[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2998592B2 - Method for producing phosphonic acids - Google Patents

Method for producing phosphonic acids

Info

Publication number
JP2998592B2
JP2998592B2 JP11742295A JP11742295A JP2998592B2 JP 2998592 B2 JP2998592 B2 JP 2998592B2 JP 11742295 A JP11742295 A JP 11742295A JP 11742295 A JP11742295 A JP 11742295A JP 2998592 B2 JP2998592 B2 JP 2998592B2
Authority
JP
Japan
Prior art keywords
acid
mol
reaction
yield
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11742295A
Other languages
Japanese (ja)
Other versions
JPH0834790A (en
Inventor
透 佐々木
英雄 宮田
宏平 森川
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP11742295A priority Critical patent/JP2998592B2/en
Publication of JPH0834790A publication Critical patent/JPH0834790A/en
Application granted granted Critical
Publication of JP2998592B2 publication Critical patent/JP2998592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は除草剤原体として知られ
るN−ホスホノメチルグリシンまたはその塩類の合成中
間体等として有用なN−アシルアミノメチルホスホン酸
およびアミノメチルホスホン酸の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing N-acylaminomethylphosphonic acid and aminomethylphosphonic acid which are useful as an intermediate for synthesizing N-phosphonomethylglycine or a salt thereof known as a herbicide drug substance.

【0002】[0002]

【従来の技術】N−アシルアミノメチルホスホン酸類を
製造する方法は、従来よりいくつか知られているが、本
発明の製造方法、すなわちN−メチロールアミドと亜燐
酸をハロゲン化剤存在下反応させることを特徴とする製
造法は従来全く知られていない新規な方法であり、これ
らは従来技術では実現し得なかった問題点に対して満足
する結果を与え、工業的に優れた方法と言える。
2. Description of the Related Art There have been known several methods for producing N-acylaminomethylphosphonic acids. The production method of the present invention, namely, a method comprising reacting N-methylolamide with phosphorous acid in the presence of a halogenating agent. Are novel methods that have not been known at all, and they give satisfactory results for problems that could not be realized by the prior art, and can be said to be industrially superior methods.

【0003】従来の代表的な方法は以下に述べるように
種々の難点を有し実用的に問題が多い。Liebigs Ann.Ch
em.(9),861-7(1988)では1,3,5−トリアセチルヘキ
サヒドロ−1,3,5−トリアジンを三塩化燐又は亜燐
酸ジエステルと反応させることによりN−アセチルアミ
ノメチルホスホン酸及びそのエステルを製造する方法が
開示されている。しかしこれらの方法ではジメチルスル
ホキシド又はヘキサメチルホスホリックトリアミドのよ
うな特殊な溶媒を使用する点、出発原料である1,3,
5−トリアセチルヘキサヒドロ−1,3,5−トリアジ
ンを入手する事は難しい点、種々の難点を有し、商業的
規模においてこれらの方法でN−アシルアミノメチルホ
スホン酸及びそのジエチルエステルを製造することは難
しい。Synthetic Communications,16,(7),733-739(198
6) ではN−メチロールベンズアミドを三塩化燐及び亜
燐酸トリメチルの混合物と反応させることによりN−ベ
ンゾイルアミノメチルホスホン酸ジメチルエステルを製
造する方法が開示されている。このエステルは酸によっ
て加水分解されアミノメチルホスホン酸を生成する。し
かし、これらの方法で使用する亜燐酸トリメチルは比較
的高価であるため経済的不利は大きい。
Conventional typical methods have various difficulties as described below and have many practical problems. Liebigs Ann.Ch
em. (9), 861-7 (1988) describe the reaction of 1,3,5-triacetylhexahydro-1,3,5-triazine with phosphorus trichloride or phosphite diester to give N-acetylaminomethylphosphonic acid. And methods for producing the esters thereof. However, these methods use a special solvent such as dimethyl sulfoxide or hexamethylphosphoric triamide, and the starting materials 1,3,
It is difficult to obtain 5-triacetylhexahydro-1,3,5-triazine and there are various difficulties, and N-acylaminomethylphosphonic acid and its diethyl ester are produced by these methods on a commercial scale. It is difficult. Synthetic Communications, 16, (7), 733-739 (198
6) discloses a method for producing dimethyl N-benzoylaminomethylphosphonate by reacting N-methylolbenzamide with a mixture of phosphorus trichloride and trimethyl phosphite. This ester is hydrolyzed by an acid to produce aminomethylphosphonic acid. However, trimethyl phosphite used in these methods is relatively expensive and thus has a great economic disadvantage.

【0004】アメリカ特許2,328,358及びアメ
リカ特許2,304,156ではN−メチロールアミド
を三ハロゲン化燐と無溶媒にて反応せしめた後、過剰の
水と接触させてN−アシルアミノメチルホスホン酸を製
造する方法が開示されている。しかし、これらの方法で
は一般に収率が低い、反応時間が長い、高価なアミド原
料を用いる等の種々の難点が有る。ヨ−ロッパ特許37
0,992ではアセトアミドとパラホルムアルデヒドを
酢酸中で処理した後、三塩化燐を添加して反応せしめ、
得られたN−アセチルアミノメチルホスホン酸を酸又は
アルカリ加水分解することによりアミノメチルホスホン
酸を製造する方法が開示されており、またポ−ランド特
許117780でもN−メチロールベンズアミドを酢酸
中で三塩化燐と反応させ、得られたN−ベンゾイルアミ
ノメチルホスホン酸を加水分解することによりアミノメ
チルホスホン酸を製造する方法が開示されている。これ
らの方法は比較的良い収率を示すが、この方法を実施す
るにあたり、三塩化燐というやや取り扱いに難を有する
原料を等モルもしくはそれ以上使用すること、塩酸が三
塩化燐1モルに対し3倍モルという過剰なガスが発生す
るためその回収に難を有すること、またアセチルクロラ
イドが副生し、その分離回収に余分な手間を要するこ
と、溶媒である酢酸と水の分離回収が極めて困難である
こと等、種々の難点を有し、商業的規模においてこれら
の方法でアシルアミノメチルホスホン酸及びアミノメチ
ルホスホン酸を製造することは難しいものであった。
In US Pat. No. 2,328,358 and US Pat. No. 2,304,156, N-methylolamide is reacted with phosphorus trihalide without solvent, and then contacted with excess water to give N-acylaminomethylphosphonate. A method for producing an acid is disclosed. However, these methods generally have various disadvantages such as low yield, long reaction time, and use of expensive amide raw materials. European Patent 37
In 0.992, acetamide and paraformaldehyde were treated in acetic acid, and phosphorus trichloride was added to react.
A method for producing aminomethylphosphonic acid by subjecting the obtained N-acetylaminomethylphosphonic acid to acid or alkali hydrolysis is disclosed.Poland Patent 117780 discloses that N-methylolbenzamide is converted to phosphorus trichloride in acetic acid. A method for producing aminomethylphosphonic acid by reacting and hydrolyzing the obtained N-benzoylaminomethylphosphonic acid is disclosed. Although these methods show relatively good yields, in carrying out this method, an equimolar amount or more of a raw material called phosphorus trichloride, which is somewhat difficult to handle, is used. It is difficult to recover the gas due to the generation of an excess gas of 3 moles, acetyl chloride is by-produced and extra time is required for the separation and recovery, and it is extremely difficult to separate and recover the solvent acetic acid and water. Therefore, it has been difficult to produce acylaminomethylphosphonic acid and aminomethylphosphonic acid by these methods on a commercial scale.

【0005】そこで、分離工程が問題点を解決した方法
として、特開平5−112586において、N−メチロ
ールアミド化合物と三ハロゲン化燐を、非プロトン性溶
媒中で水の共存下に60〜160℃の温度に加熱して反
応せしめた後、水と接触させてN−アシルアミノメチル
ホスホン酸を得る製造法が開示されている。この方法は
収率が高く、反応が制御し易く、かつ反応液よりの目的
物の分離工程が複雑でない等の優れた方法であるが、三
塩化燐を原料として使用するために、原料の取り扱い、
過剰の塩酸の発生等の問題点を抱えている。
To solve the problem of the separation step, Japanese Patent Application Laid-Open No. 5-112586 discloses a method in which an N-methylolamide compound and phosphorus trihalide are mixed at 60-160 ° C. in an aprotic solvent in the presence of water. And a reaction method for obtaining N-acylaminomethylphosphonic acid by contacting with water after heating to a temperature of 2. This method is an excellent method in that the yield is high, the reaction is easy to control, and the step of separating the target substance from the reaction solution is not complicated. However, since phosphorus trichloride is used as a raw material, the handling of the raw material is difficult. ,
It has problems such as generation of excess hydrochloric acid.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、N−
アシルアミノメチルホスホン酸を製造する方法におい
て、安価で入手容易かつ取扱いやすい原料を使用するこ
と、収率が高いこと、反応の各工程が単純で容易である
こと、発生するハロゲン化水素の量が少ないこと等従来
の方法の難点を解決して工業的に優れた製造法を開発せ
んとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an N-
In the method for producing acylaminomethylphosphonic acid, use of inexpensive, readily available and easy-to-handle materials, high yield, simple and easy reaction steps, and low amount of hydrogen halide generated It is an object of the present invention to solve the problems of the conventional methods and to develop an industrially superior production method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するN−アシルアミノメチルホスホン酸の新規
な製造法として本発明を完成させた。即ち、本発明は、
N−メチロールアミドと亜燐酸とを、ハロゲン化剤を存
在させ30〜160℃の温度条件下で反応させた後、多
量の水と接触させることを特徴とするN−アシルアミノ
メチルホスホン酸を製造する方法に関する。
Means for Solving the Problems The present inventors have completed the present invention as a novel method for producing N-acylaminomethylphosphonic acid which solves the above-mentioned problems. That is, the present invention
N-acylaminomethylphosphonic acid is produced by reacting N-methylolamide and phosphorous acid in the presence of a halogenating agent at a temperature of 30 to 160 ° C. and then contacting with a large amount of water. About the method.

