invention is different from that of the raw slag in that
The figure shows that the viscosity up to gelation is kept low.
I understand from 13. This fact indicates that the operation of the present invention achieves an improvement in permeability as well as a delay in the gel time of the suspension (grout).
【0119】5.注入試験 表6に示されるグラウトについて図14に示される注入装
置を用いて注入試験を行った。図14において、101はコ
ンプレッサー、102、103は圧力計である。コンプレッ
サー101に連結された攪拌機104を備えた水槽105の中
に本発明にかかる薬液106を充填する。107はアクリル
モールドであって、この中に土砂108が充填される。5. Injection test The grout shown in Table 6 was subjected to an injection test using the injection device shown in FIG. In FIG. 14, 101 is a compressor, and 102 and 103 are pressure gauges. A chemical tank 106 according to the present invention is filled in a water tank 105 provided with a stirrer 104 connected to a compressor 101. An acrylic mold 107 is filled with earth and sand 108.
【0120】水槽105中に充填された注入液6はコンプ
レッサー101の作動によってアクリルモールド107中の
土砂108に導入される。ここで、薬液106は土砂108に
浸透され、やがて透過された薬液106はメスシリンダー
111に採取され、浸透状態が測定される。109、110は
金網である。アクリルモールド107に充填される土砂1
08には大小の粒度を異にした土を充填し、上記表3の注
入液を単独または併用して注入し、その結果を観察し
た。注入試験は次のようにして行った。The injection solution 6 filled in the water tank 105 is introduced into the earth and sand 108 in the acrylic mold 107 by the operation of the compressor 101. Here, the chemical solution 106 is permeated into the earth and sand 108, and the permeated chemical solution 106 is collected in the measuring cylinder 111 and the permeation state is measured. Reference numerals 109 and 110 denote wire meshes. Earth and sand 1 filled in acrylic mold 107
08 was filled with soils of different sizes, large and small, and the injections in Table 3 above were injected alone or in combination, and the results were observed. The injection test was performed as follows.
【0121】1.単独注入試験 表6に示される実施例No.1〜5の注入液をそれぞれ単独
で注入した。その観察結果を表9に示す。1. Single injection test The injection solutions of Examples Nos. 1 to 5 shown in Table 6 were individually injected. Table 9 shows the observation results.
【0122】[0122]
【表9】 [Table 9]
【0123】表9中、対照の実施例No.21 は原スラグを
使用した注入液であって、細かい部分はもちろん、粗い
部分にも充分な浸透を示さない。実施例No.22 は平均粒
径が上記実施例No.21 よりかなり大きいにも拘ず、実施
例No.21 より明らかに浸透性は優れている。実施例No.2
3 、24は実施例No.21 とほぼ等しい平均粒径を示してい
るが、浸透性においては実施例No.21 より格段に優れて
いる。このことから、粉体の平均粒径はもちろんのこ
と、粒度分布幅が浸透性に大きく影響を及ぼしているこ
とが確認される。In Table 9, Control Example No. 21 is an injection using the original slag, and does not show sufficient penetration not only in the fine part but also in the coarse part. Example No. 22 is clearly better in permeability than Example No. 21, though the average particle size is much larger than Example No. 21 above. Example No.2
The samples Nos. 3 and 24 have an average particle diameter substantially equal to that of Example No. 21, but are far superior to Example No. 21 in permeability. From this, it is confirmed that not only the average particle size of the powder but also the particle size distribution width greatly affects the permeability.
【0124】2.併用注入試験 実施例21 表6の実施例No.2の注入液を一次注入した後、表6の実
施例No.4の注入液を二次注入液として、一次注入液と同
量注入した。この結果、粗い部分から細かい部分にかけ
て充分浸透し、全体が均質で強固な固結体がえられた。
また、No.2の注入液とNo.4の注入液を混合して一度に注
入した場合、上記の重ね合わせ注入よりも浸透性が劣っ
ていた。[0124] 2. Combined injection test Example 21 After the primary injection of the injection liquid of Example No. 2 in Table 6, the injection liquid of Example No. 4 in Table 6 was used as the secondary injection liquid and injected in the same amount as the primary injection liquid. As a result, permeation was sufficiently permeated from the coarse portion to the fine portion, and a uniform and strong compact was obtained as a whole.
In addition, when the No. 2 injection solution and the No. 4 injection solution were mixed and injected at once, the permeability was lower than that of the above-described superposition injection.
【0125】実施例22 表6の実施例No.3の注入液を一次注入した後、表6の実
施例No.5の注入液を二次注入液として、一次注入液と同
量注入した。この結果、上記実施例No.21 と同じか、あ
るいは、それ以上の効果がみられた。また、No.3とNo.5
の注入液を混合して一度に注入した場合、上記の重ね合
わせ注入よりも浸透性が劣っていた。Example 22 After the primary injection of the injection liquid of Example No. 3 in Table 6, the injection liquid of Example No. 5 in Table 6 was injected as the secondary injection liquid in the same amount as the primary injection liquid. As a result, the same or better effects as in Example No. 21 were obtained. No.3 and No.5
When the injection liquids were mixed and injected at once, the permeability was inferior to that of the above-described superposition injection.
【0126】実施例23 表6の実施例No.2、No.3の注入液を同量づつ混合したも
のを一次注入液として注入し、次いで、表6の実施例N
o.4、No.5の注入液を同量づつ混合したものを二次注入
液として注入した。この結果、実施例22に相当する効果
がえられた。Example 23 A mixture prepared by mixing equal amounts of the injection solutions of Examples No. 2 and No. 3 in Table 6 was injected as a primary injection solution.
A mixture obtained by mixing the same amounts of the injection solutions of o.4 and No.5 was injected as a secondary injection solution. As a result, an effect equivalent to that of the example 22 was obtained.
【0127】さらに、実施例No.2、No.3、No.4、No.5の
注入液を同量づつ混合したものを一度に注入した。この
注入量は上述の一次注入量および二次注入量の合計量で
ある。この結果、実施例21とほぼ同様の値を得た。Further, a mixture obtained by mixing equal amounts of the injection solutions of Examples No. 2, No. 3, No. 4, and No. 5 was injected at a time. This injection amount is the total amount of the above-mentioned primary injection amount and secondary injection amount. As a result, substantially the same value as in Example 21 was obtained.
【0128】以上のとおり、本発明にかかる分級により
分取した懸濁液は複合注入工法の固結用素材として、各
種の土層に適合し得るように組み合わせ、無駄なく効果
的に使用することができる。As described above, the suspension fractionated by the classification according to the present invention is used as a material for consolidation in the compound injection method so as to be compatible with various types of soil layers and used effectively without waste. Can be.
【0129】[0129]
【発明の効果】上述の本発明は以下の効果を奏し得る。 1.ゲル化時間、特に長いゲル化時間の調整が容易であ
る。 2.高強度の懸濁型グラウトを得ることができる。 3.平均粒径が大きくても、そのわりには優れた浸透性
を示す。 4.さらに平均粒径を小さくすれば一層優れた浸透性を
発揮できる。 5.浸透性、強度ともに優れるため、粗い土層はもちろ
ん、特に細かい土層への注入に効果的である。したがっ
て、一般の薬液注入工法、特に複合注入の緩結型グラウ
トとして最適の効果が期待できる。 6.分級して得た粗い注入材を一次注入とし、細かい注
入材を二次注入材としてもちいれば、分級しないで注入
するよりも、また、一方のみを注入するよりも、優れた
効果を得、かつ無駄なく全材料を利用できる。The present invention described above has the following effects. 1. It is easy to adjust the gel time, especially the long gel time. 2. A high-strength suspension grout can be obtained. 3. Even though the average particle size is large, it exhibits excellent permeability instead. 4. If the average particle size is further reduced, more excellent permeability can be exhibited. 5. Since it is excellent in both permeability and strength, it is effective not only for injection into coarse soil layers but also particularly fine soil layers. Therefore, the most suitable effect can be expected as a general chemical solution injection method, particularly as a loosely-coupled grout of compound injection. 6. If the coarse injection material obtained by classification is used as the primary injection material, and the fine injection material is used as the secondary injection material, it is possible to obtain a superior effect, rather than injecting without classification, or injecting only one of them, And all materials can be used without waste.
【図1】本発明にかかる製造装置の一具体例を表わした
略図である。FIG. 1 is a schematic view illustrating a specific example of a manufacturing apparatus according to the present invention.
【図2】本発明にかかる製造装置の他の一具体例を表わ
した略図である。FIG. 2 is a schematic view showing another specific example of the manufacturing apparatus according to the present invention.
【図3】本発明にかかる他方の形式の製造装置の一具体
例を表わした略図である。FIG. 3 is a schematic view showing a specific example of another type of manufacturing apparatus according to the present invention.
【図4】本発明にかかる図3の形式の製造装置の他の一
具体例を表わした略図である。FIG. 4 is a schematic view showing another specific example of the manufacturing apparatus of the type shown in FIG. 3 according to the present invention.
【図5】本発明に用いられる分級槽の一具体例の略図で
ある。FIG. 5 is a schematic view of a specific example of a classification tank used in the present invention.
【図6】本発明に用いられる分級槽の他の具体例の略図
である。FIG. 6 is a schematic view of another embodiment of a classification tank used in the present invention.
【図7】本発明に用いられる分級槽のさらに他の具体例
の略図である。FIG. 7 is a schematic view of still another embodiment of a classification tank used in the present invention.
【図8】本発明にかかる製造装置の一具体例を用いた地
盤注入工法の説明図である。FIG. 8 is an explanatory diagram of a ground injection method using a specific example of the manufacturing apparatus according to the present invention.
【図9】水砕スラグの粒子径に対する通過率を表わした
グラフである。FIG. 9 is a graph showing a passage rate with respect to a particle diameter of granulated slag.
【図10】懸濁液に含まれるスラグの粒子径に対する通
過率を表わしたグラフである。FIG. 10 is a graph showing a passage rate with respect to a particle diameter of slag contained in a suspension.
【図11】懸濁液に含まれるスラグの粒子径に対する通
過率を表わしたグラフである。FIG. 11 is a graph showing a passage rate of slag contained in a suspension with respect to a particle diameter.
【図12】懸濁液に含まれるスラグの粒子径に対する通
過率を表わしたグラフである。FIG. 12 is a graph showing the passage rate of the slag contained in the suspension with respect to the particle diameter.
【図13】注入液の経過時間に対する粘性を表わしたグ
ラフである。FIG. 13 is a graph showing the viscosity of an injection solution with respect to the elapsed time.
【図14】実験室用注入試験装置の略図である。FIG. 14 is a schematic diagram of a laboratory injection test device.
1 分級槽 2 懸濁液 3 攪拌機 4 エアコンプレッサー 5 コントローラ 6 バルブ 7 バルブ 8 バルブ 9 貯蔵槽 10 電磁棒 11 貯蔵槽 12 導管 13 導管 14 導管 17 貯蔵槽 18 貯蔵槽 19 貯蔵槽 20 貯蔵槽 21a バルブ 21b バルブ 21c バルブ 22 バルブ 23 分離槽 24 バルブ 25 導管 26 バルブ 27 導管 28 バルブ 29 導管 30 貯蔵槽 35 吸引管 36 吸引ポンプ 38 抜出口 39 導入口 40 循環パイプ 41 循環ポンプ 1 Classification tank 2 Suspension 3 Stirrer 4 Air compressor 5 Controller 6 Valve 7 Valve 8 Valve 9 Storage tank 10 Electromagnetic rod 11 Storage tank 12 Pipe 13 Pipe 14 Pipe 17 Storage tank 18 Storage tank 19 Storage tank 20 Storage tank 21a Valve 21b Valve 21c Valve 22 Valve 23 Separation tank 24 Valve 25 Conduit 26 Valve 27 Conduit 28 Valve 29 Conduit 30 Storage tank 35 Suction pipe 36 Suction pump 38 Discharge outlet 39 Inlet 40 Circulation pipe 41 Circulation pump
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C09K 103:00 (58)調査した分野(Int.Cl.6,DB名) C09K 17/02 C09K 17/06 C09K 17/10 C09K 17/12 E02D 3/12 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 identification symbol FI // C09K 103: 00 (58) Field surveyed (Int.Cl. 6 , DB name) C09K 17/02 C09K 17/06 C09K 17 / 10 C09K 17/12 E02D 3/12
Claims (13)
液を分級槽中で流動状態下で前記粉体の粒径に応じた分
布状態に分級し、次いで前記分級槽から前記分級された
各懸濁液をそれぞれ分取して粒径の異なる地盤固結用粉
体を含有した複数の地盤固結用注入液を製造することを
特徴とする地盤固結用注入液の製造方法。1. A suspension containing ground consolidating powders having different particle diameters is classified in a classification tank under a fluidized state into a distribution state according to the particle diameter of the powder, and then the suspension is separated from the classification tank. Producing a plurality of ground consolidation injection solutions each containing a classified suspension and producing a plurality of ground consolidation injection solutions containing ground consolidation powders having different particle diameters; Method.
気または循環により、またはこれらを併用することによ
り流動状態を維持しながら分級、分取される請求項1の
地盤固結用注入液の製造方法。 2. The suspension of claim 1 is stirred and passed in a classification tank.
By air or circulation, or by using them together
2. Classification and sorting while maintaining the fluid state
A method for producing an injection liquid for ground consolidation.
ト、炭酸カルシウム、石灰、石膏およびポゾラン類の群
より選択された一種または複数種である請求項1の地盤
固結用注入液の製造方法。 3. The ground consolidating powder is slag or cement.
G, calcium carbonate, lime, gypsum and pozzolans
2. The ground according to claim 1, wherein the ground is one or more types selected from the group consisting of:
A method for producing an infusate for consolidation.
に、水ガラス、コロイダルシリカ、アルカリまたは反応
剤を含有する請求項1の地盤固結用注入液の製造方法。 4. The method according to claim 1, wherein the suspension is further added to the powder.
2, water glass, colloidal silica, alkali or reaction
The method for producing an injection liquid for consolidating ground according to claim 1, which comprises an agent.
液が填充され、前記懸濁液を流動状態に維持する設備の
設けられた分級槽と、前記分級槽から粒径の分布状態を
異にした懸濁液を分別して貯蔵する複数の貯蔵槽と、前
記貯蔵槽と分級槽をそれぞれ連通する、バルブの備えら
れた導管からなり、前記懸濁液を流動状態に維持する設
備が攪拌装置、通気装置、循環装置、またはこれらを組
み合わせた装置であり、前記分級槽が底部または側壁で
複数の貯蔵槽と、それぞれバルブの備えられた導管を介
して連通され、前記分級槽中の粒径の分布状態を異にし
た懸濁液を分級槽の底部からバルブを開いて順次に各貯
蔵槽に取り出して分別し、または分級槽の側壁からバル
ブを開いて各貯蔵槽に取り出し、分別することを特徴と
する地盤固結用注入液の製造装置。 5. A suspension containing ground consolidation powders having different particle sizes.
Liquid is filled and the suspension is maintained in a fluid state.
Provided classification tank, the distribution state of the particle size from the classification tank
Multiple storage tanks for separating and storing different suspensions,
Provision of a valve that communicates between the storage tank and the classification tank
The suspension is maintained in a fluid state.
Be equipped with a stirrer, ventilator, circulator, or a combination of these
The classification tank is located at the bottom or side wall.
Via multiple storage tanks and conduits each with a valve
And the distribution state of the particle size in the classification tank is changed.
Open the valve from the bottom of the classification tank
Take it out to the storage tank and sort it.
Open the tank, take it out to each storage tank, and separate it.
To manufacture an infusate for ground consolidation.
備えられ、該コントローラは、バルブおよび流動状態を
維持する設備と連絡された請求項5の地盤固結用注入液
の製造装置。6. The device according to claim 5, further comprising a controller.
The controller includes a valve and a flow condition.
6. An infusate for ground consolidation according to claim 5 in communication with the equipment to be maintained.
Manufacturing equipment .
液が填充され、 前記懸濁液を流動状態に維持する設備の
設けられた分級槽と、前記分級槽とバルブの備えられた
導管により連通され、粒径の分布状態を異にした懸濁液
を分別する分離槽と、前記分級槽とバルブの備えられた
導管により連通され、前記分級槽中の懸濁液を前記分級
槽から分別して貯蔵する貯蔵槽と、前記分離槽とバルブ
の備えられた導管により連通され、前記分離槽中の前記
分別された懸濁液を前記分離槽から分別して貯蔵する貯
蔵槽とを備えてなり、前記懸濁液を流動状態に維持する
設備が攪拌装置、通気装置、循環装置、またはこれらを
組み合わせた装置であり、前記分離槽が一個または複数
個備えられ、かつ分級槽側壁の粒径の分布状態を異にし
た各懸濁液に相当する個所で、バルブの備えられた導管
を介して前記分級槽と連通され、さらに分級槽底部で、
バルブの備えられた導管を介して前記分級槽と連通され
ることを特徴とする地盤固結用注入液の製造装置。 7. A suspension containing ground consolidation powders having different particle sizes.
Liquid is filled and the suspension is maintained in a fluid state.
The provided classification tank, and the classification tank and the valve were provided.
Suspensions with different particle size distributions, communicated by conduits
A separation tank for separating the mixture, the classification tank and a valve were provided.
The suspension in the classification tank is communicated by a conduit and the classification is performed.
A storage tank that separates and stores the tank, the separation tank and a valve
Are connected by a conduit provided with
A storage for separating and storing the separated suspension from the separation tank.
And a storage tank for maintaining the suspension in a fluidized state.
If the equipment is a stirring device, a ventilation device, a circulation device, or
A combined device, wherein said separation tank is one or more
With different particle size distribution on the classification tank side wall.
At each location corresponding to each suspension
And is communicated with the classification tank through the bottom of the classification tank,
Connected to the classification tank via a conduit equipped with a valve;
An apparatus for producing an infusion liquid for consolidating ground.
備えられ、該コントローラはバルブおよび流動状態を維
持する設備を連絡された請求項7の地盤固結用注入液の
製造装置。 8. The apparatus according to claim 7, further comprising a controller.
Provided, the controller maintains the valve and flow conditions
8. The infusion liquid for consolidating ground according to claim 7,
Manufacturing equipment.
液を分級槽中で流動状態下で、前記粉体の粒径に応じた
分布状態に分級し、次いで前記分級された各懸濁液をそ
れぞれ分取して粒径の異なる地盤固結用粉体を含有した
複数の注入液を作液し、該作液された注入液の一種また
は複数種を地盤中に注入することを特徴とする地盤注入
工法。 9. A suspension containing ground consolidation powders having different particle sizes.
The liquid was placed in a classifying tank under a fluidized state, depending on the particle size of the powder.
Classify into a distribution state, and then add each of the classified suspensions.
Contained powders for soil consolidation with different particle diameter
A plurality of infusions are prepared, and one of the prepared infusions or
Injecting multiple types into the ground
Construction method.
ト、炭酸カルシウム、石灰、石膏およびポゾラン類の群
より選択された一種または複数種である請求項9の地盤
注入工法。 10. The ground consolidating powder is slag, cement or the like.
G, calcium carbonate, lime, gypsum and pozzolans
10. The ground according to claim 9, which is one or more types selected from the group consisting of:
Injection method.
て、さらに、水ガラス、コロイダルシリカ、アルカリま
たは反応剤を含有する請求項9の地盤注入工法。 11. The powder according to claim 9, wherein said suspension is added to said powder.
And water glass, colloidal silica, alkali
10. The method for injecting soil into the ground according to claim 9, wherein the method includes a reactant.
入液の一種または複数種を水ガラス、アルカリ液、水ガ
ラスをイオン交換樹脂で処理して得られるコロイダルシ
リカ、または酸性シリカゾルと混合して地盤中に注入さ
れる請求項9の地盤注入工法。 12. The injection liquid for consolidating ground according to claim 9, wherein
Apply one or more of the liquids to water glass, alkaline liquid, water
Colloidal material obtained by treating lath with ion exchange resin
Mixed with silica or acidic silica sol and injected into the ground.
10. The method of injecting soil into the ground according to claim 9, wherein
通気または循環により、またはこれら併用することによ
り流動状態を維持しながら分級、分取される請求項9の
地盤注入工法。 13. The suspension according to claim 9, wherein the suspension is stirred in a classification tank.
By ventilation or circulation, or by using
10. Classification and sorting while maintaining a fluid state
Ground injection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16447995A JP2903375B2 (en) | 1995-06-08 | 1995-06-08 | Method and apparatus for producing injection liquid for ground consolidation and ground injection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16447995A JP2903375B2 (en) | 1995-06-08 | 1995-06-08 | Method and apparatus for producing injection liquid for ground consolidation and ground injection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08333570A JPH08333570A (en) | 1996-12-17 |
JP2903375B2 true JP2903375B2 (en) | 1999-06-07 |
Family
ID=15793962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16447995A Expired - Fee Related JP2903375B2 (en) | 1995-06-08 | 1995-06-08 | Method and apparatus for producing injection liquid for ground consolidation and ground injection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2903375B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5458332B1 (en) * | 2013-03-04 | 2014-04-02 | 強化土株式会社 | Ground improvement method |
JP5467233B1 (en) * | 2013-03-04 | 2014-04-09 | 強化土株式会社 | Ground improvement method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5277570B2 (en) * | 2007-06-15 | 2013-08-28 | 宇部興産株式会社 | Slag injection material and its injection method |
JP5369340B1 (en) * | 2013-01-16 | 2013-12-18 | 強化土株式会社 | Ground improvement method |
JP5382561B1 (en) * | 2013-04-22 | 2014-01-08 | 強化土株式会社 | Ground improvement method |
JP6065218B2 (en) * | 2013-05-01 | 2017-01-25 | 清水建設株式会社 | Method for manufacturing solution-type grout material and apparatus for manufacturing the same |
JP6998025B1 (en) * | 2021-06-30 | 2022-02-04 | 強化土エンジニヤリング株式会社 | Silica grout and ground injection method using it |
-
1995
- 1995-06-08 JP JP16447995A patent/JP2903375B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5458332B1 (en) * | 2013-03-04 | 2014-04-02 | 強化土株式会社 | Ground improvement method |
JP5467233B1 (en) * | 2013-03-04 | 2014-04-09 | 強化土株式会社 | Ground improvement method |
Also Published As
Publication number | Publication date |
---|---|
JPH08333570A (en) | 1996-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Belem et al. | Effects of settlement and drainage on strength development within mine paste backfill | |
Pu et al. | An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content | |
JPH06321603A (en) | Soil cement composition and method | |
PL202669B1 (en) | Transport of solid particulates | |
JP2903375B2 (en) | Method and apparatus for producing injection liquid for ground consolidation and ground injection method | |
EP1432662A1 (en) | Pumpably verifiable fluid fiber compositions | |
US11912623B2 (en) | Fluidized solidified soil based on gold tailings, and preparation method thereof | |
JPH0841455A (en) | Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry | |
EP0207717A2 (en) | Pumpable backfill material of high strength | |
JPH05208853A (en) | Grouting material | |
KR20200034431A (en) | Flowable fills for a underground structural backfills and method of manufacturing the same | |
JP2946486B2 (en) | Method and apparatus for manufacturing injection liquid for ground consolidation, and method and apparatus for injection of ground | |
CA2560553C (en) | Methods of making cement compositions using liquid additives containing lightweight beads | |
JP2022090984A (en) | Ground consolidation material, method of producing the same, and ground injection method using the same | |
US3956900A (en) | Method for consolidating coal and/or rock in mining | |
JP3188110B2 (en) | Ground injection method | |
Mastoi et al. | Physico-mechanical and microstructural behaviour of high-water content zinc-contaminated dredged sediment treated with integrated approach PHDVPSS | |
JP3525084B2 (en) | Soil improvement method and soil improvement material for highly hydrous soil | |
RU2317605C1 (en) | Method and device for case-hardening liquid radioactive waste containing mineral oils and/or organic liquids | |
JP4505063B2 (en) | Suspension grout and its ground improvement method | |
CN110318786B (en) | Method for grouting ore body for controlling water by using pressurized pre-oxidized tailing neutralized paste material as grouting material | |
CN201738310U (en) | Piling machine for stirring and injecting lime-sand pile | |
CN208280092U (en) | One kind, which is blown sand, makes island curing apparatus | |
KR100501926B1 (en) | Method for stabilization and strength improvement of dredged soil using oyster shell | |
JPS6284177A (en) | Production of grout |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080326 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090326 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |