JP2984889B2 - High carbon steel wire or steel wire excellent in wire drawability and method for producing the same - Google Patents
High carbon steel wire or steel wire excellent in wire drawability and method for producing the sameInfo
- Publication number
- JP2984889B2 JP2984889B2 JP5122985A JP12298593A JP2984889B2 JP 2984889 B2 JP2984889 B2 JP 2984889B2 JP 5122985 A JP5122985 A JP 5122985A JP 12298593 A JP12298593 A JP 12298593A JP 2984889 B2 JP2984889 B2 JP 2984889B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- steel wire
- wire
- cooling
- bainite transformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、伸線加工性に優れた高
炭素鋼線材または鋼線とその製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-carbon steel wire or a steel wire excellent in drawability and a method for producing the same.
【0002】[0002]
【従来の技術】通常線材または鋼線は、種々の最終製品
の用途に応じて、伸線加工が行われるが、この伸線加工
の前に予め伸線に適した線材あるいは鋼線にしておく必
要がある。従来その対策として、特公昭60−5621
5号公報に開示されているように、オーステナイト化温
度にあるC:0.2〜1.0%、Si<0.30%、M
n:0.30〜0.90%を含む鋼線材を、カリウム硝
酸塩系またはナトリウム硝酸塩を、単独又は複合して3
50〜600℃の温度に加熱溶融し、ガス体により攪拌
した溶融塩に浸漬して、800〜600℃間の冷却速度
を、15〜60℃/secにすることを特徴とする高強
度かつ強度ばらつきの小さい鋼線材の熱処理方法があ
る。2. Description of the Related Art Usually, wire or steel wire is drawn according to the use of various end products. Before this wire drawing, a wire or steel wire suitable for drawing is prepared in advance. There is a need. Conventionally, as a countermeasure, Japanese Patent Publication No.
No. 5, as disclosed in Japanese Patent Publication No. 5, C: 0.2 to 1.0% at austenitizing temperature, Si <0.30%, M
n: a steel wire containing 0.30 to 0.90%, potassium nitrate or sodium nitrate alone or in combination with 3%
High strength and strength characterized by being heated and melted to a temperature of 50 to 600 ° C., immersed in a molten salt stirred by a gas body, and setting a cooling rate between 800 to 600 ° C. to 15 to 60 ° C./sec. There is a heat treatment method for a steel wire having a small variation.
【0003】[0003]
【発明が解決しようとする課題】しかし、前記特許公報
記載の熱処理方法により得られるパーライト組織の線材
では、伸線加工工程において高減面率における延性の劣
化、捻回試験での割れの発生(以下デラミネーションと
称する)が問題となっている。本発明は、前記の如き従
来技術の問題点を有利に解決することのできる伸線加工
性の優れた高炭素鋼線材または鋼線およびその製造方法
を提供することを目的とする。However, in the wire having a pearlite structure obtained by the heat treatment method described in the patent publication, deterioration of ductility at a high area reduction rate in the wire drawing process and generation of cracks in a twisting test ( This is referred to as delamination). An object of the present invention is to provide a high-carbon steel wire or a steel wire having excellent drawability, which can advantageously solve the above-mentioned problems of the prior art, and a method of manufacturing the same.
【0004】[0004]
【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1) 重量%で C:0.80〜0.90%、 Si:0.10〜1.50%、 Mn:0.10〜1.00%、 を含有し、 P:0.02%以下、 S:0.01%以下 Al:0.003%以下、 に制限され、残部がFeおよび不可避的不純物よりな
り、2段変態により得られた上部ベイナイト組織が面積
率で80%以上で、かつHvが450以下であるミクロ
組織を有することを特徴とする伸線加工性に優れた高炭
素鋼線材または鋼線。The gist of the present invention is as follows. (1) C: 0.80 to 0.90%, Si: 0.10 to 1.50%, Mn: 0.10 to 1.00% by weight%, P: 0.02% or less S: 0.01% or less Al: 0.003% or less, the balance being Fe and unavoidable impurities, the upper bainite structure obtained by the two-stage transformation is 80% or more in area ratio, and A high-carbon steel wire or a steel wire excellent in drawability, characterized by having a microstructure having an Hv of 450 or less.
【0005】(2) 合金成分として、さらにCr:
0.10〜1.00%を含有することを特徴とするまえ
項1記載の伸線加工性に優れた高炭素鋼線材または鋼
線。 (3) 重量%で C:0.80〜0.90%、 Si:0.10〜1.50%、 Mn:0.10〜1.00%、 を含有し、 P:0.02%以下、 S:0.01%以下 Al:0.003%以下、 に制限され、残部がFeおよび不可避的不純物よりなる
鋼片を線材に圧延後、1100〜755℃の温度範囲か
ら60〜300℃/secの冷却速度で350〜500
℃の温度範囲に冷却し、この温度範囲に、ベイナイト変
態が開始しない範囲内でまたはベイナイト変態開始後で
かつベイナイト変態終了前の範囲内で、一定時間保定し
た後、昇温し、完全にベイナイト変態が終了するまで保
定することを特徴とする伸線加工性に優れた高炭素鋼線
材の製造方法。(2) As an alloy component, Cr:
Item 1. The high-carbon steel wire or steel wire excellent in wire drawing workability according to item 1, which contains 0.10 to 1.00%. (3) C: 0.80 to 0.90%, Si: 0.10 to 1.50%, Mn: 0.10 to 1.00% by weight%, P: 0.02% or less , S: 0.01% or less Al: 0.003% or less, and after rolling a steel slab consisting of Fe and unavoidable impurities into a wire rod, the temperature ranges from 1100 to 755 ° C to 60 to 300 ° C /. 350-500 at cooling rate of sec
After cooling to a temperature in the range where bainite transformation does not start or within a range after bainite transformation has started and before bainite transformation has ended, the temperature is raised to a temperature in the range of bainite transformation. A method for producing a high-carbon steel wire having excellent drawability, characterized in that the wire is retained until transformation is completed.
【0006】(4) 出発鋼片が、合金成分としてさら
にCr:0.10〜1.00%を含有することを特徴と
する前項3記載の伸線加工性に優れた高炭素鋼線材の製
造方法。 (5) 出発鋼片を線材に圧延後、1100〜755℃
の温度範囲から60〜300℃/secの冷却速度で3
50〜500℃の温度範囲に冷却し、この温度範囲に1
秒以上、かつベイナイト変態が開始しない範囲内で下記
式(1)で定める時間X秒以下保定した後、10℃以
上、600−T1 (T1 :冷却後の保定温度)℃以下昇
温し、完全にベイナイト変態が終了するまで保定するこ
とを特徴とする前項3または4記載の伸線加工性に優れ
た高炭素鋼線材の製造方法。(4) The production of a high carbon steel wire having excellent drawability as described in the item (3), wherein the starting steel slab further contains Cr: 0.10 to 1.00% as an alloying component. Method. (5) After rolling the starting slab into a wire, 1100-755 ° C
At a cooling rate of 60 to 300 ° C./sec.
Cool to a temperature range of 50 to 500 ° C.
After maintaining for at least X seconds and within a range in which bainite transformation does not start, and for not more than X seconds defined by the following formula (1), the temperature is raised to 10 ° C. or more and 600-T 1 (T 1 : holding temperature after cooling) ° C. or less. 5. The method for producing a high carbon steel wire excellent in wire drawing workability according to the above item 3 or 4, characterized in that the wire is retained until the bainite transformation is completed.
【0007】 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度 (6) 出発鋼片を線材に圧延後、1100〜755℃
の温度範囲から60〜300℃/secの冷却速度で3
50〜500℃の温度範囲に冷却し、この温度範囲にベ
イナイト変態開始後、ベイナイト変態が終了する以前、
すなわち下記式(2)で定める時間Y秒以下保定した
後、10℃以上、600−T1 (T1 :冷却後の保定温
度)℃以下昇温し、完全にベイナイト変態が終了するま
で保定することを特徴とする前項3または4記載の伸線
加工性に優れた高炭素鋼線材の製造方法。X = exp (16.03-0.0307 × T 1 ) (1) T 1 : retention temperature after cooling (6) After rolling the starting steel slab into a wire, 1100 to 755 ° C.
At a cooling rate of 60 to 300 ° C./sec.
After cooling to a temperature range of 50 to 500 ° C. and starting bainite transformation to this temperature range, and before bainite transformation ends,
That is, the temperature is maintained for not more than Y seconds defined by the following formula (2), and then the temperature is raised from 10 ° C. to 600-T 1 (T 1 : holding temperature after cooling) ° C. and held until the bainite transformation is completed. 3. The method for producing a high carbon steel wire excellent in wire drawing workability according to the above item 3 or 4, characterized in that:
【0008】 Y=exp(19.83−0.0329×T1)……(2) T1 :冷却後の保定温度 (7) 重量%で C:0.80〜0.90%、 Si:0.10〜1.50%、 Mn:0.10〜1.00%、 を含有し、 P:0.02%以下、 S:0.01%以下 Al:0.003%以下、 に制限され、残部がFeおよび不可避的不純物よりなる
鋼線を1100〜755℃の加熱温度範囲から60〜3
00℃/secの冷却速度で350〜500℃の温度範
囲に冷却し、この温度範囲に、ベイナイト変態が開始し
ない範囲内でまたはベイナイト変態開始後でかつベイナ
イト変態終了前の範囲内で、一定時間保定した後、昇温
し、完全にベイナイト変態が終了するまで保定すること
を特徴とする伸線加工性に優れた高炭素鋼鋼線の製造方
法。Y = exp (19.83−0.0329 × T 1 ) (2) T 1 : retention temperature after cooling (7) C: 0.80 to 0.90% by weight, Si: 0.10 to 1.50%, Mn: 0.10 to 1.00%, P: 0.02% or less, S: 0.01% or less Al: 0.003% or less The steel wire consisting of Fe and unavoidable impurities with the balance being 60 to 3 from the heating temperature range of 1100 to 755 ° C.
Cool at a cooling rate of 00 ° C./sec to a temperature range of 350 to 500 ° C., and within this temperature range, within a range where bainite transformation does not start, or within a range after bainite transformation starts and before bainite transformation ends, for a certain period of time. A method for producing a high carbon steel wire having excellent drawability, wherein the temperature is raised after holding, and the temperature is kept until bainite transformation is completely completed.
【0009】 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度 (8) 出発鋼線が、合金成分としてさらにCr:0.
10〜1.00%を含有することを特徴とする前項7記
載の伸線加工性に優れた高炭素鋼鋼線の製造方法。X = exp (16.03−0.0307 × T 1 ) (1) T 1 : retention temperature after cooling (8) The starting steel wire has an additional Cr: 0.
The method for producing a high carbon steel wire excellent in wire drawing work according to the above item 7, comprising 10 to 1.00%.
【0010】(9) 出発鋼線を1100〜755℃の
加熱温度範囲から60〜300℃/secの冷却速度で
350〜500℃の温度範囲に冷却し、この温度範囲に
1秒以上、かつベイナイト変態が開始しない範囲内で下
記式(1)で定める時間X秒以下保定した後、10℃以
上、600−T1 (T1 :冷却後の保定温度)℃以下昇
温し、完全にベイナイト変態が終了するまで保定するこ
とを特徴とする前項7または8記載の伸線加工性に優れ
た高炭素鋼鋼線の製造方法。(9) The starting steel wire is cooled from a heating temperature range of 1100 to 755 ° C. to a temperature range of 350 to 500 ° C. at a cooling rate of 60 to 300 ° C./sec. After holding for a time X seconds or less defined by the following formula (1) within a range where transformation does not start, the temperature is raised from 10 ° C. to 600-T 1 (T 1 : holding temperature after cooling) ° C., and complete bainite transformation 9. The method for producing a high carbon steel wire excellent in wire drawability according to the above item 7 or 8, wherein the method is maintained until the completion of the process.
【0011】 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度 (10) 出発鋼線を1100〜755℃の加熱温度範
囲から60〜300℃/secの冷却速度で350〜5
00℃の温度範囲に冷却し、この温度範囲にベイナイト
変態開始後、ベイナイト変態が終了する以前、すなわち
下記式(2)で定める時間Y秒以下保定した後、10℃
以上、600−T1 (T1 :冷却後の保定温度)℃以下
昇温し、完全にベイナイト変態が終了するまで保定する
ことを特徴とする前項7または8記載の伸線加工性に優
れた高炭素鋼鋼線の製造方法。X = exp (16.03-0.0307 × T 1 ) (1) T 1 : retention temperature after cooling (10) Starting steel wire is heated from 1100 to 755 ° C. in a heating temperature range of 60 to 300. 350 to 5 at cooling rate of ° C / sec
After cooling to a temperature range of 00 ° C. and starting the bainite transformation to this temperature range and before the bainite transformation is completed, that is, after keeping the time for Y seconds or less defined by the following formula (2), 10 ° C.
As described above, the wire is heated up to 600-T 1 (T 1 : holding temperature after cooling) ° C. or lower and held until bainite transformation is completely completed. Manufacturing method of high carbon steel wire.
【0012】 Y=exp(19.83−0.0329×T1)……(2) T1 :冷却後の保定温度 以下、本発明を詳細に説明する。Y = exp (19.83−0.0329 × T 1 ) (2) T 1 : retention temperature after cooling The present invention will be described in detail below.
【0013】[0013]
【作用】一次伸線性が著しく低下するのは、Cの添加量
が0.80%以上のときであるため、下限を0.80%
とする。また中心偏析が生じるので上限は0.90%と
した。The primary drawability is markedly reduced when the amount of C added is 0.80% or more.
And Further, since the center segregation occurs, the upper limit is set to 0.90%.
【0014】Siは鋼の脱酸のために必要な元素であ
り、したがってその含有量があまりにすくない時、脱酸
効果が不十分となるため、下限を0.10%とする。ま
た鋼を固溶強化する元素であると共に、鋼線のリラクセ
ーションロスを低減できる元素である。しかし、スケー
ル生成量を減少させ、メカニカルデスケーリング性を悪
くするほか、線材のボンデ潤滑性をやや低下させる。そ
のために上限は1.50%とした。Since Si is an element necessary for deoxidizing steel, and when its content is too small, the deoxidizing effect becomes insufficient, so the lower limit is made 0.10%. In addition to being an element that strengthens the solid solution of steel, it is an element that can reduce relaxation loss of the steel wire. However, in addition to reducing the amount of scale generated, the mechanical descaling property is worsened, and the bond lubricity of the wire is slightly reduced. Therefore, the upper limit is set to 1.50%.
【0015】Mnは脱酸剤として0.10%以上加え
る。また鋼に固溶して強化する元素であるが、添加量を
増加させると線材中心部において偏析を生じ易くなる。
偏析部は焼入性が向上し、変態終了時間が長時間側にず
れるため、未変態部がマルテンサイトとなり、伸線加工
中の断線につながる。そこで、上限は1.00%とし
た。Mn is added as a deoxidizing agent in an amount of 0.10% or more. In addition, although it is an element that forms a solid solution in steel and strengthens it, segregation tends to occur at the center of the wire rod when the addition amount is increased.
Since the segregated portion has improved hardenability and the transformation end time is shifted to a longer time side, the untransformed portion becomes martensite, which leads to disconnection during wire drawing. Therefore, the upper limit is set to 1.00%.
【0016】SおよびPは結晶粒界に析出し、鋼の特性
を劣化させるため、できる限り低く抑える必要がある。
そのためSの上限を0.01%とし、Pの上限を0.0
2%とした。Since S and P precipitate at the crystal grain boundaries and deteriorate the properties of steel, they must be kept as low as possible.
Therefore, the upper limit of S is set to 0.01%, and the upper limit of P is set to 0.0%.
2%.
【0017】極細線の延性を低下させる原因としてAl
2O3を主成分とする非延性介在物の存在があるため、本
発明においては非延性介在物による延性低下を避けるた
めに、Al含有量を0.003%以下とした。Al is a cause of reducing the ductility of ultrafine wires.
Since there is a non-ductile inclusion mainly composed of 2 O 3 , in the present invention, the Al content is set to 0.003% or less in order to avoid a decrease in ductility due to the non-ductile inclusion.
【0018】Crは鋼の強度を増加させる元素であり、
必要に応じて添加する。添加量が増えるに従って強度は
増加するが、焼入性も向上し、変態終了線が長時間側に
移動する。このため熱処理に必要な時間も長くなるの
で、上限を1.00%とした。また下限は強度を増すた
め0.10%とした。Cr is an element that increases the strength of steel,
Add as needed. Although the strength increases as the amount of addition increases, the hardenability also improves, and the transformation end line shifts to the longer time side. For this reason, the time required for the heat treatment also becomes longer, so the upper limit was made 1.00%. The lower limit is set to 0.10% to increase the strength.
【0019】本発明の製造方法の限定理由は以下に述べ
るとおりである。線材圧延後または鋼線加熱後の冷却開
始温度(T0)は変態後の組織に影響を与える。下限は
平衡変態開始温度であるオーステナイト変態点(755
℃)以上とした。上限はオーステナイト結晶粒の異常成
長を抑えるために1100℃とした。The reasons for limiting the production method of the present invention are as follows. The cooling start temperature (T 0 ) after wire rod rolling or steel wire heating affects the structure after transformation. The lower limit is the austenite transformation point (755), which is the equilibrium transformation start temperature.
° C) or higher. The upper limit is 1100 ° C. in order to suppress abnormal growth of austenite crystal grains.
【0020】線材圧延後または鋼線加熱後における冷却
速度(V1)はパーライト変態の開始を抑制するための
重要な因子である。このことを本発明者等は実験的に求
めた。初期冷却速度が60℃/sec未満で緩冷した場
合、パーライト変態のノーズ位置より高温側で変態が開
始し、パーライト組織が生成するため完全なベイナイト
組織が得られない。ベイナイト組織の生成温度は500
℃以下であるが、完全なベイナイト組織を生成させるた
めには冷却初期に急激に冷却する必要がある。そこで冷
却速度(V1)の下限を60℃/secとし、上限は工
業的に可能な300℃/secとした。The cooling rate (V 1 ) after wire rod rolling or steel wire heating is an important factor for suppressing the onset of pearlite transformation. The present inventors have experimentally determined this. If the initial cooling rate is lower than 60 ° C./sec, the transformation starts on the higher temperature side than the nose position of the pearlite transformation, and a complete bainite structure cannot be obtained because a pearlite structure is generated. The formation temperature of bainite structure is 500
Although the temperature is below ℃, it is necessary to rapidly cool in the early stage of cooling in order to form a complete bainite structure. Therefore, the lower limit of the cooling rate (V 1 ) was set at 60 ° C./sec, and the upper limit was set at 300 ° C./sec which is industrially possible.
【0021】冷却後の恒温保持温度(T1)は生成する
組織を決定する重要な因子である。保持温度が500℃
超では線材または鋼線中心部にパーライト組織が生成す
るため、引張強さが上昇し伸線加工性が劣化する。また
保持温度が350℃未満ではベイナイト組織中のセメン
タイトの粒状化が始まることにより、引張強さが上昇
し、伸線加工性が劣化する。このため恒温変態温度の上
限を500℃、下限を350℃とした。The constant temperature (T 1 ) after cooling is an important factor that determines the structure to be formed. Holding temperature is 500 ℃
If it is excessive, a pearlite structure is generated at the center of the wire or steel wire, so that the tensile strength increases and the wire drawing workability deteriorates. If the holding temperature is lower than 350 ° C., the cementite in the bainite structure starts to be granulated, thereby increasing the tensile strength and deteriorating the drawability. For this reason, the upper limit of the constant temperature transformation temperature was set to 500 ° C., and the lower limit was set to 350 ° C.
【0022】350〜500℃に一定時間以内保持する
ことにより過冷オーステナイト組織が得られる。その後
温度を上昇させることにより出現するベイナイト組織
は、等温変態に比較し、セメンタイトの析出が粗くな
る。このため2段変態させた上部ベイナイト組織は軟質
化する。完全2段変態の場合は、350〜500℃の温
度範囲での必要な過冷時間(t 1)は、過冷オーステナ
イト組織を生成するのに必要な時間以上で、かつ上限は
ベイナイト変態が開始する以前までとする。好ましくは
1秒以上かつ下記式で示すX秒以下とする。Hold at 350-500 ° C. for a certain period of time
As a result, a supercooled austenite structure is obtained. afterwards
Bainite structure emerged by increasing temperature
Indicates that cementite precipitation is coarser than isothermal transformation.
You. Therefore, the upper bainite structure transformed by two-step transformation is soft.
Become For complete two-stage transformation, a temperature of 350-500 ° C
Required cooling time in the temperature range (t 1) Is a super cooled austena
More than the time required to create a site
Before the start of bainite transformation. Preferably
It is longer than 1 second and shorter than X seconds shown by the following formula.
【0023】X=exp(16.03−0.0307×
T1 )(T1 :冷却後の保定温度) 過冷後、2段変態させる場合の昇温温度幅(ΔT)は、
下限を2段変態による軟質化効果が現れる10℃とし、
上限は昇温後の温度を600℃以下にする必要があるた
め下記式に示すΔT以下とする。 ΔT=600−T1 (T1 :冷却後の保定温度) 昇温後の保定時間(t2)は完全に変態が完了する迄と
する。X = exp (16.03-0.0307 ×
T 1 ) (T 1 : retention temperature after cooling) The temperature rise temperature range (ΔT) when performing two-stage transformation after supercooling is as follows:
The lower limit is set to 10 ° C. where the softening effect by the two-stage transformation appears,
The upper limit is set to ΔT or less as shown in the following equation since the temperature after temperature rise needs to be 600 ° C. or less. ΔT = 600−T 1 (T 1 : retention temperature after cooling) The retention time (t 2 ) after temperature rise is taken until the transformation is completely completed.
【0024】混合2段変態の場合は、350〜500℃
の温度範囲での必要な過冷時間(t 1)は、ベイナイト
変態開始後、下記式で示すY秒以下とする。 Y=exp(19.83−0.0329×T1 )
(T1 :冷却後の保定温度) 過冷後、2段変態させる場合の昇温温度幅(ΔT)は完
全2段変態の場合と同様に、下限を2段変態による軟質
化効果が現れる10℃とし、上限は昇温後の温度を60
0℃以下にする必要があるため下記式に示すΔT以下と
する。In the case of mixed two-stage transformation, 350 to 500 ° C.
Supercooling time (t 1) Bainite
After the transformation is started, the time is set to Y seconds or less as shown in the following equation. Y = exp (19.83-0.0329 × T1)
(T1: Holding temperature after cooling) After supercooling, the temperature rise temperature range (ΔT) for two-stage transformation is complete.
As in the case of all two-stage transformation, the lower limit is soft by two-stage transformation
10 ° C., at which the effect of oxidization appears, and the upper limit is 60 ° C.
Since it is necessary to keep the temperature below 0 ° C.,
I do.
【0025】 ΔT=600−T1 (T1 :冷却後の保定温度) 恒温保定温度500℃超で処理したパーライト線材また
は鋼線は線材または鋼線中心部にパーライト組織が生成
する。パーライト組織はセメンタイトとフェライトが層
状構造を有しているため、加工硬化には大きな寄与をも
たらすが、延性の低下が妨げない。このため高減面率領
域において引張強さが上昇しするとともに捻回特性が劣
化し、デラミネーションの発生をまねく。ΔT = 600−T 1 (T 1 : retention temperature after cooling) In the pearlite wire or steel wire treated at a constant temperature of 500 ° C. or more, a pearlite structure is formed at the wire or the center of the steel wire. Since the pearlite structure has a layered structure of cementite and ferrite, it greatly contributes to work hardening, but does not prevent reduction in ductility. For this reason, the tensile strength increases in the high surface area reduction region, and the torsion characteristics deteriorate, leading to the occurrence of delamination.
【0026】これに対して、本発明に従い2段変態させ
たベイナイト線材または鋼線は、フェライト中に粗いセ
メンタイトが分散している状態にあるため加工硬化を抑
えられる。これにより高減面率領域までデラミネーショ
ンの発生を抑制でき、伸線加工が可能である。ベイナイ
ト組織の面積率の測定法は、断面内の組織観察から格子
点法により求める。面積率はベイナイト組織の生成状況
を示す重要な指標であり、伸線加工性に影響を与える。
面積率の下限は2段変態効果が顕著に現れる80%とし
た。On the other hand, the bainite wire or the steel wire transformed in two steps according to the present invention can suppress work hardening because coarse cementite is dispersed in ferrite. As a result, the occurrence of delamination can be suppressed up to the high area reduction area, and wire drawing can be performed. The area ratio of the bainite structure is measured by a lattice point method based on observation of the structure in the cross section. The area ratio is an important index indicating the state of formation of the bainite structure, and affects the drawability.
The lower limit of the area ratio was 80% at which the two-stage transformation effect was remarkably exhibited.
【0027】上部ベイナイト組織のビッカース硬度はそ
の試料の特性を示すのに重要な因子である。冷却過程及
び昇温過程を施した2段変態させたベイナイト線材また
は鋼線は、等温変態させた場合に比較し、セメンタイト
の析出が粗くなる。このため2段変態させた上部ベイナ
イト組織は軟質化する。ビッカース硬度の上限はC量の
影響を考え450以下とした。The Vickers hardness of the upper bainite structure is an important factor in characterizing the sample. The bainite wire or the steel wire that has been subjected to the cooling process and the heating process and subjected to the two-stage transformation has coarser cementite precipitation than the case of the isothermal transformation. For this reason, the upper bainite structure transformed in two steps is softened. The upper limit of the Vickers hardness was set to 450 or less in consideration of the effect of the C content.
【0028】[0028]
実施例1 表1に供試鋼の化学成分を示す。表1のA〜Dは本発明
鋼の例、E〜Jは比較鋼の例である。E鋼はC量が上限
以上、F鋼はMn量が上限以上である。Example 1 Table 1 shows the chemical components of the test steel. A to D in Table 1 are examples of the steel of the present invention, and E to J are examples of comparative steels. Steel E has a C content that is greater than or equal to the upper limit, and steel F has a Mn content that is greater than or equal to the upper limit.
【0029】連続鋳造設備により300×500mmと
した鋳片を122mm角断面の鋼片に圧延した。これら
の鋼片を線材圧延後、表2に示す条件で直接溶融塩(D
LP)冷却を行なった。これらの線材を平均減面率17
%で1.00mmφまで伸線し引張試験、捻回試験を行
なった。A slab having a size of 300 × 500 mm was rolled into a steel slab having a cross section of 122 mm square by a continuous casting facility. After rolling these steel slabs into wire rods, the molten salt (D
LP) Cooling was performed. The average reduction rate of these wires was 17
%, And a tensile test and a torsion test were performed.
【0030】引張試験はJISZ2201の2号試験片
を用い、JISZ2241記載の方法で行なった。捻回
試験は試験片長さ100d+100に切断後、チャック
間距離100d、回転速度10rpmで破断するまで回
転させた。dは鋼線の直径を表わす。このようにして得
られた特性値を表2に合わせて示す。The tensile test was performed using a No. 2 test piece of JISZ2201 according to the method described in JISZ2241. In the torsion test, after cutting to a test piece length of 100d + 100, the test piece was rotated at a distance between chucks of 100d and a rotation speed of 10rpm until it was broken. d represents the diameter of the steel wire. The characteristic values thus obtained are also shown in Table 2.
【0031】No.1〜No.4は本発明鋼である。N
o.5〜No.10は比較鋼である。比較例No.5は
冷却速度が遅すぎたためにパーライト組織が生成し、伸
線加工性が低下し、伸線途中で断線が生じた。比較例N
o.6は昇温温度が低すぎたため2段変態させたベイナ
イト組織が生成せず、伸線加工性が低下し、伸線途中で
断線が生じた。No. 1 to No. 4 is the steel of the present invention. N
o. 5-No. 10 is a comparative steel. Comparative Example No. In No. 5, since the cooling rate was too slow, a pearlite structure was formed, the wire drawing workability was reduced, and the wire was broken during the wire drawing. Comparative Example N
o. In No. 6, the bainite structure subjected to the two-stage transformation was not formed because the heating temperature was too low, the wire drawing workability was reduced, and the wire was broken during the wire drawing.
【0032】比較例No.7は恒温変態時間が十分確保
されなかったためマルテンサイトが発生し、伸線加工性
が低下し、伸線途中で断線が生じた。比較例No.8は
過冷却処理時間が長かったため2段変態させたベイナイ
ト組織が生成する割合が低下し、伸線加工性が低下し、
伸線途中で断線が生じた。比較例No.9はC量が高す
ぎたため初析セメンタイトが発生し、伸線加工性が低下
した。Comparative Example No. In No. 7, martensite was generated because the constant temperature transformation time was not sufficiently ensured, the wire drawing workability was reduced, and the wire was broken during the wire drawing. Comparative Example No. In the case of No. 8, the rate of formation of the bainite structure subjected to the two-stage transformation was reduced due to the long supercooling treatment time, and the drawability was reduced.
Disconnection occurred during drawing. Comparative Example No. In No. 9, since the C content was too high, proeutectoid cementite was generated and the wire drawing workability was reduced.
【0033】比較例No.10はMn量が高すぎたため
中心偏析に伴うミクロマルテンサイトが発生し伸線加工
性が低下した。Comparative Example No. In No. 10, since the amount of Mn was too high, micro-martensite was generated due to the center segregation, and the drawability was reduced.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 [Table 2]
【0036】実施例2 表3に供試鋼の化学成分を示す。表3のA〜Dは本発明
鋼の例、E〜Jは比較鋼の例である。E鋼はC量が上限
以上、F鋼はMn量が上限以上である。連続鋳造設備に
より300×500mmとした鋳片を122mm角断面
の鋼片から鋼線を製造した。Example 2 Table 3 shows the chemical components of the test steel. A to D in Table 3 are examples of the steel of the present invention, and E to J are examples of comparative steels. Steel E has a C content that is greater than or equal to the upper limit, and steel F has a Mn content that is greater than or equal to the upper limit. A steel wire was manufactured from a slab having a square section of 122 mm from a slab having a size of 300 x 500 mm by a continuous casting facility.
【0037】これらの鋼線を加熱後、表4に示す条件で
直接溶融塩(DLP)冷却を行なった。これらの鋼線を
平均減面率17%で1.00mmφまで伸線し引張試
験、捻回試験を行った。引張試験はJISZ2201の
2号試験片を用い、JISZ2241記載の方法で行っ
た。After heating these steel wires, they were directly cooled by molten salt (DLP) under the conditions shown in Table 4. These steel wires were drawn to 1.00 mmφ at an average area reduction rate of 17%, and were subjected to a tensile test and a twist test. The tensile test was performed according to JISZ2241 using a No. 2 test piece of JISZ2201.
【0038】捻回試験は試験片長さ100d+100に
切断後、チャック間距離100d、回転速度10rpm
で破断するまで回転させた。dは鋼線の直径を表わす。
このようにして得られた特性値を表4に併せて示す。N
o.1〜No.4は本発明鋼である。No.5〜No.
10は比較鋼である。In the torsion test, the test piece was cut to a length of 100d + 100, the distance between chucks was 100d, and the rotation speed was 10rpm.
And rotated until it broke. d represents the diameter of the steel wire.
The characteristic values thus obtained are also shown in Table 4. N
o. 1 to No. 4 is the steel of the present invention. No. 5-No.
10 is a comparative steel.
【0039】比較例No.5は冷却速度が遅すぎたため
にパーライト組織が生成し、伸線加工性が低下し、伸線
途中で断線が生じた。比較例No.6は昇温温度が低す
ぎたため2段変態させたベイナイト組織が生成せず、伸
線加工性が低下し、伸線途中で断線が生じた。比較例N
o.7は恒温変態時間が十分確保されなかったためマル
テンサイトが発生し、伸線加工性が低下し、伸線途中で
断線が生じた。Comparative Example No. In No. 5, since the cooling rate was too slow, a pearlite structure was formed, the wire drawing workability was reduced, and the wire was broken during the wire drawing. Comparative Example No. In No. 6, the bainite structure subjected to the two-stage transformation was not formed because the heating temperature was too low, the wire drawing workability was reduced, and the wire was broken during the wire drawing. Comparative Example N
o. In No. 7, martensite was generated because the constant temperature transformation time was not sufficiently ensured, the wire drawing workability was reduced, and the wire was broken during the wire drawing.
【0040】比較例No.8は過冷却処理時間が長かっ
たため2段変態させたベイナイト組織が生成する割合が
低下し、伸線加工性が低下し、伸線途中で断線が生じ
た。比較例No.9はC量が高すぎたため初析セメンタ
イトが発生し、伸線加工性が低下した。比較例No.1
0はMn量が高すぎたため中心偏析に伴うミクロマルテ
ンサイトが発生し伸線加工性が低下した。Comparative Example No. In No. 8, since the supercooling treatment time was long, the rate of formation of the bainite structure transformed in two steps was reduced, the wire drawing workability was reduced, and the wire was broken during the wire drawing. Comparative Example No. In No. 9, since the C content was too high, proeutectoid cementite was generated and the wire drawing workability was reduced. Comparative Example No. 1
In the case of No. 0, since the amount of Mn was too high, micro martensite was generated due to the segregation at the center, and the wire drawing workability was reduced.
【0041】[0041]
【表3】 [Table 3]
【0042】[0042]
【表4】 [Table 4]
【0043】[0043]
【発明の効果】以上述べた如く本発明に従った高炭素鋼
線材または鋼線は、従来材にくらべてより一段と高減面
率まで伸線が可能で、耐デラミネーション特性も改善さ
れている。また本発明によれば伸線加工性が優れた高炭
素鋼線材または鋼線の製造が可能になり、2次加工工程
における中間熱処理が省略でき、大幅なコストダウン、
工期短縮、設備費削減が図れる。As described above, the high carbon steel wire or steel wire according to the present invention can be drawn to a much higher area reduction ratio than conventional materials, and has improved delamination resistance. . Further, according to the present invention, it is possible to manufacture a high carbon steel wire or a steel wire excellent in wire drawing workability, and can omit an intermediate heat treatment in a secondary working process, thereby significantly reducing cost,
The construction period can be shortened and equipment costs can be reduced.
【図1】本発明の熱処理パターンを示す図である。FIG. 1 is a view showing a heat treatment pattern of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 世紀 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製鐵所内 (56)参考文献 特開 平5−117762(JP,A) 特開 平6−17191(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/18 C21D 6/00 - 9/52 ──────────────────────────────────────────────────の Continuation of front page (72) Inventor Seiji Nishida 1 Kimitsu, Kimitsu City, Chiba Prefecture Inside Kimitsu Works, Nippon Steel Corporation (56) References JP-A-5-117762 (JP, A) JP Hei 6-17191 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00-38/18 C21D 6/00-9/52
Claims (10)
り、2段変態により得られた上部ベイナイト組織が面積
率で80%以上で、かつHvが450以下であるミクロ
組織を有することを特徴とする伸線加工性に優れた高炭
素鋼線材または鋼線。1. The composition contains, by weight%, C: 0.80 to 0.90%, Si: 0.10 to 1.50%, Mn: 0.10 to 1.00%, and P: 0.02 %, S: 0.01% or less, Al: 0.003% or less, the balance being Fe and unavoidable impurities, and the upper bainite structure obtained by the two-stage transformation has an area ratio of 80% or more. A high-carbon steel wire or a steel wire having excellent drawability, characterized by having a microstructure having an Hv of 450 or less.
〜1.00%を含有することを特徴とする請求項1記載
の伸線加工性に優れた高炭素鋼線材または鋼線。2. The alloy composition further contains Cr: 0.10
The high-carbon steel wire or the steel wire according to claim 1, wherein the high-carbon steel wire has excellent drawability.
鋼片を線材に圧延後、1100〜755℃の温度範囲か
ら60〜300℃/secの冷却速度で350〜500
℃の温度範囲に冷却し、この温度範囲に、ベイナイト変
態が開始しない範囲内でまたはベイナイト変態開始後で
かつベイナイト変態終了前の範囲内で、一定時間保定し
た後、昇温し、完全にベイナイト変態が終了するまで保
定することを特徴とする伸線加工性に優れた高炭素鋼線
材の製造方法。C. 0.80 to 0.90% by weight, Si: 0.10 to 1.50%, Mn: 0.10 to 1.00% by weight, P: 0.02 % Or less, S: 0.01% or less, Al: 0.003% or less, and the remainder is rolled from a steel slab consisting of Fe and unavoidable impurities into a wire, and then from a temperature range of 1100 to 755 ° C to 60 to 300%. 350-500 at a cooling rate of ° C / sec
After cooling to a temperature in the range where bainite transformation does not start or within a range after bainite transformation has started and before bainite transformation has ended, the temperature is raised to a temperature in the range of bainite transformation. A method for producing a high-carbon steel wire having excellent drawability, characterized in that the wire is retained until transformation is completed.
r:0.10〜1.00%を含有することを特徴とする
請求項3記載の伸線加工性に優れた高炭素鋼線材の製造
方法。4. The starting slab further comprises C as an alloying component.
The method for producing a high-carbon steel wire excellent in wire drawing work according to claim 3, wherein r: 0.10 to 1.00% is contained.
55℃の温度範囲から60〜300℃/secの冷却速
度で350〜500℃の温度範囲に冷却し、この温度範
囲に1秒以上、かつベイナイト変態が開始しない範囲内
で下記式(1)で定める時間X秒以下保定した後、10
℃以上、600−T1 (T1 :冷却後の保定温度)℃以
下昇温し、完全にベイナイト変態が終了するまで保定す
ることを特徴とする請求項3または4記載の伸線加工性
に優れた高炭素鋼線材の製造方法。 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度5. After the starting slab is rolled into a wire,
It is cooled from a temperature range of 55 ° C. to a temperature range of 350 to 500 ° C. at a cooling rate of 60 to 300 ° C./sec, and within this temperature range for 1 second or more and within a range where bainite transformation does not start, the following formula (1) is used. After holding for the specified time X seconds or less, 10
° C. or higher, 600-T 1: ℃ less heated (T 1 retention temperature after cooling), completely in drawability according to claim 3 or 4, wherein bainite transformation is characterized in that the retaining until the end Manufacturing method of excellent high carbon steel wire. X = exp (16.03-0.0307 × T 1 ) (1) T 1 : retention temperature after cooling
55℃の温度範囲から60〜300℃/secの冷却速
度で350〜500℃の温度範囲に冷却し、この温度範
囲にベイナイト変態開始後、ベイナイト変態が終了する
以前、すなわち下記式(2)で定める時間Y秒以下保定
した後、10℃以上、600−T1 (T1 :冷却後の保
定温度)℃以下昇温し、完全にベイナイト変態が終了す
るまで保定することを特徴とする請求項3または4記載
の伸線加工性に優れた高炭素鋼線材の製造方法。 Y=exp(19.83−0.0329×T1)……(2) T1 :冷却後の保定温度6. After the starting slab is rolled into a wire rod,
It is cooled from a temperature range of 55 ° C. to a temperature range of 350 to 500 ° C. at a cooling rate of 60 to 300 ° C./sec. After the bainite transformation starts in this temperature range and before the bainite transformation ends, that is, by the following formula (2) The method according to claim 1, wherein after maintaining for a predetermined time Y seconds or less, the temperature is raised from 10 ° C. to 600-T 1 (T 1 : retaining temperature after cooling) ° C. and maintained until bainite transformation is completed. 3. The method for producing a high carbon steel wire excellent in wire drawing workability according to 3 or 4. Y = exp (19.83−0.0329 × T 1 ) (2) T 1 : retention temperature after cooling
鋼線を1100〜755℃の加熱温度範囲から60〜3
00℃/secの冷却速度で350〜500℃の温度範
囲に冷却し、この温度範囲に、ベイナイト変態が開始し
ない範囲内でまたはベイナイト変態開始後でかつベイナ
イト変態終了前の範囲内で、一定時間保定した後、昇温
し、完全にベイナイト変態が終了するまで保定すること
を特徴とする伸線加工性に優れた高炭素鋼鋼線の製造方
法。 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度7. C: 0.80 to 0.90%, Si: 0.10 to 1.50%, Mn: 0.10 to 1.00% by weight, P: 0.02 %: S: 0.01% or less Al: 0.003% or less, the balance being steel wire consisting of Fe and inevitable impurities from the heating temperature range of 1100 to 755 ° C to 60 to 3%.
Cool at a cooling rate of 00 ° C./sec to a temperature range of 350 to 500 ° C., and within this temperature range, within a range where bainite transformation does not start, or within a range after bainite transformation starts and before bainite transformation ends, for a certain period of time. A method for producing a high carbon steel wire having excellent drawability, wherein the temperature is raised after holding, and the temperature is kept until bainite transformation is completely completed. X = exp (16.03-0.0307 × T 1 ) (1) T 1 : retention temperature after cooling
r:0.10〜1.00%を含有することを特徴とする
請求項7記載の伸線加工性に優れた高炭素鋼鋼線の製造
方法。8. The starting steel wire may further comprise C
The method for producing a high carbon steel wire excellent in drawability according to claim 7, wherein r: 0.10 to 1.00% is contained.
度範囲から60〜300℃/secの冷却速度で350
〜500℃の温度範囲に冷却し、この温度範囲に1秒以
上、かつベイナイト変態が開始しない範囲内で下記式
(1)で定める時間X秒以下保定した後、10℃以上、
600−T1 (T1 :冷却後の保定温度)℃以下昇温
し、完全にベイナイト変態が終了するまで保定すること
を特徴とする請求項7または8記載の伸線加工性に優れ
た高炭素鋼鋼線の製造方法。 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度9. The starting steel wire is heated at a cooling rate of 60 to 300 ° C./sec from a heating temperature range of 1100 to 755 ° C. to a temperature of 350 ° C.
After cooling to a temperature range of ~ 500 ° C and maintaining the temperature range for 1 second or more and within a range where bainite transformation does not start, for a time X seconds or less defined by the following formula (1), 10 ° C or more,
9. The high wire drawability according to claim 7, wherein the temperature is raised to 600-T 1 (T 1 : holding temperature after cooling) ° C. or lower, and the temperature is held until bainite transformation is completed. Manufacturing method of carbon steel wire. X = exp (16.03-0.0307 × T 1 ) (1) T 1 : retention temperature after cooling
温度範囲から60〜300℃/secの冷却速度で35
0〜500℃の温度範囲に冷却し、この温度範囲にベイ
ナイト変態開始後、ベイナイト変態が終了する以前、す
なわち下記式(2)で定める時間Y秒以下保定した後、
10℃以上、600−T1 (T1 :冷却後の保定温度)
℃以下昇温し、完全にベイナイト変態が終了するまで保
定することを特徴とする請求項7または8記載の伸線加
工性に優れた高炭素鋼鋼線の製造方法。 Y=exp(19.83−0.0329×T1)……(2) T1 :冷却後の保定温度10. The starting steel wire is heated at a cooling rate of 60-300 ° C./sec from a heating temperature range of 1100-755 ° C. to a temperature of 35 ° C.
After cooling to a temperature range of 0 to 500 ° C. and starting bainite transformation to this temperature range and before completion of bainite transformation, that is, after holding for a time Y seconds or less defined by the following equation (2),
10 ° C or more, 600-T 1 (T 1 : retention temperature after cooling)
9. The method for producing a high carbon steel wire excellent in wire drawability according to claim 7 or 8, wherein the temperature is raised until the bainite transformation is completed. Y = exp (19.83−0.0329 × T 1 ) (2) T 1 : retention temperature after cooling
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5122985A JP2984889B2 (en) | 1992-07-08 | 1993-05-25 | High carbon steel wire or steel wire excellent in wire drawability and method for producing the same |
PCT/JP1994/000578 WO1994028187A1 (en) | 1993-05-25 | 1994-04-06 | High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same |
US08/545,676 US5650027A (en) | 1993-05-25 | 1994-04-06 | High-carbon steel wire rod and wire excellent in drawability and methods of producing the same |
DE69427473T DE69427473T2 (en) | 1993-05-25 | 1994-04-06 | HIGH-CARBON STEEL ROD OR WIRE WITH EXCELLENT DRAWNABILITY AND METHOD FOR THE PRODUCTION THEREOF |
EP94912064A EP0707088B1 (en) | 1993-05-25 | 1994-04-06 | High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18136992 | 1992-07-08 | ||
JP4-181369 | 1992-07-08 | ||
JP5122985A JP2984889B2 (en) | 1992-07-08 | 1993-05-25 | High carbon steel wire or steel wire excellent in wire drawability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0673502A JPH0673502A (en) | 1994-03-15 |
JP2984889B2 true JP2984889B2 (en) | 1999-11-29 |
Family
ID=26460009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5122985A Expired - Lifetime JP2984889B2 (en) | 1992-07-08 | 1993-05-25 | High carbon steel wire or steel wire excellent in wire drawability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2984889B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19963973C1 (en) * | 1999-12-31 | 2001-05-31 | Bosch Gmbh Robert | Production of bainite from steel parts comprises austenizing the parts, quenching to a starting temperature, isothermally storing the steel parts at the starting temperature and isothermally storing the parts at a finishing temperature |
JP4287798B2 (en) * | 2004-07-28 | 2009-07-01 | 株式会社神戸製鋼所 | Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube |
JP5284842B2 (en) * | 2009-03-26 | 2013-09-11 | 新日鐵住金株式会社 | High strength flat steel wire |
JP6079894B2 (en) | 2013-10-08 | 2017-02-15 | 新日鐵住金株式会社 | Wire material, hypereutectoid bainite steel wire, and production method thereof |
KR101944599B1 (en) | 2014-03-06 | 2019-01-31 | 신닛테츠스미킨 카부시키카이샤 | High-carbon steel wire having superior wire drawing properties and method for producing same |
CN108396221A (en) * | 2017-02-08 | 2018-08-14 | 鞍钢股份有限公司 | Low-net cementite precipitation high-carbon steel wire rod for filament drawing and production method |
-
1993
- 1993-05-25 JP JP5122985A patent/JP2984889B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0673502A (en) | 1994-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2984889B2 (en) | High carbon steel wire or steel wire excellent in wire drawability and method for producing the same | |
JPH08337843A (en) | High carbon hot rolled steel sheet excellent in punching workability and its production | |
JP3018268B2 (en) | High carbon steel wire or steel wire excellent in wire drawability and method for producing the same | |
JP3388418B2 (en) | Method for producing high carbon steel wire or steel wire excellent in wire drawing workability | |
JP2984888B2 (en) | High carbon steel wire or steel wire excellent in wire drawability and method for producing the same | |
WO1994023084A1 (en) | Bainite rod wire or steel wire for wire drawing and process for producing the same | |
JP3422864B2 (en) | Stainless steel with excellent workability and method for producing the same | |
EP0707088B1 (en) | High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same | |
EP0708183B1 (en) | High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same | |
JP2984887B2 (en) | Bainite wire or steel wire for wire drawing and method for producing the same | |
EP0693571B1 (en) | Bainite rod wire or steel wire for wire drawing and process for producing the same | |
JP2984885B2 (en) | Bainite wire or steel wire for wire drawing and method for producing the same | |
JP2742967B2 (en) | Manufacturing method of bainite wire rod | |
WO1994023083A1 (en) | Bainite rod wire or steel wire for wire drawing and process for producing the same | |
JP2984886B2 (en) | Bainite wire or steel wire for wire drawing and method for producing the same | |
JPH083649A (en) | Production of high carbon steel wire rod or steel wire excellent in wire drawability | |
JPH01123029A (en) | Production of seamless stainless steel pipe | |
JPH0774383B2 (en) | Method for producing steel sheet with excellent resistance to hydrogen-induced cracking | |
KR100276298B1 (en) | The manufacturing method of wire drawing used wire rod contained manganes | |
JPH07268464A (en) | Production of bainitic wire rod or steel wire for wiredrawing | |
JPH07268487A (en) | Production of high carbon steel wire rod or steel wire excellent in wiredrawability | |
JPH01123028A (en) | Production of seamless stainless steel pipe | |
JPH0762220B2 (en) | Lead free-cutting martensitic stainless steel slab and its hot rolling method | |
JPH07268466A (en) | Production of bainitic wire rod or steel wire for wiredrawing | |
JPH06330180A (en) | Production of high strength cold rolling steel sheet with superior deep drawing capability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990803 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071001 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091001 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111001 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111001 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121001 Year of fee payment: 13 |