【0008】以下に本発明の方法について更に詳細に説
明する。本発明で出発物質であるN−メチロールアミド
は、例えばドイツ特許262,148やドイツ特許29
1,712、ドイツ特許158,088、Monatsh.,78,
172-3(1948) 等で示されるようにアルカリ性又は酸性状
態でアミドとホルムアルデヒドを反応させて得られる。
ここで得られたN−メチロールアミドは単離して使用し
てもかまわないが、特に単離しなくとも使用できる。出
発物質として使用されるN−メチロールアミドは、例え
ば、次の一般式 RC(O)NHCH2 OH で表すことができる。式中、RがH、低級アルキル基、
アリール基またはメチロールアミノ基を表すN−メチロ
ールアミドが本発明で出発物質としては好ましい。
Hereinafter, the method of the present invention will be described in more detail. N-methylolamide, which is a starting material in the present invention, is described in, for example, DE 262,148 or DE 29
1,712, German Patent 158,088, Monatsh., 78,
172-3 (1948), etc., obtained by reacting an amide with formaldehyde in an alkaline or acidic state.
The N-methylolamide obtained here may be used after isolation, but can be used without particular isolation. N-methylolamide used as a starting material can be represented, for example, by the following general formula RC (O) NHCH 2 OH. Wherein R is H, a lower alkyl group,
N-methylolamide representing an aryl group or a methylolamino group is preferred as a starting material in the present invention.

【0009】ここで低級アルキル基としては分岐状又は
直鎖状C1 〜C5 のアルキル基、アリール基としては亜
燐酸もしくはハロゲン化剤に不活性な置換基を有し得る
フェニル基またはメチロールアミノ基が好ましく、その
代表的なN−メチロールアミドを例示すれば、例えば
N,N’−ジメチロール尿素、N−メチロールアセトア
ミド、N−メチロールホルムアミド、N−メチロールプ
ロピオンアミド、N−メチロール−(t−,i−又はn
−)ブチルアミド、N−メチロール−(t−,i−又は
n−)バレロアミド、N−メチロールベンズアミド、N
−メチロール−(o−,m−又はp−)トルアミド、N
−メチロール−(o−,m−又はp−)メトキシベンズ
アミド、N−メチロール−(o−,m−又はp−)エト
キシベンズアミド、N−メチロール−(o−,m−又は
p−)クロロベンズアミド、N−メチロール−(o−,
m−又はp−)ニトロベンズアミド、N−メチロール−
(2,3−、2,4−、2,5−、2,6−、3,4−
又は3,5−)ジクロロベンズアミド等が挙げられ、好
ましくはN,N’−ジメチロール尿素、N−メチロール
アセトアミドが挙げられ、各々対応するN−アシルアミ
ノメチルホスホン酸RC(O)NHCH2 P(O)(O
H)2 が得られる(ただし、N,N’−ジメチロール尿
素の場合はRはホスホノメチルアミノ基である)。
The lower alkyl group is a branched or linear C 1 -C 5 alkyl group, and the aryl group is a phenyl group or a methylolamino group which may have a substituent which is inert to phosphorous acid or a halogenating agent. Groups are preferred. Typical N-methylolamides are, for example, N, N'-dimethylolurea, N-methylolacetamide, N-methylolformamide, N-methylolpropionamide, N-methylol- (t-, i- or n
-) Butylamide, N-methylol- (t-, i- or n-) valeroamide, N-methylolbenzamide, N
-Methylol- (o-, m- or p-) toluamide, N
-Methylol- (o-, m- or p-) methoxybenzamide, N-methylol- (o-, m- or p-) ethoxybenzamide, N-methylol- (o-, m- or p-) chlorobenzamide, N-methylol- (o-,
m- or p-) nitrobenzamide, N-methylol-
(2,3-, 2,4-, 2,5-, 2,6-, 3,4-
Or 3,5) dichlorobenzamide and the like, preferably N, N'-dimethylol urea, N- methylol acetamide and the like, each corresponding N- acyl amino methyl phosphonic acid RC (O) NHCH 2 P ( O) (O
H) 2 is obtained (however, in the case of N, N'-dimethylolurea, R is a phosphonomethylamino group).

【0010】本反応に用いられるハロゲン化剤は、亜燐
酸の置換基の少なくとも一つ以上をハロゲン基に変換し
うる能力を有する試剤である。例えば、アシルハライ
ド、ホスホラスハライド、チオニルハライド、スルフリ
ルハライド、ハロカーボネート、ハロゲン等が挙げられ
る。
The halogenating agent used in the present reaction is a reagent having the ability to convert at least one of the substituents of phosphorous acid into a halogen group. Examples include acyl halide, phosphorous halide, thionyl halide, sulfuryl halide, halocarbonate, halogen and the like.

【0011】アシルハライド化合物の具体的例として
は、ホルミルクロライド、アセチルクロライド、プロピ
オニルクロライド、(i−又はn−)ブチリルクロライ
ド、(t−,i−又はn−)バレリルクロライド、ベン
ゾイルクロライド、(o−,m−又はp−)トルオイル
クロライド、(o−,m−又はp−)メトキシベンゾイ
ルクロライド、(o−,m−又はp−)エトキシベンゾ
イルクロライド、(o−,m−又はp−)クロロベンゾ
イルクロライド、(o−,m−又はp−)ニトロクロロ
ベンゾイルクロライド、ホルミルブロマイド、アセチル
ブロマイド、プロピオニルブロマイド、(i−又はn
−)ブチリルブロマイド、(t−,i−又はn−)バレ
リルブロマイド、ベンゾイルブロマイド、(o−,m−
又はp−)トルオイルブロマイド、(o−,m−又はp
−)メトキシベンゾイルブロマイド、(o−,m−又は
p−)エトキシベンゾイルブロマイド、(o−,m−又
はp−)クロロベンゾイルブロマイド、(o−,m−又
はp−)ニトロクロロベンゾイルブロマイド、ホルミル
ヨーダイド、アセチルヨーダイド、プロピオニルヨーダ
イド、(i−又はn−)ブチリルヨーダイド、(t−,
i−又はn−)バレリルヨーダイド、ベンゾイルヨーダ
イド、(o−,m−又はp−)トルオイルヨーダイド、
(o−,m−又はp−)メトキシベンゾイルヨーダイ
ド、(o−,m−又はp−)エトキシベンゾイルヨーダ
イド、(o−,m−又はp−)クロロベンゾイルヨーダ
イド、(o−,m−又はp−)ニトロクロロベンゾイル
ヨーダイド等が挙げられる。その中で実用的な見地から
アシルクロライドが好ましく、特にホルミルクロライ
ド、アセチルクロライド、ベンゾイルクロライドが好ま
しい。
Specific examples of the acyl halide compound include formyl chloride, acetyl chloride, propionyl chloride, (i- or n-) butyryl chloride, (t-, i- or n-) valeryl chloride, benzoyl chloride, (O-, m- or p-) toluoyl chloride, (o-, m- or p-) methoxybenzoyl chloride, (o-, m- or p-) ethoxybenzoyl chloride, (o-, m- or p -) Chlorobenzoyl chloride, (o-, m- or p-) nitrochlorobenzoyl chloride, formyl bromide, acetyl bromide, propionyl bromide, (i- or n
-) Butyryl bromide, (t-, i- or n-) valeryl bromide, benzoyl bromide, (o-, m-
Or p-) toluoyl bromide, (o-, m- or p
-) Methoxybenzoyl bromide, (o-, m- or p-) ethoxybenzoyl bromide, (o-, m- or p-) chlorobenzoyl bromide, (o-, m- or p-) nitrochlorobenzoyl bromide, formyl Iodide, acetyl iodide, propionyl iodide, (i- or n-) butyryl iodide, (t-,
i- or n-) valeryl iodide, benzoyl iodide, (o-, m- or p-) toluoyl iodide,
(O-, m- or p-) methoxybenzoyl iodide, (o-, m- or p-) ethoxybenzoyl iodide, (o-, m- or p-) chlorobenzoyl iodide, (o-, m -Or p-) nitrochlorobenzoyl iodide. Among them, acyl chlorides are preferable from a practical viewpoint, and formyl chloride, acetyl chloride and benzoyl chloride are particularly preferable.

【0012】ホスホラスハライド化合物の具体的例とし
ては三塩化燐、オキシ塩化燐、五塩化燐、三臭化燐、オ
キシ臭化燐、五臭化燐、三ヨウ化燐、オキシヨウ化燐、
五ヨウ化燐等が挙げられ、その中で実用的な見地からホ
スホラスクロリドが好ましく、特に三塩化燐が最も好ま
しい。チオニルハライド化合物の具体的な例としては、
塩化チオニル、臭化チオニル、ヨウ化チオニル等が挙げ
られ、その中で実用的な見地から塩化チオニルが最も好
ましい。
Specific examples of the phosphorous halide compound include phosphorus trichloride, phosphorus oxychloride, phosphorus pentachloride, phosphorus tribromide, phosphorus oxybromide, phosphorus pentabromide, phosphorus triiodide, phosphorus oxyiodide, and the like.
Phosphorus pentaiodide and the like are preferred. Among them, phosphorous chloride is preferred from a practical viewpoint, and phosphorus trichloride is particularly preferred. Specific examples of the thionyl halide compound include:
Examples thereof include thionyl chloride, thionyl bromide, and thionyl iodide, and among them, thionyl chloride is most preferable from a practical viewpoint.

【0013】スルフリルハライド化合物の具体的な例と
しては、塩化スルフリル、臭化スルフリル、ヨウ化スル
フリル等が挙げられ、その中で実用的な見地から塩化ス
ルフリルが最も好ましい。ハロカーボネート化合物の具
体的例としてはホスゲンが挙げられる。また、ホスゲン
ダイマーやホスゲントリマーであっても構わない。ハロ
ゲン化合物の具体的例としては塩素、臭素、ヨウ素が挙
げられ、実用的見地から塩素が好ましい。
Specific examples of the sulfuryl halide compound include sulfuryl chloride, sulfuryl bromide, and sulfuryl iodide. Of these, sulfuryl chloride is most preferable from a practical viewpoint. Phosgene is a specific example of the halocarbonate compound. Further, it may be a phosgene dimer or a phosgene trimer. Specific examples of the halogen compound include chlorine, bromine and iodine, and chlorine is preferable from a practical viewpoint.

【0014】反応原料のN−メチロールアミドと亜燐酸
の反応当初のモル比は、用いるハロゲン化剤が三ハロゲ
ン化燐以外のものである場合、化学当量である1:1
(ただし、Rがメチロールアミノ基の場合は1:2)で
良いが、いずれか一方を若干過剰に用いることはなんら
差支えなく、その場合実用的な観点から亜燐酸をN−メ
チロールアミドに対して1.0〜1.3倍当量程度用い
ることが好ましい。ハロゲン化剤の量は、用いるハロゲ
ン化剤が三ハロゲン化燐以外のものである場合、亜燐酸
に対して1.0倍当量(ここで示す当量とは亜燐酸1モ
ルに対してその置換基1つをハロゲン化変換しうる理論
モル数である。)以上必要であり、それ以下で反応を行
うことは収率の低下をもたらすため好ましくない。逆
に、ハロゲン化剤の量が多量に用いると、塩酸ガスが多
量に発生する、収率が低下する、副生物が生成する等、
プロセス的、経済的な不利を免れない。従って、好まし
いハロゲン化剤の量は亜燐酸に対して1.0〜6.0倍
当量であり、特に好ましくは,1.5〜2.5倍当量で
ある。
The initial molar ratio of N-methylolamide and phosphorous acid as the reaction raw materials is 1: 1 which is a chemical equivalent when the halogenating agent used is other than phosphorus trihalide.
(However, when R is a methylolamino group, 1: 2) may be used, but it is not a problem to use one of them in a slight excess. In this case, phosphorous acid is converted to N-methylolamide from a practical viewpoint. It is preferable to use about 1.0 to 1.3 equivalents. When the halogenating agent to be used is other than phosphorus trihalide, the amount of the halogenating agent is 1.0 equivalent to the phosphorous acid (the equivalent shown here is 1 mol of the phosphorous acid and its substituent This is the theoretical number of moles in which one can be converted into a halogen.) It is necessary to carry out the reaction more than that. Conversely, if a large amount of the halogenating agent is used, a large amount of hydrochloric acid gas is generated, the yield is reduced, and by-products are generated.
Process and economic disadvantages are inevitable. Accordingly, the amount of the halogenating agent is preferably 1.0 to 6.0 equivalents, particularly preferably 1.5 to 2.5 equivalents to phosphorous acid.

【0015】ハロゲン化剤が三ハロゲン化燐の場合、ハ
ロゲン化剤自体が系内で変化しホスホノ化試薬として作
用する。このため、反応原料の亜燐酸の反応当初の仕込
み比は、三ハロゲン化燐のモルを加えた量で計算する。
好ましい三ハロゲン化燐の量は亜燐酸に対して0.2〜
5.0倍モルであり、特に好ましくは,0.5〜2倍モ
ルである。0.2倍モル以下もしくは5.0倍モル以上
では、満足する収率が得られず、好ましくない。ハロゲ
ン化剤としてハロゲン化合物を使用する際、通常ハロゲ
ン化合物を活性化しうる試剤、例えばルイス酸のような
ものを併用しても構わない。
When the halogenating agent is phosphorus trihalide, the halogenating agent itself changes in the system and acts as a phosphonating reagent. For this reason, the initial charge ratio of phosphorous acid as a reaction raw material is calculated by adding the moles of phosphorus trihalide.
The preferred amount of phosphorus trihalide is from 0.2 to phosphorous acid.
The molar amount is 5.0 times, particularly preferably 0.5 to 2 times. If the molar ratio is 0.2 mol or less or 5.0 mol or more, a satisfactory yield cannot be obtained, which is not preferable. When a halogen compound is used as the halogenating agent, a reagent which can activate the halogen compound, for example, a Lewis acid may be used in combination.

【0016】溶媒は無溶媒でも差支えないし、使用して
も構わない。またハロゲン化剤を多少量を多く反応に供
することにより溶媒も兼ねて反応を実施することもでき
る。使用する溶媒としては極性溶媒もしくは非極性溶媒
が挙げられる。極性溶媒としてはハロゲン化炭化水素、
エ−テル、ポリエ−テル、カルボン酸、カルボン酸エス
テル、ニトリル、芳香族ニトロ化合物等が挙げられる。
これらの代表的な化合物を例示すれば、クロロベンゼ
ン、クロロホルム、四塩化炭素、ジクロロエタン、トリ
クロロエタン、ジクロロエチレン、ジクロロベンゼンプ
ロピルエーテル、イソプロピルエーテル、ブチルエーテ
ル、ペンチルエーテル、イソペンチルエーテル,1,2
−ジメトキシエタン、ダイグラム、テトラヒドロフラ
ン,1,4−ジオキサン、アニソール、蟻酸、酢酸、蟻
酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、酢
酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、ニ
トロベンゼン、アセトニトリル、プロピオニトリル等が
挙げられ、中でも原料化合物の溶解性、反応後の分離回
収の容易性、経済性等実用的な観点から、特に、プロピ
ルエーテル、イソプロピルエーテル、ブチルエーテル、
ペンチルエーテル、イソペンチルエーテル、1,2−ジ
メトキシエタン、ダイグラム、1,4−ジオキサン、酢
酸、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチ
ル等が好ましいものとして挙げられる。
The solvent may be used without solvent or may be used. The reaction can be carried out also as a solvent by subjecting the halogenating agent to the reaction in a slightly larger amount. Examples of the solvent used include a polar solvent and a non-polar solvent. Halogenated hydrocarbons as polar solvents,
Ether, polyether, carboxylic acid, carboxylic acid ester, nitrile, aromatic nitro compound and the like can be mentioned.
Examples of these typical compounds include chlorobenzene, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, dichloroethylene, dichlorobenzene propyl ether, isopropyl ether, butyl ether, pentyl ether, isopentyl ether, 1,2
-Dimethoxyethane, digram, tetrahydrofuran, 1,4-dioxane, anisole, formic acid, acetic acid, methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, nitrobenzene, acetonitrile, propio Nitriles and the like, among which, from the practical viewpoints such as solubility of the raw material compounds, ease of separation and recovery after the reaction, economical efficiency, particularly, propyl ether, isopropyl ether, butyl ether,
Preferred examples include pentyl ether, isopentyl ether, 1,2-dimethoxyethane, diagram, 1,4-dioxane, acetic acid, methyl acetate, ethyl acetate, propyl acetate, butyl acetate and the like.

【0017】非極性溶媒としては、脂肪族炭化水素、芳
香族炭化水素等が挙げられる。これらの代表的な化合物
を例示すれば、例えば、シクロヘキサン、ヘキサン、ヘ
プタン、オクタン、ベンゼン、トルエン、キシレン、エ
チルベンゼン、メシチレン等が挙げられ、中でも原料化
合物の分散性、反応後の分離回収の容易性、経済性等実
用的な観点からは、特に、ヘキサン、ベンゼン、トルエ
ン、キシレン、エチルベンゼン等が好ましいものとして
挙げられる。
Examples of the non-polar solvent include aliphatic hydrocarbons and aromatic hydrocarbons. Examples of these typical compounds include, for example, cyclohexane, hexane, heptane, octane, benzene, toluene, xylene, ethylbenzene, mesitylene, etc., among which the dispersibility of the raw material compounds and the ease of separation and recovery after the reaction From the practical viewpoints such as economy and economy, hexane, benzene, toluene, xylene, ethylbenzene and the like are particularly preferable.

【0018】N−メチロールアミドと亜燐酸の混合物又
はその混合物を非プロトン性溶媒に溶解し、そのものに
ハロゲン化剤を加える際には反応制御の目的で低温冷却
下、特に0〜60℃で加えることが好ましい。反応は3
0〜160℃の温度条件下で行うが、例えばハロゲン化
剤を加えた後、反応混合物の温度を室温から80℃を越
える温度に徐々に上昇せしめることが好ましい。反応原
料、ハロゲン化剤、溶媒のあるなしにもよるが、生成物
の最大収率を得る為には90〜110℃の温度にするの
が好ましい。
A mixture of N-methylolamide and phosphorous acid or a mixture thereof is dissolved in an aprotic solvent, and when a halogenating agent is added to the mixture, it is added at a low temperature for the purpose of controlling the reaction, particularly at 0 to 60 ° C. Is preferred. Reaction 3
The reaction is carried out under a temperature condition of 0 to 160 ° C., for example, it is preferable to gradually raise the temperature of the reaction mixture from room temperature to a temperature exceeding 80 ° C. after adding a halogenating agent. Depending on the presence or absence of the reactants, the halogenating agent and the solvent, the temperature is preferably from 90 to 110 ° C. in order to obtain the maximum yield of the product.

【0019】反応物を昇温後大量の水と接触させるが、
その場合の温度条件は、80℃以下が好ましい。反応生
成物のN−アシルアミノメチルホスホン酸は水及び反応
溶媒を留去した後、結晶として単離することが出来る。
尚、本発明のN−アシルアミノメチルホスホン酸は、従
来から知られている方法で加水分解を行うことによりア
ミノメチルホスホン酸を製造することができる。この場
合、硫酸、塩酸等の鉱酸を用いても水酸化ナトリウム、
水酸化カリウム等のアルカリ金属水酸化物を用いても容
易に加水分解出来る。但し、アルカリ金属水酸化物を用
いたときの直接の生成物はアルカリ金属塩でありアミノ
メチルホスホン酸とするには更に中和する必要がある。
反応原料としてN−アシルアミノメチルホスホン酸は単
離精製してから反応に供しても良いが、反応溶媒を留去
した後の未精製のものを直接使用しても良い。
After the temperature of the reaction product is raised, it is brought into contact with a large amount of water.
The temperature condition in that case is preferably 80 ° C. or less. The reaction product N-acylaminomethylphosphonic acid can be isolated as crystals after distilling off water and the reaction solvent.
In addition, the N-acylaminomethylphosphonic acid of the present invention can produce aminomethylphosphonic acid by hydrolysis by a conventionally known method. In this case, even if a mineral acid such as sulfuric acid or hydrochloric acid is used, sodium hydroxide,
Hydrolysis can be easily performed using an alkali metal hydroxide such as potassium hydroxide. However, a direct product when an alkali metal hydroxide is used is an alkali metal salt, and further conversion to aminomethylphosphonic acid requires further neutralization.
As a reaction raw material, N-acylaminomethylphosphonic acid may be subjected to the reaction after isolation and purification, or may be used directly after purification by distilling off the reaction solvent.

【0020】更に、上記の反応によって得られたアミノ
メチルホスホン酸は、公知の方法、例えば特開平4−2
79595に記載されている方法でN−ホスホノメチル
グリシンまたはその塩を製造することができる。N−ホ
スホノメチルグリシンは、公知の方法、例えば、アメリ
カ特許3,799,758、同第3,977,860、
ヨーロッパ特許369076の方法で、置換アモニウム
塩、トリ置換スルホニウム塩などの塩類を効率的に製造
することができる。
Further, aminomethylphosphonic acid obtained by the above reaction can be obtained by a known method, for example, Japanese Patent Application Laid-Open No. 4-2.
N-phosphonomethylglycine or a salt thereof can be produced by the method described in 79595. N-phosphonomethylglycine can be produced by known methods, for example, U.S. Pat. Nos. 3,799,758 and 3,977,860.
According to the method of EP 369076, salts such as substituted amonium salts and trisubstituted sulfonium salts can be efficiently produced.

【0021】[0021]

【作用】本発明の方法に於ける最も重要な要件の一つ
は、系内にハロゲン化剤が存在する中で反応させること
にある。ハロゲン化剤が存在しない系の反応、すなわ
ち、N−メチロールアミドと亜燐酸だけでは、N−アシ
ルアミノメチルホスホン酸は全く生成せず、原料の回収
に終わった。また、単に三塩化燐とN−メチロールアセ
トアミドをジオキサン中、水浴上20℃で混合し、90
℃に昇温して3時間反応させた後、多量の水と接触させ
た場合においては、N−アセチルアミノメチルホスホン
酸は得られたが、収率が約40%と低かった。本発明の
方法によれば、類似な反応条件で収率が80%を越え
る。従って、系内で単純に亜燐酸が三ハロゲン化され、
三ハロゲン化燐が生成し、それが、N−メチロールアミ
ドと反応することによって、N−アシルアミノメチルホ
スホン酸が生成する方法とは根本的に異なる。
One of the most important requirements in the process of the present invention is to carry out the reaction in the presence of a halogenating agent in the system. The reaction in the absence of a halogenating agent, i.e., N-methylolamide and phosphorous acid alone did not produce any N-acylaminomethylphosphonic acid, resulting in the recovery of the raw material. Further, simply mixing phosphorus trichloride and N-methylolacetamide in dioxane on a water bath at 20 ° C.
When the temperature was raised to ° C. and the reaction was carried out for 3 hours, and then contacted with a large amount of water, N-acetylaminomethylphosphonic acid was obtained, but the yield was as low as about 40%. According to the process of the present invention, the yield exceeds 80% under similar reaction conditions. Therefore, phosphorous acid is simply trihalogenated in the system,
This is fundamentally different from the method in which phosphorus trihalides are formed, which react with N-methylolamide to form N-acylaminomethylphosphonic acids.

【0022】系内にハロゲン化剤が存在することにより
反応が進行する理由については必ずしも定かではない
が、先ず亜燐酸とハロゲン化剤からなるある種の活性ハ
ロゲン化燐化合物、例えばヒドロキシホスホノジハライ
ドやジヒドロキシホスホノハライド等が発生し、それが
N−メチロールアミドと反応してアシルアミノメチルホ
スホン酸ハライドが生成し、N−アシルアミノメチルホ
スホン酸へ導けるものと推定している。
The reason why the reaction proceeds due to the presence of the halogenating agent in the system is not always clear, but first, a certain active phosphorus halide compound comprising phosphorous acid and a halogenating agent, for example, hydroxyphosphonodihalide And dihydroxyphosphonohalide are generated, which react with N-methylolamide to form acylaminomethylphosphonic acid halide, which is presumed to lead to N-acylaminomethylphosphonic acid.

【0023】[0023]

【実施例】以下に本発明の方法について代表的な実施例
を示し更に具体的に説明するが、これらは説明のための
単なる例示である。従って、本発明の方法はこれらの例
のみに限定されず、またこれらの例によってなんら制限
されないことは言うまでもない。
EXAMPLES The method of the present invention will be described in more detail with reference to representative examples, which are merely illustrative for explanation. Therefore, it goes without saying that the method of the present invention is not limited to these examples, and is not limited by these examples.

【0024】実施例1 300mlフラスコに、アセトアミド17.90g
(0.30モル)、95%パラホルムアルデヒド9.4
8g(0.30モル)、及び水酸ナトリウム40%水溶
液0.20g(0.002モル)を入れた。この混合物
を60℃、1.5時間加熱し溶液とした後、冷却してN
−メチロールアセトアミド溶液を得た。この中へ、97
%亜燐酸29.6g(0.35モル)を加えた。この混
合物を水氷浴中冷却してアセチルクロライド137.3
7g(1.75モル)を反応温度が60℃を越えないよ
うに攪拌下、約1時間かけて徐々に滴下した。
Example 1 17.90 g of acetamide was placed in a 300 ml flask.
(0.30 mol), 95% paraformaldehyde 9.4
8 g (0.30 mol) and 0.20 g (0.002 mol) of a 40% aqueous solution of sodium hydroxide were added. This mixture was heated at 60 ° C. for 1.5 hours to form a solution, and then cooled to N 2
-A methylol acetamide solution was obtained. Into this, 97
29.6 g (0.35 mol) of% phosphorous acid were added. The mixture was cooled in a water ice bath and acetyl chloride 137.3.
7 g (1.75 mol) was gradually added dropwise over about 1 hour with stirring so that the reaction temperature did not exceed 60 ° C.

【0025】滴下終了後、この溶液を加熱し、攪拌下3
時間かけて徐々に反応温度を105℃まで上昇させた。
反応終了後、室温まで冷却し、水120ml加えて30
分間そのまま攪拌した。溶媒を減圧下留去した後、白色
結晶を得た。液体クロマトグラフィーによる分析の結果
によりN−アセチルアミノメチルホスホン酸の収率は7
8%(アセトアミドより)であった。この生成物を、水
酸化ナトリウム25%水溶液60g(1.5モル)を添
加し70℃、3時間反応させることによってアミノメチ
ルホスホン酸ナトリウム塩に変換することができた。液
体クロマトグラフィーによる分析の結果、収率は74%
(アセトアミドより)であった。この溶液を濃塩酸で酸
性化し蒸発乾固させた。その後、濃塩酸300mlに入
れ、塩化ナトリウムを沈殿させ、濾過し除去した。濾液
を蒸発させ、残留物を水及びメタノールで再結晶を行う
ことにより、純度99%のアミノメチルホスホン酸を2
2.54g(収率67%(アセトアミドより))得た。
After completion of the dropwise addition, the solution is heated and stirred for 3 hours.
The reaction temperature was gradually increased to 105 ° C. over time.
After completion of the reaction, the reaction mixture is cooled to room temperature,
Stirred for minutes. After evaporating the solvent under reduced pressure, white crystals were obtained. According to the result of analysis by liquid chromatography, the yield of N-acetylaminomethylphosphonic acid was 7
8% (from acetamide). This product was converted into sodium aminomethylphosphonate by adding 60 g (1.5 mol) of a 25% aqueous sodium hydroxide solution and reacting at 70 ° C. for 3 hours. As a result of analysis by liquid chromatography, the yield was 74%.
(From acetamide). The solution was acidified with concentrated hydrochloric acid and evaporated to dryness. Then, it was poured into 300 ml of concentrated hydrochloric acid to precipitate sodium chloride, which was removed by filtration. The filtrate was evaporated and the residue was recrystallized from water and methanol to give 99% pure aminomethylphosphonic acid.
2.54 g (67% yield (from acetamide)) was obtained.

【0026】実施例2 500mlフラスコにアセトアミド17.90g(0.
30モル)、95%パラホルムアルムアルデヒド9.4
8g(0.30モル)、水酸化ナトリウム40%水溶液
0.20g(0.002モル)及び1、4−ジオキサン
120mlを入れた。この混合物を60℃、1.5時間
加熱し、一様な溶液とした後冷却してN−メチロールア
セトアミド溶液とした。この中へ、97%亜燐酸29.
6g(0.35モル)を加えた。この混合物を水氷浴中
冷却してアセチルクロライド54.95g(0.70モ
ル)を反応温度が60℃を越えないように攪拌下、約1
時間かけて徐々に滴下した。この溶液を加熱し、攪拌下
3時間かけて徐々に反応温度を100℃まで上昇させ
た。
Example 2 17.90 g of acetamide (0.
30 mol), 95% paraformalmaldehyde 9.4
8 g (0.30 mol), 0.20 g (0.002 mol) of a 40% aqueous solution of sodium hydroxide and 120 ml of 1,4-dioxane were added. The mixture was heated at 60 ° C. for 1.5 hours to form a uniform solution and then cooled to obtain an N-methylolacetamide solution. Into this, 97% phosphorous acid 29.
6 g (0.35 mol) were added. The mixture was cooled in a water-ice bath, and 54.95 g (0.70 mol) of acetyl chloride was stirred for about 1 hour under stirring so that the reaction temperature did not exceed 60 ° C.
It was dropped slowly over time. The solution was heated and the reaction temperature was gradually increased to 100 ° C. over 3 hours with stirring.

【0027】反応終了後、室温まで冷却し、水120m
l加えて30分間そのまま攪拌した。溶媒を減圧下留去
した後、白色結晶を得た。液体クロマトグラフィーによ
る分析の結果によりN−アセチルアミノメチルホスホン
酸の収率は85%(アセトアミドより)であった。この
生成物に、水酸化ナトリウム25%水溶液60g(1.
5モル)を添加し70℃、3時間反応させることによっ
てアミノメチルホスホン酸ナトリウム塩に変換すること
ができた。液体クロマトグラフィーによる分析の結果、
収率は81%(アセトアミドより)であった。
After completion of the reaction, the reaction mixture was cooled to room temperature,
and stirred for 30 minutes. After evaporating the solvent under reduced pressure, white crystals were obtained. According to the result of analysis by liquid chromatography, the yield of N-acetylaminomethylphosphonic acid was 85% (from acetamide). 60 g of a 25% aqueous solution of sodium hydroxide (1.
5 mol) and reacted at 70 ° C. for 3 hours to convert into aminomethylphosphonic acid sodium salt. As a result of analysis by liquid chromatography,
The yield was 81% (from acetamide).

【0028】実施例3 100mlのフラスコにアセトアミド35.80g
(0.60モル)、水酸化ナトリウム40%水溶液0.
40g(0.004モル)、95%パラホルムアルデヒ
ド18.96g(0.60モル)を入れた。この混合物
を60℃、1.5時間加熱し、その後5℃まで冷却して
結晶化させた。この結晶を30mlの1,4−ジオキサ
ンで再結晶することにより純度98%のN−メチロール
アセトアミドを48.19g(収率88%)得た。
Example 3 35.80 g of acetamide was placed in a 100 ml flask.
(0.60 mol), 40% aqueous sodium hydroxide solution 0.1.
40 g (0.004 mol) and 18.96 g (0.60 mol) of 95% paraformaldehyde were charged. The mixture was heated at 60 ° C. for 1.5 hours and then cooled to 5 ° C. for crystallization. The crystals were recrystallized from 30 ml of 1,4-dioxane to obtain 48.19 g (88% yield) of 98% pure N-methylolacetamide.

【0029】500mlフラスコに上記で調製したN−
メチロールアセトアミドを26.73g(0.3モル)
量り取り、1,4−ジオキサンを120ml入れ、溶解
させた。この中へ、97%亜燐酸29.6g(0.35
モル)を加えた。この混合物を水氷浴中冷却してアセチ
ルクロライド54.95g(0.70モル)を反応温度
が60℃を越えないように攪拌下、約1時間かけて徐々
に滴下した。この溶液を加熱し、攪拌下3時間かけて徐
々に反応温度を100℃まで上昇させた。反応終了後、
室温まで冷却し、水120ml加えて30分間そのまま
攪拌した。溶媒を減圧下留去した後、白色結晶を得た。
液体クロマトグラフィーによる分析の結果によりN−ア
セチルアミノメチルホスホン酸の収率は92%(N−メ
チロールアセトアミドより)であった。この生成物に、
水酸化ナトリウム25%水溶液60g(1.5モル)を
添加し70℃、3時間反応させることによってアミノメ
チルホスホン酸ナトリウム塩に変換することができた。
液体クロマトグラフィーによる分析の結果、収率は87
%(N−メチロールアセトアミドより)であった。
In a 500 ml flask, the N-
26.73 g (0.3 mol) of methylolacetamide
After weighing out, 120 ml of 1,4-dioxane was added and dissolved. 29.6 g of 97% phosphorous acid (0.35
Mol) was added. The mixture was cooled in a water-ice bath and 54.95 g (0.70 mol) of acetyl chloride was gradually added dropwise over about 1 hour with stirring so that the reaction temperature did not exceed 60 ° C. The solution was heated and the reaction temperature was gradually increased to 100 ° C. over 3 hours with stirring. After the reaction,
After cooling to room temperature, 120 ml of water was added and the mixture was stirred for 30 minutes. After evaporating the solvent under reduced pressure, white crystals were obtained.
According to the result of analysis by liquid chromatography, the yield of N-acetylaminomethylphosphonic acid was 92% (from N-methylolacetamide). In this product,
By adding 60 g (1.5 mol) of a 25% aqueous solution of sodium hydroxide and reacting at 70 ° C. for 3 hours, it was possible to convert to sodium aminomethylphosphonate.
As a result of analysis by liquid chromatography, the yield was 87.
% (From N-methylolacetamide).

【0030】実施例4 アセトアミドの代わりにベンズアミド36.71g
(0.30g)を用いた以外は実施例2と同様に行っ
た。液体クロマトグラフィーによる分析の結果、N−ベ
ンゾイルアミノメチルホスホン酸の収率は88%、アミ
ノメチルホスホン酸の収率は84%(ベンズアミドよ
り)であった。
Example 4 36.71 g of benzamide instead of acetamide
(0.30 g) was performed in the same manner as in Example 2 except that (0.30 g) was used. As a result of analysis by liquid chromatography, the yield of N-benzoylaminomethylphosphonic acid was 88%, and the yield of aminomethylphosphonic acid was 84% (from benzamide).

【0031】比較例1 300mlフラスコに、アセトアミド17.90g
(0.30モル)、95%パラホルムアルデヒド9.4
8g(0.30モル)、及び水酸化ナトリウム40%水
溶液0.20g(0.002モル)及び1,4−ジオキ
サン120mlを入れた。この混合物を60℃、1.5
時間加熱し溶液とした後、冷却してN−メチロールアセ
トアミド溶液を得た。この中へ、97%亜燐酸29.6
g(0.35モル)を加えた。この溶液を加熱し、攪拌
下3時間かけて徐々に反応温度を100℃まで上昇させ
た。反応終了後、室温まで冷却し、水120ml加えて
30分間そのまま攪拌したが、31P−NMR分析ではN
−アセチルアミノメチルホスホン酸が全く生成しておら
ず、液体クロマトグラフィーによる分析の結果、N−メ
チロールアセトアミドがそのまま残存していることが判
明した。
Comparative Example 1 17.90 g of acetamide was placed in a 300 ml flask.
(0.30 mol), 95% paraformaldehyde 9.4
8 g (0.30 mol), 0.20 g (0.002 mol) of a 40% aqueous solution of sodium hydroxide and 120 ml of 1,4-dioxane were charged. The mixture is brought to 60 ° C., 1.5
After heating for hours to form a solution, the solution was cooled to obtain an N-methylolacetamide solution. Into this, 97% phosphorous acid 29.6
g (0.35 mol) was added. The solution was heated and the reaction temperature was gradually increased to 100 ° C. over 3 hours with stirring. After completion of the reaction, was cooled to room temperature, was directly stirred for 30 minutes added water 120 ml, N is 31 P-NMR analysis
-Acetylaminomethylphosphonic acid was not generated at all, and analysis by liquid chromatography revealed that N-methylolacetamide remained as it was.

【0032】比較例2 500mlフラスコにアセトアミド17.90g(0.
30モル)、95%パラホルムアルムアルデヒド9.4
8g(0.30モル)、水酸化ナトリウム40%水溶液
0.20g(0.002モル)及び1,4−ジオキサン
120mlを入れた。この混合物を60℃、1.5時間
加熱し、一様な溶液とした後冷却してN−メチロールア
セトアミド溶液とした。この混合物を水氷浴中冷却して
三塩化燐48.07g(0.35モル)を反応温度が6
0℃を越えないように攪拌下、約1時間かけて徐々に滴
下した。この溶液を加熱し、攪拌下3時間かけて徐々に
反応温度を100℃まで上昇させた。
Comparative Example 2 17.90 g of acetamide (0.
30 mol), 95% paraformalmaldehyde 9.4
8 g (0.30 mol), 0.20 g (0.002 mol) of a 40% aqueous solution of sodium hydroxide and 120 ml of 1,4-dioxane were added. The mixture was heated at 60 ° C. for 1.5 hours to form a uniform solution and then cooled to obtain an N-methylolacetamide solution. The mixture was cooled in a water-ice bath, and 48.07 g (0.35 mol) of phosphorus trichloride was added at a reaction temperature of 6%.
The solution was gradually added dropwise over about 1 hour with stirring so as not to exceed 0 ° C. The solution was heated and the reaction temperature was gradually increased to 100 ° C. over 3 hours with stirring.

【0033】反応終了後、室温まで冷却し、水120m
l加えて30分間そのまま攪拌した。溶媒を減圧下留去
した後、白色結晶を得た。液体クロマトグラフィーによ
る分析の結果によりN−アセチルアミノメチルホスホン
酸の収率は40%(アセトアミドより)であった。この
生成物に、水酸化ナトリウム25%水溶液60g(1.
5モル)を添加し70℃、3時間反応させることによっ
てアミノメチルホスホン酸ナトリウム塩に変換すること
ができた。液体クロマトグラフィーによる分析の結果、
収率は38%(アセトアミドより)であった。
After the completion of the reaction, the reaction mixture was cooled to room temperature,
and stirred for 30 minutes. After evaporating the solvent under reduced pressure, white crystals were obtained. According to the result of analysis by liquid chromatography, the yield of N-acetylaminomethylphosphonic acid was 40% (from acetamide). 60 g of a 25% aqueous solution of sodium hydroxide (1.
5 mol) and reacted at 70 ° C. for 3 hours to convert into aminomethylphosphonic acid sodium salt. As a result of analysis by liquid chromatography,
The yield was 38% (from acetamide).

【0034】実施例5 100mlフラスコにアセトアミド17.90g(0.
30モル)、95%パラホルムアルムアルデヒド9.4
8g(0.30モル)、水酸化ナトリウム40%水溶液
0.20g(0.002モル)及び1,4−ジオキサン
30mlを入れた。この混合物を60℃、1.5時間加
熱し、一様な溶液とした後冷却してN−メチロールアセ
トアミド溶液とした。500mlフラスコに97%亜燐
酸8.43g(0.10モル)、三塩化燐34.33
(0.25モル)、ジオキサン50mlを加えた。この
混合物を水氷浴中冷却してN−メチロールアセトアミド
溶液を反応温度が60℃を越えないように攪拌下、約1
時間かけて徐々に滴下した。この溶液を加熱し、攪拌下
3時間かけて徐々に反応温度を100℃まで上昇させ
た。
Example 5 17.90 g of acetamide (0.
30 mol), 95% paraformalmaldehyde 9.4
8 g (0.30 mol), 0.20 g (0.002 mol) of a 40% aqueous solution of sodium hydroxide and 30 ml of 1,4-dioxane were added. The mixture was heated at 60 ° C. for 1.5 hours to form a uniform solution and then cooled to obtain an N-methylolacetamide solution. 8.43 g (0.10 mol) of 97% phosphorous acid, 34.33 phosphorus trichloride in a 500 ml flask
(0.25 mol) and 50 ml of dioxane. The mixture was cooled in a water-ice bath, and the N-methylolacetamide solution was stirred for about 1 hour so that the reaction temperature did not exceed 60 ° C.
It was dropped slowly over time. The solution was heated and the reaction temperature was gradually increased to 100 ° C. over 3 hours with stirring.

【0035】反応終了後、室温まで冷却し、水120m
l加えて30分間そのまま攪拌した。溶媒を減圧下留去
した後、白色結晶を得た。液体クロマトグラフィーによ
る分析の結果によりN−アセチルアミノメチルホスホン
酸の収率は78%(アセトアミドより)であった。この
生成物に、水酸化ナトリウム25%水溶液60g(1.
5モル)を添加し70℃、3時間反応させることによっ
てアミノメチルホスホン酸ナトリウム塩に変換すること
ができた。液体クロマトグラフィーによる分析の結果、
収率は74%(アセトアミドより)であった。
After completion of the reaction, the reaction mixture was cooled to room temperature,
and stirred for 30 minutes. After evaporating the solvent under reduced pressure, white crystals were obtained. According to the result of analysis by liquid chromatography, the yield of N-acetylaminomethylphosphonic acid was 78% (from acetamide). 60 g of a 25% aqueous solution of sodium hydroxide (1.
5 mol) and reacted at 70 ° C. for 3 hours to convert into aminomethylphosphonic acid sodium salt. As a result of analysis by liquid chromatography,
The yield was 74% (from acetamide).

【0036】実施例6 97%亜燐酸の仕込み量を10.14g(0.12モ
ル)、三塩化燐の仕込み量を31.59(0.23モ
ル)を用いた以外は実施例5と同様に行った。液体クロ
マトグラフィーによる分析の結果、N−アセチルアミノ
メチルホスホン酸の収率は82%、アミノメチルホスホ
ン酸ナトリウム塩の収率は78%であった。(アセトア
ミドより)
Example 6 The same as Example 5 except that the charged amount of 97% phosphorous acid was 10.14 g (0.12 mol) and the charged amount of phosphorus trichloride was 31.59 (0.23 mol). I went to. As a result of analysis by liquid chromatography, the yield of N-acetylaminomethylphosphonic acid was 82%, and the yield of aminomethylphosphonic acid sodium salt was 78%. (From acetamide)

【0037】実施例7 アセトアミドの代わりにベンズアミド36.71g
(0.30モル)を用いた以外は実施例4と同様に行っ
た。液体クロマトグラフィーによる分析の結果、N−ベ
ンゾイルアミノメチルホスホン酸の収率は85%、アミ
ノメチルホスホン酸ナトリウム塩の収率は81%(ベン
ズアミドより)であった。
Example 7 36.71 g of benzamide instead of acetamide
(0.30 mol) was used in the same manner as in Example 4. As a result of analysis by liquid chromatography, the yield of N-benzoylaminomethylphosphonic acid was 85%, and the yield of aminomethylphosphonic acid sodium salt was 81% (from benzamide).

【0038】実施例8 アセチルクロライドの代わりに塩化チオニル83.28
(0.70モル)用いた以外は実施例2と同様に行っ
た。液体クロマトグラフィーによる分析の結果、N−ア
セチルアミノメチルホスホン酸の収率は71%、アミノ
メチルホスホン酸ナトリム塩の収率は67%(アセトア
ミドより)であった。
Example 8 83.28 thionyl chloride in place of acetyl chloride
(0.70 mol) was carried out in the same manner as in Example 2 except that it was used. As a result of analysis by liquid chromatography, the yield of N-acetylaminomethylphosphonic acid was 71%, and the yield of sodium aminomethylphosphonic acid sodium salt was 67% (from acetamide).

【0039】実施例9 500mlフラスコにN,N’−ジメチロール尿素を1
8.02g(0.15モル)入れ、1,4−ジオキサン
を120ml入れ、溶解させた。この中へ、97%亜燐
酸29.6g(0.35モル)を加えた。この混合物を
水氷浴中冷却してアセチルクロライド54.95g
(0.70モル)を反応温度が60℃を越えないように
攪拌下、約1時間かけて徐々に滴下した。この溶液を加
熱し、攪拌下3時間かけて徐々に反応温度を100℃ま
で上昇させた。反応終了後、室温まで冷却し、水120
ml加えて30分間そのまま攪拌した。溶媒を減圧下留
去した後、白色結晶を得た。液体クロマトグラフィーに
よる分析の結果によりN,N’−ビスホスホノメチル尿
素の収率は90%(N,N’−ジメチロール尿素より)
であった。この生成物を水300gに溶解させた後、3
6%塩酸30.38g(0.3モル)を加えて90℃、
5時間反応させることによってアミノメチルホスホン酸
に変換することができた。液体クロマトグラフィーによ
る分析の結果、収率は83%(N,N’−ジメチロール
尿素より)であった。この溶液を蒸発乾固させ、その残
留物を水及びメタノールで再結晶を行うことにより純度
99%のアミノメチルホスホン酸を24.90g(収率
74%(N,N’−ジメチロール尿素より)得た。
Example 9 A 500 ml flask was charged with 1 N, N'-dimethylolurea.
8.02 g (0.15 mol) was added, and 120 ml of 1,4-dioxane was added and dissolved. Into this, 29.6 g (0.35 mol) of 97% phosphorous acid was added. The mixture was cooled in a water-ice bath to give 54.95 g of acetyl chloride.
(0.70 mol) was gradually added dropwise over about 1 hour with stirring so that the reaction temperature did not exceed 60 ° C. The solution was heated and the reaction temperature was gradually increased to 100 ° C. over 3 hours with stirring. After the completion of the reaction, the resultant is cooled to room temperature, and water 120
Then, the mixture was stirred for 30 minutes. After evaporating the solvent under reduced pressure, white crystals were obtained. According to the result of analysis by liquid chromatography, the yield of N, N'-bisphosphonomethylurea was 90% (from N, N'-dimethylol urea).
Met. After dissolving this product in 300 g of water, 3
30.38 g (0.3 mol) of 6% hydrochloric acid was added, and 90 ° C.
By reacting for 5 hours, it could be converted to aminomethylphosphonic acid. As a result of analysis by liquid chromatography, the yield was 83% (from N, N'-dimethylolurea). The solution was evaporated to dryness, and the residue was recrystallized from water and methanol to obtain 24.90 g of aminomethylphosphonic acid having a purity of 99% (yield 74% (from N, N'-dimethylolurea)). .

【0040】実施例10 500mlフラスコに97%亜燐酸8.43g(0.1
0モル)、三塩化燐34.33g(0.25モル)、ジ
オキサン50mlを加えた。この混合物を水氷浴中冷却
して反応温度が60℃を越えないように攪拌下、あらか
じめ1,4−ジオキサン50mlに溶解させておいた
N,N−’ジメチロール尿素18.02g(0.15モ
ル)を約1時間かけて徐々に滴下した。この溶液を加熱
し、攪拌下3時間かけて徐々に反応温度を100℃まで
上昇させた。反応終了後、室温まで冷却し、水120m
l加えて30分間そのまま攪拌した。溶媒を減圧下留去
した後、白色結晶を得た。液体クロマトグラフィーによ
る分析の結果によりN,N’−ビスホスホノメチル尿素
の収率は85%(N,N’−ジメチロール尿素より)で
あった。この生成物を水300gに溶解させた後、36
%塩酸30.38g(0.3モル)を加えて90℃、5
時間反応させることによってアミノメチルホスホン酸に
変換することができた。液体クロマトグラフィーによる
分析の結果、収率は72%(N,N’−ジメチロール尿
素より)であった。
Example 10 In a 500 ml flask, 8.43 g (0.1%) of 97% phosphorous acid was added.
0 mol), 34.33 g (0.25 mol) of phosphorus trichloride and 50 ml of dioxane. The mixture was cooled in a water-ice bath and stirred, so that the reaction temperature did not exceed 60 ° C., and 18.02 g (0.15 g) of N, N -′- dimethylolurea previously dissolved in 50 ml of 1,4-dioxane. Mol) was slowly added dropwise over about 1 hour. The solution was heated and the reaction temperature was gradually increased to 100 ° C. over 3 hours with stirring. After the completion of the reaction, the mixture was cooled to room temperature,
and stirred for 30 minutes. After evaporating the solvent under reduced pressure, white crystals were obtained. According to the result of analysis by liquid chromatography, the yield of N, N′-bisphosphonomethylurea was 85% (from N, N′-dimethylol urea). After dissolving this product in 300 g of water, 36
30.38 g (0.3 mol) of hydrochloric acid at 90.degree.
It was possible to convert to aminomethylphosphonic acid by reacting for hours. As a result of analysis by liquid chromatography, the yield was 72% (from N, N'-dimethylolurea).

【0041】実施例11 500mlの4つ口フラスコに撹拌機、温度計、滴下ロ
ート及び還流凝縮器を取り付けた。実施例1で得られた
アミノメチルホスホン酸を22.54g(0.2モル)
を水100g及び48%水酸化ナトリウム水溶液33.
40g(0.4モル)の混合溶液に溶解させ撹拌した。
反応器を水氷中で冷却し反応液を5℃以下に保ちながら
28.60gの40%グリコロニトリル溶液(0.2モ
ル)を30分かけて滴下した。滴下終了後、5℃以下で
30分、室温に戻して1時間撹拌した。次いで、16.
80gの48%水酸化ナトリウム水溶液(0.2モル)
を加え、2時間加熱還流させた。反応終了後の液を液体
クロマトグラフィーで分析したところ、N−ホスホノメ
チルグリシンを0.19モル含んでいた。反応収率は原
料アミノメチルホスホン酸及びグリコロニトリルから9
4%であり、アセトアミドからは、63%であった。
Example 11 A 500 ml four-necked flask was equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser. 22.54 g (0.2 mol) of aminomethylphosphonic acid obtained in Example 1
With 100 g of water and 48% aqueous sodium hydroxide solution.
The mixture was dissolved in 40 g (0.4 mol) of the mixed solution and stirred.
The reactor was cooled in water ice, and 28.60 g of a 40% glycolonitrile solution (0.2 mol) was added dropwise over 30 minutes while keeping the reaction solution at 5 ° C or lower. After completion of the dropwise addition, the mixture was returned to room temperature at 5 ° C or lower for 30 minutes and stirred for 1 hour. Then, 16.
80 g of a 48% aqueous sodium hydroxide solution (0.2 mol)
Was added and heated to reflux for 2 hours. The solution after the completion of the reaction was analyzed by liquid chromatography and found to contain 0.19 mol of N-phosphonomethylglycine. The reaction yield was 9 from the starting material aminomethylphosphonic acid and glycolonitrile.
4%, and 63% from acetamide.

【0042】反応液を濃塩酸によりpH2まで中和した
後、一晩放置しN−ホスホノメチルグリシンを晶出させ
た。その後、晶出したN−ホスホノメチルグリシンをろ
別した。水洗、乾燥後の重量は26.80gであり、液
体クロマトグラフィーから求めた純度は98%であっ
た。原料アミノメチルホスホン酸及びグリコロニトリル
からの収率は78%であり、アセトアミドからは52%
であった。100mlナス型フラスコに、得られたN−
ホスホノメチルグリシンの結晶26.80g(0.16
モル)と水2gに溶解させたイソプロピルアミン9.5
g(0.16モル)を加えて撹拌し、溶解させた。生成
する溶液を減圧下で100℃に加熱し、濃縮、乾燥後、
結晶固体を得た。この結晶固体は、 1H−NMR及び液
体クロマトグラフィーの分析の結果、純粋なN−ホスホ
ノメチルグリシンのモノイソプロピルアミン塩であるこ
とがわかった。
After the reaction solution was neutralized to pH 2 with concentrated hydrochloric acid, it was left overnight to crystallize N-phosphonomethylglycine. Thereafter, the crystallized N-phosphonomethylglycine was filtered off. The weight after washing with water and drying was 26.80 g, and the purity determined by liquid chromatography was 98%. The yield from the raw material aminomethylphosphonic acid and glycolonitrile is 78%, and the yield from acetamide is 52%.
Met. The obtained N- was placed in a 100 ml eggplant-shaped flask.
26.80 g of crystals of phosphonomethylglycine (0.16
Mol) and isopropylamine 9.5 dissolved in 2 g of water.
g (0.16 mol) was added and stirred to dissolve. The resulting solution is heated to 100 ° C. under reduced pressure, concentrated and dried,
A crystalline solid was obtained. As a result of 1 H-NMR and liquid chromatography analysis, this crystalline solid was found to be pure N-phosphonomethylglycine monoisopropylamine salt.

【0043】実施例12 まず、実施例11と同様にN−ホスホノメチルグリシン
の結晶を合成した。500mlナス型フラスコに水32
0gに溶解させたトリメチルスルホニウム水酸化物1
7.63g(0.16モル)及び合成したN−ホスホノ
メチルグリシン26.80g(0.16モル)を加え
た。この混合物を水氷浴中で約40分間撹拌すると、透
明で均一な溶液となった。この溶液を減圧下で50℃に
加熱し、濃縮、乾燥することにより結晶固体を得ること
ができた。この結晶固体は 1H−NMR及び液体クロマ
トグラフィーの分析の結果、純粋なN−ホスホノメチル
グリシンのモノトリメチルスルホニウム塩であることが
わかった。
Example 12 First, crystals of N-phosphonomethylglycine were synthesized in the same manner as in Example 11. Water 32 in a 500 ml eggplant-shaped flask
0 g of trimethylsulfonium hydroxide 1
7.63 g (0.16 mol) and 26.80 g (0.16 mol) of synthesized N-phosphonomethylglycine were added. The mixture was stirred in a water ice bath for about 40 minutes, resulting in a clear, homogeneous solution. This solution was heated to 50 ° C. under reduced pressure, concentrated, and dried to obtain a crystalline solid. As a result of 1 H-NMR and liquid chromatography analysis, this crystalline solid was found to be pure N-phosphonomethylglycine monotrimethylsulfonium salt.

【0044】実施例13 実施例9で合成したアミノメチルホスホン酸を使用した
こと以外は実施例11と同様に行った。得られたN−ホ
スホノメチルグリシン溶液中のN−ホスホノメチルグリ
シンの反応収率は原料アミノメチルホスホン酸及びグリ
コロニトリルから95%、N,N,−ジメチロール尿素
からは70%であった。単離された結晶固体のN−ホス
ホノメチルグリシンの純度は98%であり、原料アミノ
メチルホスホン酸及びグリコロニトリルからの収率は7
8%、N,N’−ジメチロール尿素からは58%であっ
た。また、濃縮、乾燥後に得られた結晶固体は 1H−N
MR及び液体クロマトグラフィーの分析の結果、純粋な
N−ホスホノメチルグリシンのモノイソプロピルアミン
塩であることがわかった。
Example 13 The same procedure as in Example 11 was carried out except that the aminomethylphosphonic acid synthesized in Example 9 was used. The reaction yield of N-phosphonomethylglycine in the obtained N-phosphonomethylglycine solution was 95% from the raw material aminomethylphosphonic acid and glycolonitrile, and 70% from N, N, -dimethylolurea. The purity of the isolated crystalline solid N-phosphonomethylglycine is 98%, and the yield from the raw material aminomethylphosphonic acid and glycolonitrile is 7%.
8%, 58% from N, N'-dimethylolurea. The crystalline solid obtained after concentration and drying was 1 H-N
Analysis by MR and liquid chromatography revealed that the product was pure monoisopropylamine salt of N-phosphonomethylglycine.

【0045】実施例14 実施例9で合成したアミノメチルホスホン酸を使用した
こと以外は実施例12と同様に行った。濃縮、乾燥後に
得られた結晶固体は 1H−NMR及び液体クロマトグラ
フィーの分析の結果、純粋なN−ホスホノメチルグリシ
ンのモノトリメチルスルホニウム塩であることがわかっ
た。
Example 14 The same procedure as in Example 12 was carried out except that the aminomethylphosphonic acid synthesized in Example 9 was used. As a result of 1 H-NMR and liquid chromatography analysis, the crystalline solid obtained after concentration and drying was found to be pure N-phosphonomethylglycine monotrimethylsulfonium salt.

【0046】[0046]

【発明の効果】本発明の方法は、原料としてアミド(尿
素を含む。)とホルムアルデヒドとから容易に合成し得
るN−メチロールアミド、亜燐酸、ハロゲン化剤と非常
に入手容易かつ安価な試薬を適宜選択使用できること、
収率が高いこと、ホスホノ化試剤として取り扱いの容易
な亜燐酸を用いること、発生ハロゲン化水素の量が従来
の方法と比較し減少できること等、従来の技術の問題点
を解決した工業的に優れた製造方法である。本発明の方
法で製造されたアミノメチルホスホン酸は、公知の方法
を組合わせることによって除草剤原体として知られるN
−ホスホノメチルグリシンまたはその塩類を効率的に製
造することができる。
According to the method of the present invention, N-methylolamide, phosphorous acid, a halogenating agent, which can be easily synthesized from amide (including urea) and formaldehyde as raw materials, and a very easily available and inexpensive reagent are used. It can be selected and used as appropriate,
Excellent industrial solution that solves the problems of the conventional technology, such as high yield, use of phosphorous acid that is easy to handle as a phosphonating agent, and reduction of the amount of generated hydrogen halide compared with the conventional method. Manufacturing method. The aminomethylphosphonic acid produced by the method of the present invention can be used as a herbicide drug substance by combining known methods.
-It is possible to efficiently produce phosphonomethylglycine or salts thereof.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C07F 9/38 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C07F 9/38

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 N−メチロールアミドと亜燐酸とを、ハ
ロゲン化剤を存在させ30〜160℃の温度条件下で反
応させた後、多量の水と接触させることを特徴とするN
−アシルアミノメチルホスホン酸の製造法。
1. N-methylolamide and phosphorous acid are reacted in the presence of a halogenating agent at a temperature of 30 to 160 ° C., and then contacted with a large amount of water.
-A process for producing acylaminomethylphosphonic acids.
【請求項2】 ハロゲン化剤がアシルハライド、ホスホ
ラスハライド、チオニルハライド、スルフリルハライ
ド、ハロカーボネート、ハロゲンから選ばれた少なくと
も1種以上である請求項1に記載のN−アシルアミノメ
チルホスホン酸の製造法。
2. The method for producing N-acylaminomethylphosphonic acid according to claim 1, wherein the halogenating agent is at least one selected from acyl halide, phosphorous halide, thionyl halide, sulfuryl halide, halocarbonate, and halogen. Law.
【請求項3】 ハロゲン化剤がアシルクロリドまたはホ
スホラスクロリドである請求項1に記載のN−アシルア
ミノメチルホスホン酸の製造法。
3. The method for producing N-acylaminomethylphosphonic acid according to claim 1, wherein the halogenating agent is acyl chloride or phosphorous chloride.
【請求項4】N−メチロールアミドと亜燐酸とを、ハロ
ゲン化剤を存在させ30〜160℃の温度条件下で反応
させた後、多量の水と接触させN−アシルアミノメチル
ホスホン酸を得、次いで得られたN−アシルアミノメチ
ルホスホン酸を単離または単離せずに加水分解を行うこ
とを特徴とするアミノメチルホスン酸の製造法。
4. A reaction between N-methylolamide and phosphorous acid in the presence of a halogenating agent at a temperature of 30 to 160 ° C., followed by contact with a large amount of water to obtain N-acylaminomethylphosphonic acid. preparation of aminomethyl phosphonate phosphate, characterized in that the hydrolysis is carried out without then obtained N- acyl aminomethylphosphonic acid tied up isolate or single a.
【請求項5】 N−メチロールアミドがN,N’−ジメ
チロール尿素である請求項4記載のアミノメチルホスホ
ン酸の製造法。
5. The method for producing aminomethylphosphonic acid according to claim 4, wherein the N-methylolamide is N, N′-dimethylolurea.
【請求項6】請求項4または5の製造法によってアミノ
メチルホスホン酸を得、次いで得られたアミノメチルホ
スホン酸をN−ホスホノメチルグリシンまたはその塩に
することを特徴とするN−ホスホノメチルグリシンまた
はその塩の製造法。
6. The method according to claim 4, wherein
Methylphosphonic acid and then the resulting aminomethyl
Sulfonic acid to N-phosphonomethylglycine or its salt
A process for producing N-phosphonomethylglycine or a salt thereof.
JP11742295A 1994-05-17 1995-05-16 Method for producing phosphonic acids Expired - Lifetime JP2998592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11742295A JP2998592B2 (en) 1994-05-17 1995-05-16 Method for producing phosphonic acids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-102899 1994-05-17
JP10289994 1994-05-17
JP11742295A JP2998592B2 (en) 1994-05-17 1995-05-16 Method for producing phosphonic acids

Publications (2)

Publication Number Publication Date
JPH0834790A JPH0834790A (en) 1996-02-06
JP2998592B2 true JP2998592B2 (en) 2000-01-11

Family

ID=26443586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11742295A Expired - Lifetime JP2998592B2 (en) 1994-05-17 1995-05-16 Method for producing phosphonic acids

Country Status (1)

Country Link
JP (1) JP2998592B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581832B2 (en) * 2010-06-11 2014-09-03 三菱瓦斯化学株式会社 Method for producing high purity aminomethylene phosphonic acid

Also Published As

Publication number Publication date
JPH0834790A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
US4327039A (en) Process for the production of 3-amino-1-hydroxypropane-1,1-diphosphonic acid
US5324855A (en) Preparation of N-acylaminomethylphosphonic acid
US5159108A (en) Process for preparing an antihypercalcemic agent
US5039819A (en) Diphosphonate intermediate for preparing an antihypercalcemic agent
JPS6261595B2 (en)
KR930002412B1 (en) Preparation of n-acyl-aminomethyl phosphonates
US4427599A (en) Method for preparation of N-phosphonomethylglycine
US5679842A (en) Process for the preparation of aminomethanephosphonic acid and aminomethylphosphinic acids
JP2998592B2 (en) Method for producing phosphonic acids
US6855841B2 (en) Process for the preparation of N-phosphonomethylglycine
US4487724A (en) Method for preparation of N-phosphonomethylglycine
EP0104775B1 (en) Production of n-phosphonomethylglycine
US4429124A (en) Method for preparation of N-phosphonomethylglycine
US4444693A (en) Method for preparation of N-phosphonomethylglycine
IE912920A1 (en) Process for the preparation of aminomethylphosphonic acid¹and aminomethylphosphinic acids
US4454063A (en) O,O-dialkyl-N-phosphonomethyl-N-halomethyl acetamide
US4476063A (en) N-Acylaminomethyl-N-cyanomethyl phosphonates
US4569802A (en) Method for preparation of N-phosphonomethylglycine
US4534902A (en) Method for preparation of N-phosphonomethylglycine
IE912921A1 (en) Process for the preparation of aminomethylphosphonic acid¹and aminomethylphosphinic acids from N-hydroxymethylamides
US4425283A (en) Method for preparation of N-phosphonomethylglycine
JPH0437839B2 (en)
JPH0258276B2 (en)
JPH0770160A (en) Hydrazine compound
IE48126B1 (en) Process for the preparazion of herbicidally active compounds containing phosphorus-carbon-nitrogen bond

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 14

EXPY Cancellation because of completion of term