JP2998038B2 - Manufacturing method of ultra-low carbon steel - Google Patents
Manufacturing method of ultra-low carbon steelInfo
- Publication number
- JP2998038B2 JP2998038B2 JP5225991A JP5225991A JP2998038B2 JP 2998038 B2 JP2998038 B2 JP 2998038B2 JP 5225991 A JP5225991 A JP 5225991A JP 5225991 A JP5225991 A JP 5225991A JP 2998038 B2 JP2998038 B2 JP 2998038B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- lance
- concentration
- inert gas
- decarburization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、RH環流式脱ガス装置
(以下、RHと記す)において、溶鋼中の炭素(以下、
〔C〕と記す)の含有量を極微量、例えば0.001w
t%まで除去し、極低炭素鋼を溶製するための効率的か
つ経済的な方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an RH recirculation type degassing apparatus (hereinafter, referred to as RH), wherein carbon in molten steel (hereinafter, referred to as RH).
[C]) is extremely small, for example, 0.001 w
The present invention relates to an efficient and economical method for removing ultra-low carbon steel up to t%.
【0002】[0002]
【従来の技術】RHにおいて、脱ガス速度を増大させる
ために真空槽内の溶鋼中に不活性ガスを吹込む方法が用
いられることが多い。特開昭57−110611号公報
に開示されている方法は、その一例である。この方法で
は、真空槽の槽底に気体噴出口を設置し、この気体噴出
口より不活性ガスを溶鋼内に吹込むことにより脱炭の促
進を図っている。その他にも真空槽の側壁に設けた気体
噴出口より不活性ガスを吹込む方法も用いられることが
ある。2. Description of the Related Art In RH, a method of blowing an inert gas into molten steel in a vacuum chamber is often used to increase a degassing rate. The method disclosed in Japanese Patent Application Laid-Open No. 57-110611 is one example. In this method, a gas outlet is provided at the bottom of the vacuum tank, and an inert gas is blown into the molten steel from the gas outlet to promote decarburization. In addition, a method of blowing an inert gas from a gas outlet provided on a side wall of the vacuum chamber may be used.
【0003】[0003]
【発明が解決しようとする課題】真空槽の槽底あるいは
側壁に設置した気体噴出口から不活性ガスを溶鋼中に吹
込む方法においては、気体噴出口への溶鋼の侵入を防止
するために、気体噴出口が溶鋼中に浸漬している間は、
常にガスを流さなければならない。そのため、不活性
ガスの使用量増加、真空排気量を増加させるための水
蒸気使用量の増加によって脱ガス処理コストが増大す
る。さらに、高炭素濃度領域での多量のガス吹込みは、
スプラッシュ発生を助長し、真空槽内壁に付着した地
金の再溶解による〔C〕ピックアップのため極低炭素鋼
の溶製が困難である。In the method of blowing an inert gas into molten steel from a gas outlet installed on the bottom or side wall of a vacuum chamber, in order to prevent molten steel from entering the gas outlet, While the gas jet is immersed in the molten steel,
The gas must always flow. Therefore, the cost of degassing increases due to an increase in the amount of inert gas used and an increase in the amount of water vapor used to increase the amount of evacuation. Furthermore, large gas injection in the high carbon concentration region
[C] Pick-up which promotes splash generation and re-dissolves the metal adhered to the inner wall of the vacuum chamber makes it difficult to produce ultra-low carbon steel.
【0004】一方、真空槽底部にポーラスプラグを設置
し、不活性ガスを吹込む方法によると、必要なときだけ
不活性ガスを吹込むことができるため、上記〜を防
止することが可能である。しかしながら、ポーラスプラ
グを用いてガスを吹込む場合には、ガス吹込み流量の上
限に制限があるため、脱炭速度を大きくするのに十分な
ガスを吹込むことはむずかしい。On the other hand, according to a method in which a porous plug is provided at the bottom of the vacuum chamber and an inert gas is blown, the inert gas can be blown only when necessary, so that the above-mentioned problems can be prevented. . However, when injecting gas using a porous plug, it is difficult to inject sufficient gas to increase the decarburization rate because the upper limit of the gas injection flow rate is limited.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するた
め、本発明の要旨とするところは、RHにおいて、脱炭
処理を行うにあたり、真空槽天蓋にランス高さを変更可
能なランスを設置し、脱炭処理の開始から〔C〕濃度が
0.005wt%までの〔C〕濃度範囲では、ランスを
溶鋼中に浸漬せず、かつランスからガスを流さずに脱炭
処理を行い、〔C〕濃度が0.005wt%以下の
〔C〕濃度範囲において、ランスを真空槽上方より見て
2本の浸漬管の互いに交わらない共通接線と浸漬管の内
周とで囲まれる部分を除いた真空槽断面内の溶鋼に浸漬
し、不活性ガスを溶鋼中に吹込むことを特徴とする極低
炭素鋼の製造方法にある。In order to solve the above-mentioned problems, the gist of the present invention is to decarburize RH.
In performing the treatment, a lance that can change the height of the lance is installed on the vacuum tank canopy. In the [C] concentration range from the start of the decarburization treatment to the [C] concentration of 0.005 wt%, the lance is placed in the molten steel. The decarburization treatment is performed without immersion and without flowing gas from the lance, and when the [C] concentration is in the [C] concentration range of 0.005 wt% or less, the lance is viewed from above the vacuum tank.
Of common tangent lines of two dip tubes that do not cross each other and of the dip tubes
A method for producing an ultra-low carbon steel, characterized by immersing the molten steel in a section of the vacuum chamber except for a portion surrounded by the periphery and blowing an inert gas into the molten steel.
【0006】[0006]
【作用】以下、本発明について詳細に述べる。RHにお
いて、〔C〕濃度が0.005wt%より高い場合は、
真空槽内にArガスを吹込んでも脱炭速度の増加量は小
さい。すなわち、この〔C〕濃度領域では脱炭反応によ
り溶鋼内部から発生するCOガス量が吹込みガス流量に
比べて非常に大きいため、不活性ガスを溶鋼内に吹込む
ことによる気・液反応界面積の増大および溶鋼攪拌の増
大の脱炭促進への寄与は非常に小さい。したがって、こ
の〔C〕濃度領域においては不活性ガスを吹込むことは
単に不活性ガスの使用量と真空排気のための水蒸気使用
量を増加させ、脱炭処理コストを増大させるばかりでな
く、スプラッシュ発生量増加による〔C〕ピックアップ
量の増加により、見かけの脱炭速度も小さくし、到達
〔C〕濃度も高くなる原因となる。Hereinafter, the present invention will be described in detail. In RH, when the [C] concentration is higher than 0.005 wt%,
Even if Ar gas is blown into the vacuum chamber, the amount of increase in the decarburization rate is small. That is, in this [C] concentration region, the amount of CO gas generated from inside the molten steel by the decarburization reaction is much larger than the flow rate of the blown gas. The contribution of the increase in the area and the increase in the stirring of the molten steel to the promotion of decarburization is very small. Therefore, in the [C] concentration region, blowing the inert gas not only increases the amount of the inert gas used and the amount of steam used for evacuation, increases the decarburization processing cost, but also increases the splash. An increase in the amount of [C] pick-up due to an increase in the amount of generation causes a reduction in the apparent decarburization rate and an increase in the attained [C] concentration.
【0007】一方、〔C〕濃度が0.005wt%以下
の〔C〕濃度範囲では、CO気泡の発生量が減少し、気
・液反応界面積の減少と溶鋼攪拌力の低下のため脱炭速
度が小さくなる。この領域においては真空槽内の溶鋼に
不活性ガスを吹込むことは、気・液反応界面積を増加
し、溶鋼攪拌力を増大することにより、脱炭速度を増加
させるために有効である。特に、真空槽内壁付近の溶鋼
流動が比較的小さい部分に不活性ガスを吹込んで溶鋼を
攪拌することは、脱炭促進には効果的である。On the other hand, in the [C] concentration range where the [C] concentration is 0.005 wt% or less, the amount of generated CO bubbles is reduced, and the area of the gas-liquid reaction interface is reduced and the stirring power of molten steel is reduced. Speed decreases. In this region, blowing an inert gas into the molten steel in the vacuum chamber is effective for increasing the area of the gas-liquid reaction interface and increasing the stirring force of the molten steel, thereby increasing the decarburization rate. In particular, blowing the inert gas into a portion near the inner wall of the vacuum tank where the flow of the molten steel is relatively small to stir the molten steel is effective for promoting decarburization.
【0008】以下、図面に示す実施態様例に基づいて本
発明を詳細に説明する。図1、図2は本発明を実施する
RHの縦断面図である。真空槽1の下端の2本の浸漬管
2A,2Bを溶鋼3中に浸漬し、排気口4から真空排気
するとともに、浸漬管2Aの中途に設けたガス吹込み口
5より不活性ガスを吹込み、溶鋼3を真空槽1内に吸い
上げ環流させる装置において、真空槽1の天蓋に不活性
ガス吹込み用のランス6が設けられている。Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. 1 and 2 are longitudinal sectional views of an RH embodying the present invention. The two immersion tubes 2A and 2B at the lower end of the vacuum chamber 1 are immersed in the molten steel 3, evacuated from the exhaust port 4, and blown with an inert gas from the gas inlet 5 provided in the middle of the immersion tube 2A. In a device for sucking and circulating molten steel 3 into the vacuum chamber 1, a lance 6 for blowing an inert gas is provided on the canopy of the vacuum chamber 1.
【0009】本装置を用いて溶鋼の脱炭処理を行うにあ
たり、脱炭処理開始から〔C〕濃度が0.005wt%
までは図1に示すように、ランス6を真空槽内の溶鋼7
に浸漬せず、かつ不活性ガスも流さずに脱炭処理を行
い、〔C〕濃度が0.005wt%以下の〔C〕濃度範
囲において図2に示すようにランス6を図3中に斜線を
施した部分の真空槽内の溶鋼7中に浸漬するとともに、
不活性ガスを吹込んで脱炭処理をおこなう。ここで、図
3は真空槽の断面を上方から見た図であり、図3中の斜
線部は、2本の浸漬管の互いに交わらない共通接線と浸
漬管の内周とで囲まれる部分を除いた真空槽断面であ
る。In performing decarburization of molten steel using the present apparatus, the concentration of [C] is 0.005 wt% from the start of decarburization.
Up to this point, as shown in FIG.
The decarburization treatment is performed without immersion in the inert gas and without flowing an inert gas. In the [C] concentration range where the [C] concentration is 0.005 wt% or less, as shown in FIG. While immersing it in the molten steel 7 in the vacuum chamber
Degassing treatment is performed by blowing inert gas. Here, FIG. 3 is a view of the cross section of the vacuum tank viewed from above, and a hatched portion in FIG. 3 indicates a portion surrounded by a common tangent line which does not intersect with each other and the inner periphery of the dip tube. It is a vacuum tank cross-section removed.
【0010】本発明の方法において、ランス6より溶鋼
7中に吹込む不活性ガスの流量を従来の方法と比較して
図4に示す。本発明の方法により真空槽内に吹込む不活
性ガスの使用量を大幅に削減することができる。真空槽
内に吹込む不活性ガスの流量を削減できるため、真空排
気量を減少することができ、真空排気のための水蒸気使
用量を削減できる。In the method of the present invention, the flow rate of the inert gas blown from the lance 6 into the molten steel 7 is shown in FIG. 4 in comparison with the conventional method. According to the method of the present invention, the amount of inert gas blown into the vacuum chamber can be significantly reduced. Since the flow rate of the inert gas blown into the vacuum chamber can be reduced, the amount of evacuation can be reduced, and the amount of water vapor used for evacuation can be reduced.
【0011】さらに、本発明の方法では、脱炭処理初期
に不活性ガスを真空槽内の溶鋼中に吹込まないのでスプ
ラッシュ発生量が少なく、真空槽内壁に付着する地金量
も少ない。したがって、脱炭末期での地金からの〔C〕
ピックアップも小さい。さらに、真空槽内溶鋼の比較的
流動の小さい部分に不活性ガスを吹込んで、溶鋼を攪拌
することができる。以上のことにより、図5に示すよう
に、〔C〕濃度が0.0025wt%以下の〔C〕濃度
範囲において、見かけ上、脱炭速度が大きくなり、到達
〔C〕濃度も低下する。Further, in the method of the present invention, an inert gas is not blown into the molten steel in the vacuum chamber at an early stage of the decarburization treatment, so that the amount of generated splash is small and the amount of metal adhered to the inner wall of the vacuum chamber is small. Therefore, [C] from bullion at the end of decarburization
Pickup is also small. Further, the molten steel can be agitated by blowing an inert gas into a portion of the molten steel in the vacuum chamber where the flow is relatively small. As a result, as shown in FIG. 5, in the [C] concentration range where the [C] concentration is 0.0025 wt% or less, the decarburization rate apparently increases and the attained [C] concentration also decreases.
【0012】以上のように、不活性ガスの使用量、水蒸
気使用量を削減し、極低炭素鋼を溶製するためには、従
来法のように脱炭処理中に常に不活性ガスを真空槽内の
溶鋼中に吹込む方法では対処できず、本発明の方法のよ
うに、必要に応じて不活性ガスを真空槽内の溶鋼中に吹
込む方法で対処する方が有利である。As described above, in order to reduce the amount of inert gas used and the amount of water vapor to be used to melt ultra-low carbon steel, the inert gas must be constantly evacuated during the decarburization process as in the conventional method. It is not possible to cope with the method of blowing into molten steel in the tank, and it is more advantageous to cope with the method of blowing an inert gas into the molten steel in the vacuum tank as necessary, as in the method of the present invention.
【0013】[0013]
【実施例】初期成分が〔C〕;0.04wt%、〔S
i〕;0.01wt%以下、〔Mn〕;0.05〜0.
2wt%、〔P〕;0.005〜0.02wt%、
〔S〕;0.003〜0.015wt%、〔Al〕;
0.001wt%以下で重量が300トンの溶鋼をRH
を用いて脱炭処理を実施した。EXAMPLES The initial component was [C]; 0.04 wt%, [S
i]: 0.01 wt% or less, [Mn]: 0.05-0.
2 wt%, [P]: 0.005 to 0.02 wt%,
[S]: 0.003 to 0.015 wt%, [Al];
RH of 300 tons of molten steel at 0.001 wt% or less
The decarburization treatment was performed using.
【0014】図4に示すように、脱炭処理開始から
〔C〕濃度が0.005wt%までの約8分間は真空槽
1の天蓋に設置したランス6を真空槽内の溶鋼7中に浸
漬せず、かつ不活性ガスを流さずに脱炭処理を行い、
〔C〕濃度が0.005wt%以下で、ランス6を図3
の斜線部の溶鋼7に浸漬し、2000Nl/分のArガ
スを溶鋼中に吹込んだ。そのときの脱炭処理開始から2
0分間の水蒸気使用量を表1に、〔C〕濃度の経時変化
を図5にそれぞれ示す。As shown in FIG. 4, the lance 6 installed on the canopy of the vacuum tank 1 is immersed in the molten steel 7 in the vacuum tank for about 8 minutes from the start of the decarburization treatment until the [C] concentration reaches 0.005 wt%. Decarburizing without flowing inert gas,
[C] When the concentration is 0.005 wt% or less,
Was immersed in the molten steel 7 and the Ar gas was blown into the molten steel at 2000 Nl / min. 2 from the start of the decarburization process
Table 1 shows the amount of water vapor used for 0 minute, and FIG. 5 shows the change over time of the [C] concentration.
【0015】比較例1は、真空槽の槽底に設置した気体
噴出口より、Arガスを2000Nl/分の流量で脱炭
処理開始時から溶鋼に吹込んだ場合である。なお、環流
用のArガス流量は2000Nl/分とした。比較例2
は、脱炭処理開始から〔C〕濃度が0.005wt%ま
での約8分間は真空槽1の天蓋に設置したランス6を真
空槽内の溶鋼7中に浸漬せず、かつ不活性ガスを流さず
に脱炭処理を行い、〔C〕濃度が0.005wt%以下
で、ランス6を図3の斜線を施していない部分の溶鋼7
中に浸漬し、2000Nl/分のArガスを溶鋼中に吹
込んだ場合である。Comparative Example 1 is a case where Ar gas was blown into molten steel at the flow rate of 2000 Nl / min from the start of the decarburization process from a gas outlet installed at the bottom of the vacuum chamber. The Ar gas flow rate for reflux was set to 2000 Nl / min. Comparative Example 2
The lance 6 installed on the canopy of the vacuum tank 1 is not immersed in the molten steel 7 in the vacuum tank for about 8 minutes from the start of the decarburization treatment until the [C] concentration reaches 0.005 wt%, and inert gas is removed. The decarburization treatment was performed without flowing, and the lance 6 was not melted at the concentration of [C] of 0.005 wt% or less and the lance 6 was not shaded in FIG.
In this case, 2000 Nl / min of Ar gas was blown into the molten steel.
【0016】表1に示すように本発明の方法によると比
較例1に比べて、Arガス使用量と水蒸気使用量を削減
し、かつ比較例1および比較例2に比べて、図5に示す
ように、より〔C〕濃度の低い溶鋼を溶製することがで
きた。As shown in Table 1, according to the method of the present invention, the amount of use of Ar gas and the amount of water vapor are reduced as compared with Comparative Example 1, and as shown in FIG. 5 as compared with Comparative Examples 1 and 2. Thus, molten steel having a lower [C] concentration could be produced.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【発明の効果】本発明の方法により、RHにおける脱炭
処理時の不活性ガスと水蒸気の使用量を削減し、かつ
〔C〕濃度が0.001wt%以下の極低炭素鋼を容易
に溶製できるようになった。According to the method of the present invention, the amount of inert gas and water vapor used during decarburization treatment in RH is reduced, and ultra-low carbon steel having a [C] concentration of 0.001 wt% or less can be easily melted. Can now be manufactured.
【図1】図1は本発明の実施の態様(ランスを真空槽内
の溶鋼に浸漬せず、かつ不活性ガスも流さずに脱炭処理
を行う工程)を示す説明図である。FIG. 1 is an explanatory view showing an embodiment of the present invention (a step of performing a decarburization treatment without dipping a lance in molten steel in a vacuum chamber and flowing an inert gas).
【図2】図2は本発明の実施の態様(ランスを図3中に
斜線を施した部分の真空槽内の溶鋼中に浸漬するととも
に、不活性ガスを吹き込んで脱炭処理を行う工程)を示
す説明図である。FIG. 2 is an embodiment of the present invention (a step of immersing the lance in molten steel in a vacuum chamber in a hatched portion in FIG. 3 and blowing an inert gas to perform a decarburization treatment). FIG.
【図3】図3は真空槽の断面を上方から見た図である。FIG. 3 is a view of a cross section of the vacuum chamber seen from above.
【図4】図4は本発明および比較例による真空槽内溶鋼
への不活性ガス吹込み流量の経時変化を示す図である。FIG. 4 is a diagram showing a change with time of an inert gas blowing flow rate into molten steel in a vacuum chamber according to the present invention and a comparative example.
【図5】図5は本発明の実施例および比較例での〔C〕
濃度の経時変化を示す図である。FIG. 5 shows [C] in Examples and Comparative Examples of the present invention.
It is a figure which shows a time-dependent change of density | concentration.
1 真空槽 2A 浸漬管 2B 浸漬管 3 溶鋼 4 排気口 5 環流用ガス吹込み口 6 ランス 7 真空槽内溶鋼 8 溶鋼取鍋 DESCRIPTION OF SYMBOLS 1 Vacuum tank 2A Dip pipe 2B Dip pipe 3 Molten steel 4 Exhaust port 5 Gas inlet for recirculation 6 Lance 7 Molten steel in vacuum tank 8 Molten steel ladle
───────────────────────────────────────────────────── フロントページの続き (72)発明者 那須 宗泰 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製 鐵所内 (72)発明者 荻林 成章 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製鐵所内 (56)参考文献 特開 平1−246314(JP,A) 特開 平2−217412(JP,A) 特開 昭53−92319(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/10 C21C 7/068 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Muneyasu Nasu 1 Kimitsu, Kimitsu City, Chiba Prefecture Inside Nippon Steel Corporation Kimitsu Works (72) Inventor Shigeaki Ogibayashi 1 Kimitsu, Kimitsu City, Chiba Prefecture New Japan (56) References JP-A-1-246314 (JP, A) JP-A-2-217412 (JP, A) JP-A-53-92319 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C21C 7/10 C21C 7/068
Claims (1)
理を行うにあたり、真空槽天蓋にランス高さを変更可能
なランスを設置し、脱炭処理の開始から〔C〕濃度が
0.005wt%までの〔C〕濃度範囲では、ランスを
溶鋼中に浸漬せず、かつランスからガスを流さずに脱炭
処理を行い、〔C〕濃度が0.005wt%以下の
〔C〕濃度範囲において、ランスを真空槽上方より見て
2本の浸漬管の互いに交わらない共通接線と浸漬管の内
周とで囲まれる部分を除いた真空槽断面内の溶鋼に浸漬
し、不活性ガスを溶鋼中に吹込むことを特徴とする極低
炭素鋼の製造方法。In the RH recirculation type degassing apparatus, a lance capable of changing a lance height is installed on a vacuum tank canopy to perform a decarburization process, and the concentration of [C] is 0.005 wt. %, The lance is not immersed in the molten steel, and decarburization is performed without flowing gas from the lance. In the [C] concentration range where the [C] concentration is 0.005 wt% or less, , Looking at the lance from above the vacuum chamber
Of common tangent lines of two dip tubes that do not cross each other and of the dip tubes
A method for producing ultra-low carbon steel, characterized by immersing the molten steel in the cross section of the vacuum chamber excluding the part surrounded by the periphery and blowing an inert gas into the molten steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5225991A JP2998038B2 (en) | 1991-03-18 | 1991-03-18 | Manufacturing method of ultra-low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5225991A JP2998038B2 (en) | 1991-03-18 | 1991-03-18 | Manufacturing method of ultra-low carbon steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04289113A JPH04289113A (en) | 1992-10-14 |
JP2998038B2 true JP2998038B2 (en) | 2000-01-11 |
Family
ID=12909765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5225991A Expired - Fee Related JP2998038B2 (en) | 1991-03-18 | 1991-03-18 | Manufacturing method of ultra-low carbon steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2998038B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100270113B1 (en) * | 1996-10-08 | 2000-10-16 | 이구택 | The low carbon steel making device |
-
1991
- 1991-03-18 JP JP5225991A patent/JP2998038B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04289113A (en) | 1992-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3176374B2 (en) | Method for producing low carbon molten steel by vacuum degassing decarburization | |
JP2998038B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP2998039B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP2991519B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP2724035B2 (en) | Vacuum decarburization of molten steel | |
JP2728184B2 (en) | Oxygen top-blowing vacuum decarburization of molten steel | |
JP3025042B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP2988737B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP2819424B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP4839658B2 (en) | Refining method of bearing steel | |
JPH04131316A (en) | Method and device for vacuum degassing of extra-low-carbon steel | |
JPH04183814A (en) | Production of extra-low carbon steel | |
JP3842857B2 (en) | RH degassing method for molten steel | |
JPS5873716A (en) | Vacuum degassing method of molten steel | |
JP3252726B2 (en) | Vacuum refining method for molten steel | |
JPH01268815A (en) | Vacuum degassing treatment of molten steel | |
JP2962163B2 (en) | Melting method of high clean ultra low carbon steel | |
JP3231527B2 (en) | Molten steel refining method using large diameter immersion pipe | |
JPH06212243A (en) | Production of high cleanliness molten steel | |
JP3118606B2 (en) | Manufacturing method of ultra-low carbon steel | |
JPH0598340A (en) | Method and apparatus for producing extremely low carbon steel | |
JPH0696738B2 (en) | Vacuum degassing apparatus for ultra-low carbon steel production and operating method | |
JP2003268439A (en) | Process for refining molten steel in rh degasser | |
JPH11158536A (en) | Method for melting extra-low carbon steel excellent in cleanliness | |
JPH05209214A (en) | Production of extremely low carbon and extremely low nitrogen steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990907 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071105 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081105 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |