JP2991522B2 - Precast concrete board - Google Patents
Precast concrete boardInfo
- Publication number
- JP2991522B2 JP2991522B2 JP3099375A JP9937591A JP2991522B2 JP 2991522 B2 JP2991522 B2 JP 2991522B2 JP 3099375 A JP3099375 A JP 3099375A JP 9937591 A JP9937591 A JP 9937591A JP 2991522 B2 JP2991522 B2 JP 2991522B2
- Authority
- JP
- Japan
- Prior art keywords
- specimen
- stainless steel
- ratio
- mixed
- specimens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Panels For Use In Building Construction (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、床スラブや壁体、カー
テンウォールといった板面が平坦あるいはほぼ平坦なプ
レキャストコンクリート板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precast concrete plate having a flat or almost flat plate surface such as a floor slab, a wall and a curtain wall.
【0002】[0002]
【従来の技術】コンクリートパネルにおいて、その強度
を高めるために、例えば、特開昭51−35523号公
報、特開昭56−84362号公報および特開昭60−
16853号公報に開示されるように、内部にステンレ
ス繊維などの金属繊維を混入したものが知られている。2. Description of the Related Art In order to increase the strength of concrete panels, for example, JP-A-51-35523, JP-A-56-84362 and JP-A-60-1984.
As disclosed in Japanese Patent Publication No. 16853, there is known one in which metal fibers such as stainless steel fibers are mixed.
【0003】ところで、床スラブなどのように2m以上
の長いプレキャストコンクリート板では、上述のように
金属繊維を混入しても曲げ荷重に耐え得ることができ
ず、従来一般に、型枠内に、二層に鉄筋を配筋するとと
もに、そこにコンクリートを打設して製作していた。[0003] By the way, in the case of a long precast concrete plate of 2 m or more, such as a floor slab, even if metal fibers are mixed as described above, it cannot withstand a bending load. Reinforcing bars were laid on the layers, and concrete was cast into the layers.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、二層に
鉄筋を配筋するために、厚みを薄くできない欠点があっ
た。そこで、鉄筋を一層配筋して薄くすることが考えら
れるが、十分な曲げ強度を得ることができず、また、コ
ンクリートにクラックが生じてそこから水が侵入し、そ
れによって鉄筋に錆が生じ、耐久性が低下する欠点があ
った。However, there is a disadvantage that the thickness cannot be reduced because the reinforcing bars are arranged in two layers. Therefore, it is conceivable to reduce the thickness of the rebar by further arranging it, but it is not possible to obtain sufficient bending strength, and also cracks occur in the concrete and water enters from there, causing rust on the rebar. However, there is a disadvantage that the durability is reduced.
【0005】本発明は、このような事情に鑑みてなされ
たものであって、簡単な補強構成でありながら、厚みが
薄くても曲げ強度が高くて耐久性に優れたプレキャスト
コンクリート板を提供することを目的とする。The present invention has been made in view of such circumstances, and provides a precast concrete plate which has a simple reinforcing structure, has a high bending strength even if it is thin, and has excellent durability. The purpose is to:
【0006】[0006]
【課題を解決するための手段】本発明は、上述のような
目的を達成するために、板面が平坦あるいはほぼ平坦な
プレキャストコンクリート板において、ステンレス繊維
または鉄鋼繊維あるいはそれらの混合物を混入したコン
クリート内に、その厚み方向の中央箇所またはその近辺
にのみ位置させて異径鉄筋を埋設して構成する。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a flat or almost flat plate surface.
In a precast concrete plate, a different diameter rebar is buried in concrete mixed with stainless steel fiber or steel fiber or a mixture thereof at a central position in the thickness direction or only in the vicinity thereof.
【0007】上記異径鉄筋としては、縦横に埋設するも
のに限らず、プレキャストコンクリート板の長手方向と
平行な方向のみ向くように埋設するものでも良い。[0007] The above-mentioned reinforcing bars of different diameters are not limited to those buried vertically and horizontally, but may be buried so as to face only in a direction parallel to the longitudinal direction of the precast concrete plate.
【0008】上記ステンレス繊維としては、20〜40mmの
長さのものを使用するのが好ましい。20mm未満では、補
強効果が十分に得られず、一方、40mmを越えると、練り
にくく、かつ、均一に混合することができず、また、流
動性が悪くて施工性が低下するからである。また、その
ステンレス繊維としては、繊維長手方向の両端それぞれ
が大径の塊状になった、いわゆるドッグボーン形状のも
のなどが適用できる。It is preferable to use a stainless steel fiber having a length of 20 to 40 mm. If it is less than 20 mm, a sufficient reinforcing effect cannot be obtained. On the other hand, if it exceeds 40 mm, kneading is difficult and uniform mixing cannot be performed, and the flowability is poor and workability is deteriorated. Further, as the stainless steel fiber, a so-called dog bone-shaped fiber in which both ends in the longitudinal direction of the fiber are formed into a large-diameter lump can be applied.
【0009】ステンレス繊維の混入率としては、コンク
リートに対する容積比で 0.5〜2.0%であるのが好まし
い。 0.5%未満では、補強効果が十分に得られず、一
方、2.0 %を越えると、練りにくく、かつ、均一に混合
することができず、また、流動性が悪くて施工性が低下
するからである。[0009] The mixing ratio of stainless steel fibers is preferably 0.5 to 2.0% by volume relative to concrete. If it is less than 0.5%, a sufficient reinforcing effect cannot be obtained. On the other hand, if it exceeds 2.0%, it is difficult to knead and cannot be uniformly mixed, and the flowability is poor and workability is deteriorated. is there.
【0010】[0010]
【作用】本発明のプレキャストコンクリート板の構成に
よれば、ステンレス繊維または鉄鋼繊維あるいはそれら
の混合物の混入によってコンクリートのクラック発生を
抑制しながら、異径鉄筋とステンレス繊維または鉄鋼繊
維あるいはそれらの混合物との協働により全体としての
強度を高めて曲げ強度を向上できる。また、クラック発
生時に、異径鉄筋とコンクリートとの間での滑りが抑え
られて曲げ荷重を分散できる。According to the configuration of the precast concrete plate of the present invention, while suppressing the cracking of the concrete by incorporation of stainless steel fibers or steel fibers or mixtures thereof, and different径鉄muscle and stainless steel fiber or steel fiber, or mixtures thereof With the cooperation of the above, the strength as a whole can be increased to improve the bending strength. In addition, when a crack occurs, slip between the reinforcing steel of different diameter and concrete is suppressed, and the bending load can be dispersed.
【0011】[0011]
【実施例】次に、本発明の実施例を図面に基づいて詳述
する。Next, an embodiment of the present invention will be described in detail with reference to the drawings.
【0012】図1は、プレキャストコンクリート板の具
体例を示す一部を破断した一部省略斜視図、第2図は要
部の拡大断面図であり、ステンレス繊維A…を混入した
コンクリートB内に、その厚み方向の中央箇所にのみ位
置させて、異形鉄筋Cを縦横に配筋するとともにその縦
横の異形鉄筋C…を溶接により格子状にした補強筋が埋
設されている。FIG. 1 is a partially cutaway perspective view showing a concrete example of a precast concrete plate, and FIG. 2 is an enlarged cross-sectional view of a main part, in which concrete B containing stainless fibers A is mixed. Reinforcing bars are provided only at the center in the thickness direction of the reinforcing bars, in which deformed reinforcing bars C are arranged vertically and horizontally, and the deformed reinforcing bars C in the vertical and horizontal directions are formed into a grid by welding.
【0013】以下に、比較実験結果について説明する。
比較例および実施例それぞれの供試体に使用した材料、
ならびに、調合割合および調合条件それぞれとしては、
次の通りである。Hereinafter, the results of comparative experiments will be described.
Materials used for the specimens of Comparative Examples and Examples,
And, as each of the mixing ratio and the mixing condition,
It is as follows.
【0014】 〔使用材料〕 セメント:早強ポルトランドセメント (比重:3.16) 細骨材:町屋川産川砂 (比重:2.54) 粗骨材:北勢産砕石 (比重:2.65) ステンレス繊維:[長さが35mmのNAS-RC-DB ファイバー(硬質):日本冶金工 業(株)製](比重:7.70) 混和剤:ナフタレン系高性能減水剤 MY-150 [花王(株)製][Materials used] Cement: Early-strength Portland cement (specific gravity: 3.16) Fine aggregate: Machiyagawa-produced river sand (specific gravity: 2.54) Coarse aggregate: crushed stone from the north (specific gravity: 2.65) Stainless steel fiber: [length 35mm NAS-RC-DB fiber (hard): Nippon Yakin Kogyo Co., Ltd.] (specific gravity: 7.70) Admixture: Naphthalene-based high-performance water reducing agent MY-150 [Kao Corporation]
【0015】〔調合割合〕 約1m3 当り、水187kg 、セメント534kg 、細骨材924k
g 、粗骨材643kg 、ステンレス繊維 0〜135kg であり、
そして、混和剤は、セメントに対して最大1.2重量%で
ある。水セメント比は35%、細骨材率は56〜62%であ
る。[0015] [Formulation ratio] about 1m 3 per, water 187kg, cement 534kg, fine aggregate 924k
g, coarse aggregate 643kg, stainless steel fiber 0-135kg,
And the admixture is up to 1.2% by weight with respect to the cement. The water cement ratio is 35%, and the fine aggregate ratio is 56-62%.
【0016】〔調合条件〕 ステンレス繊維混入後のスランプは7±1.5 cmである。
上述条件下において、ステンレス繊維の混入率(コンク
リートに対する容積比)、鉄筋径、鉄筋の配筋ピッチお
よび鉄筋の使用断面積比それぞれを変えて実施例の供試
体を作成するとともに、ステンレス繊維と丸形の鉄筋と
異径鉄筋のいずれかのみを用いた比較例の供試体、更に
は、ステンレス繊維と丸形の鉄筋の両方を用いた比較例
の供試体を作成し、その供試体に、水をはって等分布荷
重をかけることにより、荷重と中央部でのたわみ量とを
測定した。実施例および比較例いずれの供試体も、大き
さは 695×2745mmであった。[Mixing conditions] Slump after mixing of stainless steel fibers is 7 ± 1.5 cm.
In the above conditions, mixing ratio of the stainless steel fibers (volume ratio concrete), rebar diameter, as well as create a specimen of Example changing the respective use cross-section ratio of the reinforcement pitch and rebar rebar, stainless steel fiber and round Shaped rebar and
Specimens of comparative examples using only one of the different diameter rebars ,
Is a comparative example using both stainless steel fiber and round rebar
Was prepared, and the load and the amount of deflection at the center were measured by applying water to the test piece and applying an evenly distributed load. The size of each of the specimens of the example and the comparative example was 695 × 2745 mm.
【0017】供試体としては、それぞれ次のような性状
の54種を作成した。なお、供試体NO. 1〜5、10〜
14、28〜31、38、39、44、45それぞれが
比較例に係るものであり、供試体NO. 8、9、15〜2
7、32〜35、40〜42それぞれがステンレス繊維
と丸形の鉄筋の両方を用いた比較例に係るものであり、
そして、供試体NO. 6、7、36、37、43、44、
47〜54それぞれが本発明の実施例に係るものであ
る。As test specimens, 54 kinds each having the following properties were prepared. Specimens Nos. 1 to 5, 10 to 10
Each of 14, 28 to 31, 38, 39, 44, and 45 relates to a comparative example, and specimens No. 8, 9, 15 to 2
7, 32 to 35, 40 to 42 are each stainless steel fiber
And a comparative example using both round reinforcing bars,
And, the specimens No. 6, 7, 36, 37, 43, 44,
47 to 54 relate to the embodiments of the present invention.
【0018】〔供試体NO. 1〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入し、板
の厚みが73.3mmの供試体を作成した。 〔供試体NO. 2〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入し、板
の厚みが72.0mmの供試体を作成した。 〔供試体NO. 3〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入し、板
の厚みが74.6mmの供試体を作成した。 〔供試体NO. 4〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入し、板
の厚みが73.0mmの供試体を作成した。 〔供試体NO. 5〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入し、板
の厚みが72.5mmの供試体を作成した。[Specimen No. 1] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio) to prepare a sample having a plate thickness of 73.3 mm. [Specimen No. 2] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio) to prepare a specimen having a plate thickness of 72.0 mm. [Sample No. 3] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio) to prepare a sample having a plate thickness of 74.6 mm. [Specimen No. 4] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio) to prepare a specimen having a plate thickness of 73.0 mm. [Specimen No. 5] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio) to prepare a sample having a plate thickness of 72.5 mm.
【0019】〔供試体NO. 6〕(実施例) 混入率1.75%(容積比)でステンレス繊維を混入すると
ともに、径が10mmの異形鉄筋を間隔400mm で配筋し、鉄
筋比(プレキャストコンクリート板の横断面積に対する
鉄筋の横断面積の比)で 0.294%の鉄筋が埋設され、か
つ、板の厚みが72.0mmの供試体を作成した。 〔供試体NO. 7〕(実施例) 混入率1.75%(容積比)でステンレス繊維を混入すると
ともに、径が10mmの異形鉄筋を間隔400mm で配筋し、鉄
筋比で 0.294%の鉄筋が埋設され、かつ、板の厚みが7
2.5mmの供試体を作成した。 〔供試体NO. 8〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 100mmで配筋し、鉄筋
比で 0.407%の鉄筋が埋設され、かつ、板の厚みが72.5
mmの供試体を作成した。 〔供試体NO. 9〕(比較例) 供試体NO. 8の場合と同様に、混入率1.75%(容積比)
でステンレス繊維を混入するとともに、径が 6mmの鉄筋
をピッチ 100mmで配筋し、鉄筋比で 0.407%の鉄筋が埋
設され、かつ、板の厚みが72.5mmの供試体を作成した。
〔供試体NO. 10〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入し、板
の厚みが92.5mmの供試体を作成した。[Specimen No. 6] (Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio), and deformed reinforcing bars having a diameter of 10 mm were arranged at intervals of 400 mm. (The ratio of the cross-sectional area of the reinforcing bar to the cross-sectional area of the bar), a 0.294% reinforcing bar was buried and the plate thickness was 72.0 mm. [Specimen No. 7] (Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio), deformed reinforcing bars with a diameter of 10mm were arranged at intervals of 400mm, and a reinforcing bar with a reinforcing ratio of 0.294% was buried. And the thickness of the plate is 7
A 2.5 mm specimen was prepared. [Specimen No. 8] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.75% (volume ratio), reinforcing bars with a diameter of 6mm were arranged at a pitch of 100mm, and a reinforcing bar with a reinforcing ratio of 0.407% was buried. , And the thickness of the plate is 72.5
mm specimens were prepared. [Specimen No. 9] ( Comparative Example ) As in the case of Specimen No. 8, the mixing ratio was 1.75% (volume ratio)
A stainless steel fiber was mixed in at the same time, a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 100 mm, and a 0.407% by reinforcing bar reinforcing bar was buried, and a specimen having a plate thickness of 72.5 mm was prepared.
[Specimen No. 10] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio) to prepare a sample having a plate thickness of 92.5 mm.
【0020】〔供試体NO. 11〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入し、板
の厚みが92.0mmの供試体を作成した。 〔供試体NO. 12〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入し、板
の厚みが70.5mmの供試体を作成した。 〔供試体NO. 13〕(比較例) ステンレス繊維を混入せずに、径が 6mmの鉄筋をピッチ
150mmで配筋し、鉄筋比で 0.292%の鉄筋が埋設され、
かつ、板の厚みが71.8mmの供試体を作成した。 〔供試体NO. 14〕(比較例) ステンレス繊維を混入せずに、径が 6mmの鉄筋をピッチ
150mmで配筋し、鉄筋比で 0.292%の鉄筋が埋設され、
かつ、板の厚みが72.0mmの供試体を作成した。 〔供試体NO. 15〕(比較例) 混入率0.75%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 150mmで配筋し、鉄筋
比で 0.292%の鉄筋が埋設され、かつ、板の厚みが71.5
mmの供試体を作成した。[Specimen No. 11] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio) to prepare a sample having a plate thickness of 92.0 mm. [Specimen No. 12] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio) to prepare a sample having a plate thickness of 70.5 mm. [Specimen No. 13] (Comparative example) Pitch a 6mm diameter rebar without mixing stainless steel fiber
Rebars are laid at 150mm, and 0.292% of the rebar is buried.
A specimen having a thickness of 71.8 mm was prepared. [Specimen No. 14] (Comparative example) Pitch a 6mm diameter rebar without mixing stainless steel fiber
Rebars are laid at 150mm, and 0.292% of the rebar is buried.
A specimen having a thickness of 72.0 mm was prepared. [Specimen No. 15] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 0.75% (volume ratio), and reinforcing bars with a diameter of 6 mm were arranged at a pitch of 150 mm, and a reinforcing bar with a reinforcing ratio of 0.292% was buried. , And the thickness of the plate is 71.5
mm specimens were prepared.
【0021】〔供試体NO. 16〕(比較例) 混入率0.75%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 150mmで配筋し、鉄筋
比で 0.292%の鉄筋が埋設され、かつ、板の厚みが71.3
mmの供試体を作成した。 〔供試体NO. 17〕(比較例) 混入率1.25%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 150mmで配筋し、鉄筋
比で 0.292%の鉄筋が埋設され、かつ、板の厚みが71.8
mmの供試体を作成した。 〔供試体NO. 18〕(比較例) 混入率1.25%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 150mmで配筋し、鉄筋
比で 0.292%の鉄筋が埋設され、かつ、板の厚みが72.0
mmの供試体を作成した。 〔供試体NO. 19〕(比較例) 混入率1.75%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 150mmで配筋し、鉄筋
比で 0.292%の鉄筋が埋設され、かつ、板の厚みが71.5
mmの供試体を作成した。 〔供試体NO. 20〕(比較例) 混入率1.50%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 100mmで配筋し、鉄筋
比で 0.407%の鉄筋が埋設され、かつ、板の厚みが70mm
の供試体を作成した。[Specimen No. 16] ( Comparative Example ) A stainless steel fiber was mixed at a mixing ratio of 0.75% (volume ratio), and a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 150 mm, and a reinforcing bar having a reinforcing bar ratio of 0.292% was used. Is buried and the thickness of the board is 71.3
mm specimens were prepared. [Specimen No. 17] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.25% (volume ratio), and reinforcing bars with a diameter of 6mm were arranged at a pitch of 150mm, and a reinforcing bar with a reinforcing bar ratio of 0.292% was buried. And the thickness of the plate is 71.8
mm specimens were prepared. [Specimen No. 18] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.25% (volume ratio), and reinforcing bars with a diameter of 6mm were arranged at a pitch of 150mm, and a reinforcing bar with a reinforcing ratio of 0.292% was buried. , And the thickness of the board is 72.0
mm specimens were prepared. [Specimen No. 19] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.75% (volume ratio), and reinforcing bars with a diameter of 6mm were arranged at a pitch of 150mm, and a reinforcing bar with a reinforcing ratio of 0.292% was buried. , And the thickness of the plate is 71.5
mm specimens were prepared. [Specimen No. 20] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.50% (volume ratio), and reinforcing bars with a diameter of 6mm were arranged at a pitch of 100mm, and 0.407% of the reinforcing bars were buried. And the thickness of the board is 70mm
Specimens were prepared.
【0022】〔供試体NO. 21〕(比較例) 供試体NO. 20と同様に、混入率1.50%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの鉄筋をピ
ッチ 100mmで配筋し、鉄筋比で 0.407%の鉄筋が埋設さ
れ、かつ、板の厚みが70mmの供試体を作成した。 〔供試体NO. 22〕(比較例) 混入率1.40%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 100mmで配筋し、鉄筋
比で 0.407%の鉄筋が埋設され、かつ、板の厚みが70mm
の供試体を作成した。 〔供試体NO. 23〕(比較例) 供試体NO. 22と同様に、混入率1.40%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの鉄筋をピ
ッチ 100mmで配筋し、鉄筋比で 0.407%の鉄筋が埋設さ
れ、かつ、板の厚みが70mmの供試体を作成した。 〔供試体NO. 24〕(比較例) 混入率1.30%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 100mmで配筋し、鉄筋
比で 0.407%の鉄筋が埋設され、かつ、板の厚みが70mm
の供試体を作成した。 〔供試体NO. 25〕(比較例) 供試体NO. 24と同様に、混入率1.30%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの鉄筋をピ
ッチ 100mmで配筋し、鉄筋比で 0.407%の鉄筋が埋設さ
れ、かつ、板の厚みが70mmの供試体を作成した。[Specimen No. 21] ( Comparative Example ) Similar to the specimen No. 20, stainless steel fibers were mixed at a mixing ratio of 1.50% (volume ratio), and a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 100 mm. Then, a specimen with a reinforcing bar ratio of 0.407% and a plate thickness of 70 mm was prepared. [Specimen No. 22] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.40% (volume ratio), and reinforcing bars with a diameter of 6mm were arranged at a pitch of 100mm, and 0.407% of the reinforcing bars were buried. And the thickness of the board is 70mm
Specimens were prepared. [Specimen No. 23] ( Comparative Example ) Similar to Sample No. 22, stainless steel fiber was mixed at a mixing ratio of 1.40% (volume ratio), and a reinforcing rod having a diameter of 6 mm was arranged at a pitch of 100 mm. A 0.407% rebar was buried, and a 70 mm thick plate was prepared. [Specimen No. 24] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.30% (volume ratio), and reinforcing bars with a diameter of 6mm were arranged at a pitch of 100mm, and a reinforcing bar with a reinforcing ratio of 0.407% was buried. And the thickness of the board is 70mm
Specimens were prepared. [Specimen No. 25] ( Comparative Example ) Similar to Sample No. 24, stainless steel fibers were mixed at a mixing ratio of 1.30% (volume ratio), and a reinforcing rod having a diameter of 6 mm was arranged at a pitch of 100 mm. A 0.407% rebar was buried, and a 70 mm thick plate was prepared.
【0023】〔供試体NO. 26〕(比較例) 混入率1.30%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ75mmで配筋し、鉄筋比
で 0.525%の鉄筋が埋設され、かつ、板の厚みが70mmの
供試体を作成した。 〔供試体NO. 27〕(比較例) 供試体NO. 26と同様に、混入率1.30%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの鉄筋をピ
ッチ75mmで配筋し、鉄筋比で 0.525%の鉄筋が埋設さ
れ、かつ、板の厚みが70mmの供試体を作成した。 〔供試体NO. 28〕(比較例) 混入率1.30%(容積比)でステンレス繊維を混入し、板
の厚みが70mmの供試体を作成した。 〔供試体NO. 29〕(比較例) 供試体NO. 28と同様に、混入率1.30%(容積比)でス
テンレス繊維を混入し、板の厚みが70mmの供試体を作成
した。 〔供試体NO. 30〕(比較例) ステンレス繊維を混入せずに、径が 6mmの鉄筋をピッチ
100mmで配筋し、鉄筋比で 0.407%の鉄筋が埋設され、
かつ、板の厚みが72.0mmの供試体を作成した。[Specimen No. 26] ( Comparative Example ) A stainless steel fiber was mixed at a mixing ratio of 1.30% (volume ratio), a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 75 mm, and a reinforcing bar having a reinforcing bar ratio of 0.525% was used. Was buried and a specimen having a thickness of 70 mm was prepared. [Specimen No. 27] ( Comparative Example ) Similar to Sample No. 26, a stainless steel fiber was mixed at a mixing ratio of 1.30% (volume ratio), and a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 75 mm. Specimens with 0.525% rebar buried in the ratio and a plate thickness of 70 mm were prepared. [Specimen No. 28] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.30% (volume ratio) to prepare a specimen having a plate thickness of 70 mm. [Specimen No. 29] (Comparative Example) Similarly to the specimen No. 28, stainless steel fibers were mixed at a mixing ratio of 1.30% (volume ratio) to prepare a specimen having a plate thickness of 70 mm. [Specimen No. 30] (Comparative example) Pitch a 6mm diameter rebar without mixing stainless steel fiber
Reinforcement with 100mm, 0.407% of the rebar ratio is buried,
A specimen having a thickness of 72.0 mm was prepared.
【0024】〔供試体NO. 31〕(比較例) 供試体NO. 30と同様に、ステンレス繊維を混入せず
に、径が 6mmの鉄筋をピッチ 100mmで配筋し、鉄筋比で
0.407%の鉄筋が埋設され、かつ、板の厚みが72.0mmの
供試体を作成した。 〔供試体NO. 32〕(比較例) 混入率1.30%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 100mmで配筋し、鉄筋
比で 0.475%の鉄筋が埋設され、かつ、板の厚みが70mm
の供試体を作成した。 〔供試体NO. 33〕(比較例) 供試体NO. 32と同様に、混入率1.30%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの鉄筋をピ
ッチ 100mmで配筋し、鉄筋比で 0.475%の鉄筋が埋設さ
れ、かつ、板の厚みが70mmの供試体を作成した。 〔供試体NO. 34〕(比較例) 混入率1.30%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ85mmで配筋し、鉄筋比
で 0.545%の鉄筋が埋設され、かつ、板の厚みが70mmの
供試体を作成した。 〔供試体NO. 35〕(比較例) 供試体NO. 34と同様に、混入率1.30%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの鉄筋をピ
ッチ85mmで配筋し、鉄筋比で 0.545%の鉄筋が埋設さ
れ、かつ、板の厚みが70mmの供試体を作成した。[Specimen No. 31] (Comparative Example) Similar to the specimen No. 30, a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 100 mm without mixing stainless steel fiber, and the ratio of the reinforcing bar was determined.
A specimen having a reinforced steel of 0.407% and a thickness of 72.0 mm was prepared. [Specimen No. 32] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.30% (volume ratio), reinforcing bars with a diameter of 6mm were arranged at a pitch of 100mm, and a reinforcing bar with a reinforcing ratio of 0.475% was buried. And the thickness of the board is 70mm
Specimens were prepared. [Specimen No. 33] ( Comparative Example ) Similar to Sample No. 32, stainless steel fibers were mixed at a mixing ratio of 1.30% (volume ratio), and a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 100 mm. Specimens with 0.475% rebar buried in ratio and 70 mm thick plate were prepared. [Specimen No. 34] ( Comparative example ) A stainless steel fiber was mixed at a mixing ratio of 1.30% (volume ratio), and a reinforcing bar with a diameter of 6mm was arranged at a pitch of 85mm, and a reinforcing bar with a reinforcing ratio of 0.545% was buried. A specimen having a thickness of 70 mm was prepared. [Specimen No. 35] ( Comparative Example ) Similar to Sample No. 34, stainless steel fibers were mixed at a mixing ratio of 1.30% (volume ratio), and a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 85 mm. Specimens with a 0.545% rebar buried in the ratio and a plate thickness of 70 mm were prepared.
【0025】〔供試体NO. 36〕(実施例) 混入率1.30%(容積比)でステンレス繊維を混入すると
ともに、径が10mmの異形鉄筋を開口の周囲に配筋し、異
形鉄筋が埋設され、かつ、板の厚みが70mmの、中央部に
開口を有する供試体を作成した。 〔供試体NO. 37〕(実施例) 供試体NO. 36と同様に、混入率1.30%(容積比)でス
テンレス繊維を混入するとともに、径が10mmの異形鉄筋
を開口の周囲に配筋し、異形鉄筋が埋設され、かつ、板
の厚みが70mmの供試体を作成した。 〔供試体NO. 38〕(比較例) 混入率1.40%(容積比)でステンレス繊維を混入し、板
の厚みが71.7mmの供試体を作成した。 〔供試体NO. 39〕(比較例) 供試体NO. 38と同様に、混入率1.40%(容積比)でス
テンレス繊維を混入し、板の厚みが71.6mmの供試体を作
成した。 〔供試体NO. 40〕(比較例) 混入率1.40%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの鉄筋をピッチ 100mmで配筋し、鉄筋
比で 0.407%の鉄筋が埋設され、かつ、板の厚みが70.6
mmの供試体を作成した。[Specimen No. 36] (Example) A stainless steel fiber was mixed at a mixing ratio of 1.30% (volume ratio), a deformed reinforcing bar having a diameter of 10 mm was arranged around the opening, and the deformed reinforcing bar was buried. A specimen having an opening in the center with a plate thickness of 70 mm was prepared. [Specimen No. 37] (Example) Similarly to specimen No. 36, stainless steel fibers were mixed at a mixing ratio of 1.30% (volume ratio), and deformed reinforcing bars having a diameter of 10 mm were arranged around the opening. A specimen having a deformed reinforcing bar embedded therein and a plate thickness of 70 mm was prepared. [Sample No. 38] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.40% (volume ratio) to prepare a sample having a plate thickness of 71.7 mm. [Specimen No. 39] (Comparative Example) A stainless steel fiber was mixed at a mixing ratio of 1.40% (volume ratio) in the same manner as Sample No. 38 to prepare a specimen having a plate thickness of 71.6 mm. [Specimen No. 40] ( Comparative example ) Stainless steel fibers were mixed at a mixing ratio of 1.40% (volume ratio), and reinforcing bars with a diameter of 6mm were arranged at a pitch of 100mm, and a reinforcing bar with a reinforcing ratio of 0.407% was buried. , And the thickness of the plate is 70.6
mm specimens were prepared.
【0026】〔供試体NO. 41〕(比較例) 供試体NO. 40と同様に、混入率1.40%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの鉄筋をピ
ッチ 100mmで配筋し、鉄筋比で 0.407%の鉄筋が埋設さ
れ、かつ、板の厚みが71.1mmの供試体を作成した。 〔供試体NO. 42〕(比較例) 供試体NO. 40と同様に、混入率1.40%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの鉄筋をピ
ッチ 100mmで配筋し、鉄筋比で 0.407%の鉄筋が埋設さ
れ、かつ、板の厚みが71.1mmの供試体を作成した。 〔供試体NO. 43〕(実施例) 混入率1.20%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの異形鉄筋をピッチ 120mmで配筋し、
鉄筋比で 0.391%の鉄筋が埋設され、かつ、板の厚みが
71.5mmの供試体を作成した。 〔供試体NO. 44〕(実施例) 供試体NO. 40と同様に、混入率1.20%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの異形鉄筋
をピッチ 120mmで配筋し、鉄筋比で 0.391%の鉄筋が埋
設され、かつ、板の厚みが71.3mmの供試体を作成した。 〔供試体NO. 45〕(比較例) ステンレス繊維を混入せずに、径が 6mmの異形鉄筋をピ
ッチ 120mmで配筋し、鉄筋比で 0.391%の鉄筋が埋設さ
れ、かつ、板の厚みが72.6mmの供試体を作成した。[Specimen No. 41] ( Comparative Example ) Similar to Sample No. 40, stainless steel fibers were mixed at a mixing ratio of 1.40% (volume ratio), and a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 100 mm. Then, a 0.407% rebar with a rebar ratio was buried, and a specimen with a plate thickness of 71.1 mm was prepared. [Specimen No. 42] ( Comparative Example ) Similar to Sample No. 40, stainless steel fibers were mixed at a mixing ratio of 1.40% (volume ratio), and a reinforcing bar having a diameter of 6 mm was arranged at a pitch of 100 mm. A 0.407% rebar was buried, and the specimen thickness was 71.1 mm. [Specimen No. 43] (Example) A stainless steel fiber was mixed at a mixing ratio of 1.20% (volume ratio), and a deformed reinforcing bar having a diameter of 6 mm was arranged at a pitch of 120 mm.
0.391% of rebar is buried in the rebar ratio, and the thickness of the plate is
A 71.5 mm specimen was prepared. [Specimen No. 44] (Example) Similarly to the specimen No. 40, stainless steel fibers were mixed at a mixing ratio of 1.20% (volume ratio), and deformed reinforcing bars having a diameter of 6 mm were arranged at a pitch of 120 mm. A specimen with 0.391% rebar in the rebar ratio and a plate thickness of 71.3mm was prepared. [Specimen No. 45] (Comparative Example) A deformed reinforcing bar with a diameter of 6 mm was arranged at a pitch of 120 mm without mixing stainless steel fibers, a reinforcing bar with a reinforcing bar ratio of 0.391% was buried, and the thickness of the plate was reduced. A 72.6 mm specimen was prepared.
【0027】〔供試体NO. 46〕(比較例) 供試体NO. 45と同様に、ステンレス繊維を混入せず
に、径が 6mmの異形鉄筋をピッチ 120mmで配筋し、鉄筋
比で 0.391%の鉄筋が埋設され、かつ、板の厚みが70.5
mmの供試体を作成した。 〔供試体NO. 47〕(実施例) 混入率1.40%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの異形鉄筋をピッチ 120mmで配筋し、
鉄筋比で 0.391%の鉄筋が埋設され、かつ、板の厚みが
71.4mmの供試体を作成した。 〔供試体NO. 48〕(実施例) 供試体NO. 47と同様に、混入率1.40%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの異形鉄筋
をピッチ 120mmで配筋し、鉄筋比で 0.391%の鉄筋が埋
設され、かつ、板の厚みが71.6mmの供試体を作成した。 〔供試体NO. 49〕(実施例) 混入率1.40%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの異形鉄筋をピッチ 100mmで配筋し、
鉄筋比で 0.456%の鉄筋が埋設され、かつ、板の厚みが
71.6mmの供試体を作成した。 〔供試体NO. 50〕(実施例) 供試体NO. 49と同様に、混入率1.40%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの異形鉄筋
をピッチ 100mmで配筋し、鉄筋比で 0.456%の鉄筋が埋
設され、かつ、板の厚みが71.4mmの供試体を作成した。[Specimen No. 46] (Comparative Example) Similar to specimen No. 45, a deformed reinforcing bar having a diameter of 6 mm was arranged at a pitch of 120 mm without mixing stainless steel fibers, and the reinforcing bar ratio was 0.391%. Is buried and the thickness of the plate is 70.5
mm specimens were prepared. [Specimen No. 47] (Example) A stainless steel fiber was mixed at a mixing ratio of 1.40% (volume ratio), and a deformed reinforcing bar having a diameter of 6 mm was arranged at a pitch of 120 mm.
0.391% of rebar is buried in the rebar ratio, and the thickness of the plate is
A 71.4 mm specimen was prepared. [Specimen No. 48] (Example) Similarly to the specimen No. 47, stainless steel fibers were mixed at a mixing ratio of 1.40% (volume ratio), and deformed reinforcing bars having a diameter of 6 mm were arranged at a pitch of 120 mm. Specimens with 0.391% rebar in the rebar ratio and a plate thickness of 71.6mm were prepared. [Specimen No. 49] (Example) A stainless steel fiber was mixed at a mixing ratio of 1.40% (volume ratio), and deformed reinforcing bars having a diameter of 6 mm were arranged at a pitch of 100 mm.
0.456% of rebar is buried in the rebar ratio and the thickness of the plate is
A 71.6 mm specimen was prepared. [Specimen No. 50] (Example) Similarly to the specimen No. 49, stainless steel fibers were mixed at a mixing ratio of 1.40% (volume ratio), and deformed reinforcing bars having a diameter of 6 mm were arranged at a pitch of 100 mm. A specimen with a reinforcing bar ratio of 0.456% and a plate thickness of 71.4 mm was prepared.
【0028】〔供試体NO. 51〕(実施例) 混入率1.75%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの異形鉄筋をピッチ 125mmで配筋し、
鉄筋比で 0.391%の鉄筋が埋設され、かつ、板の厚みが
71.4mmの供試体を作成した。 〔供試体NO. 52〕(実施例) 供試体NO. 51と同様に、混入率1.75%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの異形鉄筋
をピッチ 125mmで配筋し、鉄筋比で 0.391%の鉄筋が埋
設され、かつ、板の厚みが70.6mmの供試体を作成した。 〔供試体NO. 53〕(実施例) 混入率1.20%(容積比)でステンレス繊維を混入すると
ともに、径が 6mmの異形鉄筋をピッチ 100mmで配筋し、
鉄筋比で 0.456%の鉄筋が埋設され、かつ、板の厚みが
70.5mmの供試体を作成した。 〔供試体NO. 54〕(実施例) 供試体NO. 53と同様に、混入率1.20%(容積比)でス
テンレス繊維を混入するとともに、径が 6mmの異形鉄筋
をピッチ 100mmで配筋し、鉄筋比で 0.456%の鉄筋が埋
設され、かつ、板の厚みが70.0mmの供試体を作成した。[Specimen No. 51] (Example) A stainless steel fiber was mixed at a mixing ratio of 1.75% (volume ratio), and a deformed reinforcing bar having a diameter of 6 mm was arranged at a pitch of 125 mm.
0.391% of rebar is buried in the rebar ratio, and the thickness of the plate is
A 71.4 mm specimen was prepared. [Specimen No. 52] (Example) Similarly to the specimen No. 51, stainless steel fibers were mixed at a mixing ratio of 1.75% (volume ratio), and deformed reinforcing bars having a diameter of 6 mm were arranged at a pitch of 125 mm. A specimen with 0.391% rebar in the rebar ratio and a plate thickness of 70.6mm was prepared. [Specimen No. 53] (Example) A stainless steel fiber was mixed at a mixing ratio of 1.20% (volume ratio), and a deformed reinforcing bar having a diameter of 6 mm was arranged at a pitch of 100 mm.
0.456% of rebar is buried in the rebar ratio and the thickness of the plate is
A 70.5 mm specimen was prepared. [Specimen No. 54] (Example) Similarly to the specimen No. 53, stainless steel fibers were mixed at a mixing ratio of 1.20% (volume ratio), and deformed reinforcing bars having a diameter of 6 mm were arranged at a pitch of 100 mm. Specimens with 0.456% of reinforcing bars buried in the reinforcing bar ratio and a plate thickness of 70.0 mm were prepared.
【0029】上記各供試体の初期ひびわれ時および最大
耐力時それぞれの荷重(kgf/m2 ) 、応力 (kgf/cm2 ) お
よびたわみ量(mm)それぞれは次の通りである。The load (kgf / m 2 ), stress (kgf / cm 2 ), and deflection (mm) of each of the above specimens at the time of initial cracking and at the time of maximum proof stress are as follows.
【0030】 供試体NO. 初期ひびわれ時 最大耐力時 荷重 応力 たわみ量 荷重 応力 たわみ量 1 517 59.2 6.44 569 63.6 13.52 2 567 65.8 8.83 599 68.7 12.87 3 461 52.8 6.48 483 54.6 10.39 4 391 49.5 4.86 441 53.3 7.97 5 511 59.6 3.20 544 62.5 6.14 6 511 60.4 4.84 645 72.3 17.26 7 549 63.1 3.37 678 74.4 19.01 8 510 59.5 4.21 863 90.5 25.01 9 511 60.0 2.98 766 82.4 38.61 10 1000 65.8 2.33 1000 65.8 2.33 11 950 64.3 4.77 1051 69.8 4.59 12 760 86.5 3.37 799 88.3 3.55 13 623 71.3 2.81 623 71.3 2.81 14 671 68.7 3.50 753 68.7 3.50 15 703 79.0 3.39 703 79.0 3.39 16 698 79.1 3.37 709 80.1 3.45 17 600 75.5 2.85 600 82.9 3.18 18 751 82.2 3.61 752 82.2 3.61 19 781 88.5 8.90 861 95.9 16.06 20 479 59.8 4.90 649 75.1 20.90 21 505 61.8 5.80 706 79.8 33.40 22 475 59.9 5.20 620 73.0 21.20 23 486 62.0 3.90 699 81.6 24.30 24 400 53.4 4.70 580 69.8 35.70 25 461 56.6 6.10 587 67.4 27.40 26 420 59.2 5.70 653 78.6 43.30 27 431 54.0 5.00 588 67.6 65.30 28 379 51.2 4.30 379 51.2 4.30 29 392 50.4 4.10 487 58.7 8.20 30 198 33.8 2.50 400 52.1 (63.70) 31 351 49.0 2.40 356 49.5 2.80 32 242 47.0 3.20 706 101.1 65.00 33 269 50.3 4.10 540 82.0 63.80 34 275 51.6 5.00 581 91.1 68.40 35 291 52.7 5.00 539 81.6 61.40 36 322 63.5 2.80 954 145.6 65.60 37 283 57.8 3.10 587 95.7 79.30 38 583 68.6 5.70 600 70.1 6.90 39 572 67.5 5.40 599 69.9 6.70 40 557 68.6 6.40 964 106.0 70.00 41 475 54.8 2.10 592 81.8 34.40 42 554 53.7 1.80 824 103.9 49.50 43 583 59.1 5.20 583 69.6 19.20 44 843 66.5 3.10 1042 90.8 39.10 45 809 66.4 2.50 1079 66.4 2.50 46 448 57.8 2.20 448 57.8 2.20 47 703 92.0 3.50 1099 110.9 25.20 48 750 89.8 3.30 1126 113.9 31.90 49 662 79.7 3.00 1013 115.1 46.70 50 607 84.6 3.50 964 118.4 37.80 51 602 76.6 2.90 888 108.1 29.70 52 566 73.5 2.80 979 106.4 25.80 53 423 72.3 4.00 721 98.6 40.10 54 405 69.3 4.90 959 108.0 19.90Specimen NO. Initial cracking Maximum stress capacity Load stress deflection Load stress deflection 1 517 59.2 6.44 569 63.6 13.52 2 567 65.8 8.83 599 68.7 12.87 3 461 52.8 6.48 483 54.6 10.39 4 391 49.5 4.86 441 53.3 7.975 511 59.6 3.20 544 62.5 6.14 6 511 60.4 4.84 645 72.3 17.26 7 549 63.1 3.37 678 74.4 19.01 8 510 59.5 4.21 863 90.5 25.01 9 511 60.0 2.98 766 82.4 38.61 10 1000 65.8 2.33 1000 65.8 2.33 11 950 64.3 4.77 1051 69.8 4.59 912 86.5 3.37 799 88.3 3.55 13 623 71.3 2.81 623 71.3 2.81 14 671 68.7 3.50 753 68.7 3.50 15 703 79.0 3.39 703 79.0 3.39 16 698 79.1 3.37 709 80.1 3.45 17 600 75.5 2.85 600 82.9 3.18 18 751 82.2 3.61 752 82.2 3.61 19 781 88.5 8.90 861 95.9 16.06 20 479 59.8 4.90 649 75.1 20.90 21 505 61.8 5.80 706 79.8 33.40 22 475 59.9 5.20 620 73.0 21.20 23 486 62.0 3.90 699 81.6 24.30 24 400 53.4 4.70 580 69.8 35.70 25 461 56.6 6.10 587 67.4 27.40 59.2 5.70 653 78.6 43.30 27 431 54.0 5.00 588 67.6 65.30 28 379 51.2 4.30 379 51.2 4.30 29 392 50.4 4.10 487 58.7 8.20 30 198 33.8 2.50 400 52.1 (63.70) 31 351 49.0 2.40 356 49.5 2.80 32 242 47.0 3.20 706 101.1 65.00 269 50.3 4.10 540 82.0 63.80 34 275 51.6 5.00 581 91.1 68.40 35 291 52.7 5.00 539 81.6 61.40 36 322 63.5 2.80 954 145.6 65.60 37 283 57.8 3.10 587 95.7 79.30 385 583 68.6 5.70 600 70.1 6.90 39 70 572 6.7.5 5.40 599 6 68.6 6.40 964 106.0 70.00 41 475 54.8 2.10 592 81.8 34.40 42 554 53.7 1.80 824 103.9 49.50 43 583 59.1 5.20 583 69.6 19.20 44 843 66.5 3.10 1042 90.8 39.10 45 809 66.4 2.50 1079 66.4 2.50 46 448 57.8 2.20 448 57.8 2.020 3.50 1099 110.9 25.20 48 750 89.8 3.30 1126 113.9 31.90 49 662 79.7 3.00 1013 115.1 46.70 50 607 84.6 3.50 964 118.4 37.80 51 602 76.6 2.90 888 108.1 29.70 52 566 73.5 2.80 979 106.4 25.80 53 423 72.3 4.00 721 98.6 40.10 54 405 69.3 4.90 959 108.0 19.90
【0031】上記供試体の荷重の変化に伴う中央部での
たわみの変化を求めたところ、次のような結果が得られ
た。When the change in the deflection at the center of the test piece due to the change in the load was determined, the following results were obtained.
【0032】供試体NO. 1、2については図3に、供試
体NO. 3、4については図4に、供試体NO. 5、8およ
び9については図5に、供試体NO. 6、7については図
6に、そして、供試体NO. 10、11については図7に
それぞれ示し、これらの結果から、丸形の鉄筋を埋設し
た比較例に係る供試体(NO. 8、9)と実施例に係る供
試体(NO. 6、7)の場合に、鉄筋を埋設せずにステン
レス繊維を混入しただけの比較例に比べて、たわみ少な
く大きな荷重に耐えることができ、曲げ強度を十分に向
上できていることが明らかである。Specimens Nos. 1 and 2 are shown in FIG. 3, Specimens Nos. 3 and 4 are shown in FIG. 4, and Specimens Nos. 5, 8 and 9 are shown in FIG. 7 is shown in FIG. 6 and specimens Nos. 10 and 11 are shown in FIG. 7, respectively. From these results, a round reinforcing bar was buried.
In the case of the specimen (NO. 8, 9) according to the comparative example and the specimen (NO. 6, 7) according to the example, compared with the comparative example in which the stainless steel fiber was mixed without embedding the reinforcing bar. It is clear that it can withstand a large load with little deflection and the bending strength can be sufficiently improved.
【0033】また、供試体NO. 12、19については図
8に、供試体NO. 13、14については図9に、供試体
NO. 15、16については図10に、そして、供試体N
O. 17、18については図11にそれぞれ示し、これ
らの結果から、丸形の鉄筋を埋設した比較例に係る供試
体(NO. 15、16、17、18、19)の場合に、ス
テンレス繊維を混入せずに鉄筋を埋設しただけの比較例
(NO. 13、14)や鉄筋を埋設せずにステンレス繊維
を混入しただけの比較例(NO. 12)に比べて、たわみ
少なく大きな荷重に耐えることができ、曲げ強度を十分
に向上できていることが明らかである。The specimens Nos. 12 and 19 are shown in FIG. 8, and the specimens Nos. 13 and 14 are shown in FIG.
No. 15 and 16 are shown in FIG.
FIG. 11 shows O.17 and O.18, respectively. From these results, it was found that the specimens (NO. 15,16,17,18,19) according to the comparative example in which a round reinforcing bar was buried were made of stainless steel fiber. Compared to the comparative example in which the reinforcing bars were buried without mixing steel (NO. 13 and 14) and the comparative example in which stainless steel fibers were mixed without burying the reinforcing bars (NO. 12), the load was smaller and the load was larger. It is clear that the bending strength can be sufficiently improved.
【0034】また、供試体NO. 20、21については図
12に、供試体NO. 22、23については図13に、供
試体NO. 24、25については図14に、供試体NO. 2
6、27については図15に、供試体NO. 28、29に
ついては図16に、供試体NO. 30、31については図
17に、供試体NO. 32、33については図18に、供
試体NO. 34、35については図19に、そして、供試
体NO. 36、37については図20にそれぞれ示し、こ
れらの結果から、丸形の鉄筋を埋設した比較例に係る供
試体(NO. 20、21、22、23、24、25、2
6、27、32、33、34、35)や、実施例に係る
供試体(NO. 36、37)の場合に、ステンレス繊維を
混入せずに鉄筋を埋設しただけの比較例(NO. 30、3
1)や鉄筋を埋設せずにステンレス繊維を混入しただけ
の比較例(NO. 28、29)に比べて、曲げ強度を十分
に向上できていることが明らかである。The specimens Nos. 20 and 21 are shown in FIG. 12, the specimens Nos. 22 and 23 are shown in FIG. 13, the specimens Nos. 24 and 25 are shown in FIG.
15 for Nos. 6 and 27, FIG. 16 for Nos. 28 and 29, FIG. 17 for Nos. 30 and 31, and FIG. 18 for Nos. 32 and 33. NO. 19 for 34, 35, and, specimen NO. 36, 37 is respectively shown in FIG. 20 for, from these results, specimen according to the comparative example in which embedded round rebar (NO. 20 , 21,22,23,24,25,2
6, 27, 32, 33, 34, 35 ) and the examples
In the case of the test pieces (NOs. 36 and 37) , comparative examples in which a reinforcing bar was simply buried without mixing stainless steel fibers (NO. 30, 3)
It is clear that the bending strength can be sufficiently improved as compared with 1) and the comparative example (NO. 28, 29) in which the stainless steel fiber is mixed without embedding the reinforcing bar.
【0035】また、供試体NO. 38、39については図
21に、供試体NO. 40、41、42については図22
に、供試体NO. 43、44については図23に、供試体
NO.45、46については図24に、供試体NO. 47、
48については図25に、供試体NO. 49、50につい
ては図26に、供試体NO. 51、52については図27
に、そして、供試体NO. 53、54については図28に
それぞれ示し、これらの結果から、丸形の鉄筋を埋設し
た比較例に係る供試体(NO. 40、41、42)や、実
施例に係る供試体(NO. 43、44、47、48、4
9、50、51、52、53、54)の場合に、鉄筋を
埋設せずにステンレス繊維を混入しただけの比較例(N
O. 38、39)やステンレス繊維を混入せずに鉄筋を
埋設しただけの比較例(NO. 45、46)に比べて、曲
げ強度を十分に向上できていることが明らかである。し
かも、埋設した鉄筋比が近似したものどうしを比較する
ことにより、実施例に係る供試体が、丸形の鉄筋を埋設
した比較例に係る供試体に比べて、曲げ強度を十分に向
上でき、クラック発生時に、異径鉄筋とコンクリートと
の間での滑りが抑えられて曲げ荷重を分散でき、いわゆ
るひび割れ分散性に優れていることが明らかである。
比較例の供試体(NO. 8、9)[図5参照]が荷重 1,0
00kgf/m 2 以下であるのに対して、実施例に係る供試体
(NO. 51、52)[図27参照]では荷重 1,2 00kgf/
m 2 以上である。比較例の供試体(NO. 15、16)
[図10参照]が荷重 800kgf/m 2 以下でたわみ無く壊れ
たのに対して、実施例に係る供試体(NO. 6、7)[図
6参照]では荷重 800kgf/m 2 近辺で20mmまでたわんでい
る。比較例の供試体(NO. 22、23)[図13参
照]が荷重 800kgf/m 2 以下であるのに対して、実施例に
係る供試体(NO. 47、48)[図25参照]では荷重
1,200kgf/m 2 を越えている。比較例の供試体(NO. 3
2、33)[図18参照]が荷重 800kgf/m 2 以下である
のに対して、実施例に係る供試体(NO. 49、50)
[図26参照]では荷重1,200kgf/m 2 を越え、供試体(N
O. 53、54)[図28参照]では荷重 1,000kgf/m 2
を越えている。 The specimens Nos. 38 and 39 are shown in FIG. 21, and the specimens Nos. 40, 41 and 42 are shown in FIG.
FIG. 23 shows the specimen Nos. 43 and 44.
FIG. 24 shows the test pieces Nos.
48 is shown in FIG. 25, specimens Nos. 49 and 50 are shown in FIG. 26, and specimens Nos. 51 and 52 are shown in FIG.
And specimens Nos. 53 and 54 are shown in FIG. 28, respectively. From these results, a round reinforcing bar was buried.
Specimens (NOs. 40, 41, 42) according to the comparative examples and specimens (NOs . 43, 44, 47, 48, 4 ) according to the examples .
9, 50, 51, 52, 53, and 54), a comparative example (N
It is clear that the bending strength can be sufficiently improved as compared with the comparative examples (NO. 45, 46) in which the reinforcing bars are simply buried without mixing stainless steel fibers. I
Comparing buried rods with similar ratios
As a result, the specimen according to the example embeds a round rebar
Bending strength is sufficiently improved as compared with the specimen according to the comparative example.
When cracks occur, different diameter rebar and concrete
Slip between the two is suppressed and the bending load can be dispersed.
It is clear that the crack dispersibility is excellent.
The test pieces (Nos. 8 and 9) of the comparative example [see FIG.
Specimen according to the example, whereas it is 00 kgf / m 2 or less
( No. 51, 52) [See Fig. 27] Load 1,200kgf /
m 2 or more. Specimens of Comparative Examples (NO. 15, 16)
[See FIG. 10] is broken instead deflection at a load 800 kgf / m 2 or less
On the other hand, the specimens according to the examples (NO. 6, 7) [Fig.
6 reference] in with a load of 800kgf / m 2 around not bent up to 20mm
You. Specimens of Comparative Examples (NO. 22, 23) [See FIG.
The load is 800 kgf / m 2 or less,
In such test specimens (NO. 47 and 48) [see FIG.
It is beyond the 1,200kgf / m 2. Specimen of Comparative Example (NO.3
2, 33) [See Fig. 18] has a load of 800 kgf / m 2 or less
On the other hand, the specimens according to the examples (NO. 49, 50)
[Figure 26 Reference exceed load 1,200kgf / m 2 At, specimen (N
O. 53, 54) [See Fig. 28] Load 1,000kgf / m 2
Is over.
【0036】上記ステンレス繊維としては、補強面およ
び均一混合性ならびに流動性それぞれの面から、繊維長
さが20〜40mmである場合に所期の効果を発揮できること
が推測された。From the viewpoint of the reinforcing surface, the uniform mixing property, and the fluidity, it was presumed that the desired effect can be exhibited when the fiber length is 20 to 40 mm.
【0037】また、ステンレス繊維の混入率としても、
補強面および均一混合性ならびに流動性それぞれの面か
ら、コンクリートに対する容積比で 0.5〜2.0 %である
場合に所期の効果を発揮できることが推測された。Further, the mixing ratio of the stainless steel fiber is as follows.
From the viewpoint of the reinforcing surface, the uniform mixing property, and the fluidity, it was supposed that the desired effect can be exhibited when the volume ratio to the concrete is 0.5 to 2.0%.
【0038】[0038]
【発明の効果】本発明のプレキャストコンクリート板に
よれば、部材の厚み方向の中央箇所またはその近辺に、
異径鉄筋を一層に配置し、かつ、ステンレス繊維または
鉄鋼繊維あるいはそれらの混合物をコンクリート内に混
入するから、その厚みを薄くできながら曲げ強度を十分
に向上できる。 しかも、例えば、丸形の鉄筋を埋設した
場合であれば、クラック発生時に、鉄筋とコンクリート
との間で滑りを生じ、クラックが進行して鉄筋に荷重が
集中して破壊に至りやすいが、本発明によれば、異径鉄
筋を埋設するから、クラック発生時に、異径鉄筋とコン
クリートとの間での滑りを抑えて曲げ荷重を分散でき、
クラックの発生ならびに進行を良好に防止でき、クラッ
ク発生に起因する鉄筋の腐食や破壊を防止できて耐久性
を向上できるようになった。 According to the precast concrete plate of the present invention, at or near the center in the thickness direction of the member,
Place a different径鉄muscles even more, and, since the stainless steel fiber or steel fiber, or mixtures thereof is mixed in the concrete, Ru can sufficiently improve the bending strength while can reduce the thickness thereof. And, for example, buried round reinforcing bars
If so, when the crack occurs, rebar and concrete
Causes a slip between them and the cracks progress and the load is
Although concentrated and easily destroyed, according to the present invention,
Since the reinforcing bars are buried, when cracks occur,
Bending load can be dispersed by suppressing slip between cleats,
The occurrence and progress of cracks can be prevented well,
Durability by preventing corrosion and destruction of rebar caused by cracking
Can be improved.
【図1】プレキャストコンクリート板の具体例を示す一
部を破断した一部省略斜視図である。FIG. 1 is a partially omitted perspective view showing a concrete example of a precast concrete plate with a part thereof broken away.
【図2】図1の要部の拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of FIG.
【図3】供試体NO. 1および2それぞれの供試体におけ
る荷重と中央のたわみとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the load and the deflection at the center in each of specimens Nos. 1 and 2.
【図4】供試体NO. 3および4それぞれの供試体におけ
る荷重と中央のたわみとの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 3 and 4.
【図5】供試体NO. 5、8および9それぞれの供試体に
おける荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 5 is a graph showing the relationship between the load and the deflection at the center of each of the specimens Nos. 5, 8 and 9.
【図6】供試体NO. 6および7それぞれの供試体におけ
る荷重と中央のたわみとの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the load and the deflection at the center in each of specimens Nos. 6 and 7.
【図7】供試体NO. 10および11それぞれの供試体に
おける荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 7 is a graph showing the relationship between the load and the deflection at the center in each of specimens Nos. 10 and 11.
【図8】供試体NO. 12および19それぞれの供試体に
おける荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 8 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 12 and 19;
【図9】供試体NO. 13および14それぞれの供試体に
おける荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 9 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 13 and 14.
【図10】供試体NO. 15および16それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 10 is a graph showing the relationship between the load and the deflection at the center of each of the test pieces Nos. 15 and 16;
【図11】供試体NO. 17および18それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 11 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 17 and 18.
【図12】供試体NO. 20および21それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 12 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 20 and 21.
【図13】供試体NO. 22および23それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 13 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 22 and 23.
【図14】供試体NO. 24および25それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 14 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 24 and 25.
【図15】供試体NO. 26および27それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 15 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 26 and 27.
【図16】供試体NO. 28および29それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 16 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 28 and 29.
【図17】供試体NO. 30および31それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 17 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 30 and 31.
【図18】供試体NO. 32および33それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 18 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 32 and 33.
【図19】供試体NO. 34および35それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 19 is a graph showing the relationship between the load and the center deflection of each of the test pieces No. 34 and 35.
【図20】供試体NO. 36および37それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 20 is a graph showing the relationship between the load and the deflection at the center of each of the specimens Nos. 36 and 37.
【図21】供試体NO. 38および39それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 21 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 38 and 39.
【図22】供試体NO. 40、41および42それぞれの
供試体における荷重と中央のたわみとの関係を示すグラ
フである。FIG. 22 is a graph showing the relationship between the load and the center deflection of each of the test pieces Nos. 40, 41 and 42.
【図23】供試体NO. 43および44それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 23 is a graph showing the relationship between the load and the center deflection of each of the test pieces Nos. 43 and 44.
【図24】供試体NO. 45および46それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 24 is a graph showing the relationship between the load and the center deflection of each of the test pieces No. 45 and No. 46.
【図25】供試体NO. 47および48それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 25 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 47 and 48.
【図26】供試体NO. 49および50それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 26 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 49 and 50.
【図27】供試体NO. 51および52それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 27 is a graph showing the relationship between the load and the deflection at the center in each of the specimens Nos. 51 and 52.
【図28】供試体NO. 53および54それぞれの供試体
における荷重と中央のたわみとの関係を示すグラフであ
る。FIG. 28 is a graph showing the relationship between the load and the deflection at the center of each of the specimens No. 53 and 54.
A…ステンレス繊維 B…コンクリート C…異形鉄筋A ... stainless steel fibers B ... concrete C ... different form rebar
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藪下 善弘 大阪市中央区本町四丁目1番13号 株式 会社 竹中工務店 大阪本店内 (72)発明者 吉村 武 大阪市中央区本町四丁目1番13号 株式 会社 竹中工務店 大阪本店内 (56)参考文献 特開 昭62−178643(JP,A) 実開 昭63−152813(JP,U) 実開 昭52−21221(JP,U) (58)調査した分野(Int.Cl.6,DB名) E04C 2/06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Yoshihiro Yabushita 4-1-1-13 Honcho, Chuo-ku, Osaka-shi Takenaka Corporation Osaka Main Store (72) Inventor Takeshi Yoshimura 4-1-1, Honcho, Chuo-ku, Osaka-shi No. Takenaka Corporation Osaka Main Store (56) References JP-A-62-178643 (JP, A) JP-A-63-152813 (JP, U) JP-A 52-21221 (JP, U) (58) Field surveyed (Int.Cl. 6 , DB name) E04C 2/06
Claims (3)
ストコンクリート板であって、ステンレス繊維または鉄
鋼繊維あるいはそれらの混合物を混入したコンクリート
内に、その厚み方向の中央箇所またはその近辺にのみ位
置させて異径鉄筋を埋設したことを特徴とするプレキャ
ストコンクリート板。 A pre-car having a flat or almost flat plate surface.
A strike concrete slab, precast concrete, characterized in that in the concrete mixed with stainless steel fibers or steel fibers or mixtures thereof, the center portion in the thickness direction or is located only in the vicinity thereof by embedded foreign径鉄muscle were Board.
40mmであるプレキャストコンクリート板。2. The length of the stainless steel fiber of claim 1 is 20 to 20.
Precast concrete board that is 40mm.
維の混入率が、コンクリートに対する容積比で 0.5〜2.
0 %であるプレキャストコンクリート板。3. The mixing ratio of the stainless steel fiber according to claim 1 or 2 is 0.5 to 2.
Precast concrete board that is 0%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3099375A JP2991522B2 (en) | 1991-04-04 | 1991-04-04 | Precast concrete board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3099375A JP2991522B2 (en) | 1991-04-04 | 1991-04-04 | Precast concrete board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04309642A JPH04309642A (en) | 1992-11-02 |
JP2991522B2 true JP2991522B2 (en) | 1999-12-20 |
Family
ID=14245788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3099375A Expired - Fee Related JP2991522B2 (en) | 1991-04-04 | 1991-04-04 | Precast concrete board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2991522B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2142701B1 (en) * | 1996-06-20 | 2001-01-01 | Espanola Explosivos | REINFORCED CONCRETE WITH HIGH RESISTANCE TO PENETRATION AND MOBILE POWDER MANUFACTURED WITH SUCH MATERIAL. |
-
1991
- 1991-04-04 JP JP3099375A patent/JP2991522B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04309642A (en) | 1992-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hung et al. | Innovative ECC jacketing for retrofitting shear-deficient RC members | |
JP4969152B2 (en) | Reinforcement structure and reinforcement method for concrete building | |
KR100217439B1 (en) | Metal fiber concrete composition for casting a concrete element, elements obtained and method of thermal curing | |
Oskouei et al. | Experimental study of the punching behavior of GFRP reinforced lightweight concrete footing | |
Daniel et al. | Report on fiber reinforced concrete | |
Liao et al. | Self-Consolidating High Performance Fiber Reinforced Concrete (SCHPFRC)–Preliminary Investigation | |
US7419543B2 (en) | Metal fiber concrete | |
JP2991522B2 (en) | Precast concrete board | |
JP2009007925A (en) | Floor slab for steel bridge | |
Ullah et al. | Effect of steel and concrete thickness on shear strength of square concrete filled double skin tubular beams | |
Goncharova et al. | Optimization of Fine-Grained Concrete Composition in Order to Improve the Quality of Units’ Front Surface | |
JPH0639826B2 (en) | Fiber reinforced concrete structure | |
JP2006219900A (en) | Composite floor slab | |
JP2558100B2 (en) | Hybrid type fiber reinforced lightweight concrete structure | |
Majumdar | Fibre cement and concrete—A review | |
JP2997893B2 (en) | Highly-fillable concrete material, reinforced concrete structure and steel-concrete composite structure using the concrete material | |
JP2005001959A (en) | Cement-based heat insulating panel | |
JP2007132132A (en) | Reinforcing structure and reinforcing method for concrete structural member | |
JP4541244B2 (en) | Reinforcement structure of building and concrete building including the same | |
Sammak et al. | An experimental study on the effect of thickness and connection type of precast ultra-high-performance fiber-reinforced geopolymer concrete plates on the load–deflection capacity of one-way concrete slabs | |
KR20060011697A (en) | Deck plate and steel fiber reinforced concrite slab | |
Mebrahtom et al. | Optimizing Reinforced Concrete Structures: A Comparative Investigation of Diverse Wire Mesh Configurations | |
Al Rikabi et al. | Structural Performance of Concrete Corners Reinforced with Different Steel Reinforced Detail under Static Loading | |
JP2509155B2 (en) | Slope protection structure | |
JP3048465B2 (en) | Formwork and concrete panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |