[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2977340B2 - gas turbine - Google Patents

gas turbine

Info

Publication number
JP2977340B2
JP2977340B2 JP3263800A JP26380091A JP2977340B2 JP 2977340 B2 JP2977340 B2 JP 2977340B2 JP 3263800 A JP3263800 A JP 3263800A JP 26380091 A JP26380091 A JP 26380091A JP 2977340 B2 JP2977340 B2 JP 2977340B2
Authority
JP
Japan
Prior art keywords
gas turbine
air
turbine
amount
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3263800A
Other languages
Japanese (ja)
Other versions
JPH0598995A (en
Inventor
邦明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3263800A priority Critical patent/JP2977340B2/en
Publication of JPH0598995A publication Critical patent/JPH0598995A/en
Application granted granted Critical
Publication of JP2977340B2 publication Critical patent/JP2977340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、火力発電などに適用さ
れるガスタービンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine applied to thermal power generation and the like.

【0002】[0002]

【従来の技術】図3および図4は火力発電に使用されて
いる従来のガスタービンの説明図である。図において、
軸流空気圧縮機1から吐出される圧縮空気は燃焼器2を
経てタービンに流入するが、圧縮空気の一部は分岐され
て外部に導かれ、フィルタ4、空気冷却器5を経てター
ビンに流入し、タービンディスク6及び中空動翼7を冷
却する。通常、燃焼器2を経てタービンに流入する圧縮
空気の温度は350〜400℃、空気冷却器5を経てタ
ービンに流入する冷却空気の温度は100〜250℃程
度である。冷却空気の冷却には水が使われており、水は
遮断弁8を経て空気冷却器5に流入する。また、水質が
悪く空気冷却器5の管巣が腐食する場合には空気が使わ
れ、フィルタを通して大気がファンによりダンパを経て
空気冷却器5へ送風される。
2. Description of the Related Art FIGS. 3 and 4 are explanatory views of a conventional gas turbine used for thermal power generation. In the figure,
The compressed air discharged from the axial air compressor 1 flows into the turbine through the combustor 2, but a part of the compressed air is branched and guided to the outside, and flows into the turbine through the filter 4 and the air cooler 5. Then, the turbine disk 6 and the hollow rotor blades 7 are cooled. Usually, the temperature of the compressed air flowing into the turbine via the combustor 2 is 350 to 400 ° C., and the temperature of the cooling air flowing into the turbine via the air cooler 5 is about 100 to 250 ° C. Water is used for cooling the cooling air, and the water flows into the air cooler 5 through the shutoff valve 8. When the water quality is bad and the tube nest of the air cooler 5 is corroded, air is used, and the air is sent to the air cooler 5 through a filter via a damper by a fan.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来のガ
スタービンにおいて、ガスタービンの回転体と静止体と
ではメタル温度、熱容量、材料の熱膨張係数の違いなど
により軸方向の伸び量が異なる。特に、ガスタービンの
起動時や負荷上昇時など負荷の非定常変化時にこの伸び
量の差が大きくなると回転体と静止体との間が接触する
トラブルが発生するため、変位センサ9によってこの伸
び量の差が計測管理されるとともに、接触が予想される
回転体と静止体との間には予め接触を回避するのに十分
な間隙が軸方向に設けられている。しかしながら、この
間隙はガスタービンのロータを長くしてコストを上昇さ
せる一因になるとともに、ロータのスパンを増大させて
振動発生の原因となる場合がある。
In the above conventional gas turbine, the amount of axial elongation differs between the rotating body and the stationary body of the gas turbine due to differences in metal temperature, heat capacity, and thermal expansion coefficient of the material. . In particular, when the difference in the amount of expansion increases when the load is unsteadily changed, such as when the gas turbine is started or when the load increases, a trouble occurs in which the rotating body and the stationary body come into contact with each other. Is measured and managed, and a gap is provided in the axial direction between the rotating body and the stationary body, which is expected to be in contact, enough to avoid contact in advance. However, this gap contributes to increase the cost by lengthening the rotor of the gas turbine, and may increase the span of the rotor to cause vibration.

【0004】[0004]

【課題を解決するための手段】本発明に係るガスタービ
ンは上記課題の解決を目的にしており、回転体と静止体
との熱による軸方向への伸び量の差に見合う信号を出力
する手段と、出力される上記信号に応じてタービンディ
スク及び中空動翼の冷却を行う気体の温度を制御する手
段とを備えた構成を特徴とする。
SUMMARY OF THE INVENTION The gas turbine according to the present invention has an object to solve the above-described problems, and outputs a signal corresponding to a difference in the amount of heat between a rotating body and a stationary body in the axial direction due to heat. And turbine output according to the output signal
Means for controlling the temperature of the gas for cooling the disk and the hollow rotor blades .

【0005】[0005]

【作用】即ち、本発明に係るガスタービンにおいては、
回転体と静止体との熱による軸方向への伸び量の差に見
合って出力される信号に応じてタービンディスク及び中
空動翼の冷却を行う気体の温度が制御されるようになっ
ており、ガスタービンの内部が回転体と静止体との軸方
向への伸び量の差に応じて冷却されることによりガスタ
ービンの負荷の非定常時などにおける回転体と静止体と
の伸び量の差のピークが減少する。これにより、回転体
と静止体との接触を回避する間隙を小さくしてロータを
短縮することができる。
That is, in the gas turbine according to the present invention,
According to the signal output in accordance with the difference in the amount of elongation in the axial direction due to heat between the rotating body and the stationary body, the turbine disk and
The temperature of the gas that cools the airfoil is controlled, and the inside of the gas turbine is cooled according to the difference in the amount of axial elongation between the rotating body and the stationary body. The peak of the difference in the amount of elongation between the rotating body and the stationary body when the load is unsteady is reduced. Thus, the gap for avoiding contact between the rotating body and the stationary body can be reduced to shorten the rotor.

【0006】[0006]

【実施例】図1乃至図3は本発明の一実施例に係るガス
タービンの説明図である。図において、本実施例に係る
ガスタービンは火力発電に使用されるもので、図1に示
すように軸流空気圧縮機1から吐出される圧縮空気は燃
焼器2を経てタービンに流入するが、圧縮空気の一部は
分岐されて外部に導かれ、フィルタ4、空気冷却器5を
経てタービンに流入し、タービンディスク6及び中空動
翼7を冷却する。通常、燃焼器2を経てタービンに流入
する圧縮空気の温度は350〜400℃、空気冷却器5
を経てタービンに流入する冷却空気の温度は100〜2
50℃程度である。空気冷却器5における冷却には水が
使われており、水は遮断弁8を経て空気冷却器5に流入
する。また、水質が悪く空気冷却器5の管巣が腐食する
場合には空気が使われ、図2に示すようにフィルタ11
を通して大気がファン12によりダンパ13を経て空気
冷却器5へ送風される。
1 to 3 are explanatory views of a gas turbine according to one embodiment of the present invention. In the figure, the gas turbine according to the present embodiment is used for thermal power generation, and the compressed air discharged from the axial flow air compressor 1 flows into the turbine via the combustor 2 as shown in FIG. A part of the compressed air is branched and guided to the outside, flows into the turbine via the filter 4 and the air cooler 5, and cools the turbine disk 6 and the hollow blade 7. Usually, the temperature of the compressed air flowing into the turbine via the combustor 2 is 350 to 400 ° C., and the air cooler 5
The temperature of the cooling air flowing into the turbine through
It is about 50 ° C. Water is used for cooling in the air cooler 5 , and the water flows into the air cooler 5 through the shutoff valve 8. In addition, the water quality is poor, and the tube nest of the air cooler 5 corrodes.
In this case , air is used, and as shown in FIG.
The air is blown to the air cooler 5 through the damper 13 by the fan 12.

【0007】ガスタービンの回転体と静止体とではメタ
ル温度、熱容量、材料の熱膨脹係数の違いなどにより軸
方向の伸び量が異なる。特に、ガスタービンの起動時や
負荷上昇時など負荷の非定常変化時にこの伸び量の差が
大きくなると回転体と静止体との間が接触するトラブル
が発生するため、この伸び量の差が計測管理されるよう
に変位が出力電圧に比例する電気特性を利用した非接触
渦電流式の変位センサ9がガスタービンのロータ軸端に
設置されている。この変位センサ9により検出された伸
び量の差による間隙Sの変化は変位変換器10で出力信
号に変換され、制御室へ送信されるとともに伸び差調節
器14へ入力される。伸び差調節器14では設定値と変
位センサ9により検出された値とが比較演算され、伸び
量の差に見合った圧力の空気が水の流量制御弁15へ送
られる。この空気源には定圧のガスタービン制御用の空
気が用いられる。また、冷却空気の冷却媒体に空気が使
われる場合には、伸び差調節器14から送られる空気は
ファン12風量制御用のダンパ13へ送られる。なお、
ファン12の風量制御がファン12の翼角度制御により
行われる場合は、伸び差調節器14から送られる空気に
相当する信号がファン12の可変ピッチサーボモータ
へ、またファン12の速度制御により行われる場合は、
ファン12の回転数制御装置へそれぞれ送られる。
The amount of elongation in the axial direction differs between a rotating body and a stationary body of a gas turbine due to differences in metal temperature, heat capacity, and thermal expansion coefficient of the material. In particular, when the difference in the amount of elongation increases when the load is unsteady, such as when starting the gas turbine or when the load rises, a problem may occur in which the rotating body and the stationary body come into contact with each other. A non-contact eddy current type displacement sensor 9 utilizing an electrical characteristic whose displacement is proportional to an output voltage so as to be managed is installed at a rotor shaft end of a gas turbine. The change in the gap S due to the difference in the amount of elongation detected by the displacement sensor 9 is converted into an output signal by the displacement converter 10, transmitted to the control room, and input to the differential elongation adjuster 14. The expansion difference controller 14 compares the set value with the value detected by the displacement sensor 9 and sends air having a pressure corresponding to the difference in the expansion amount to the water flow control valve 15. As this air source, a constant-pressure gas turbine control air is used. When air is used as the cooling medium of the cooling air, the air sent from the differential expansion controller 14 is sent to the fan 12 and the damper 13 for controlling the air volume. In addition,
When the air volume of the fan 12 is controlled by the blade angle control of the fan 12, a signal corresponding to the air sent from the differential expansion controller 14 is transmitted to the variable pitch servomotor of the fan 12 and by the speed control of the fan 12. If
It is sent to the rotation speed control device of the fan 12 respectively.

【0008】ガスタービンの回転体と静止体との伸び量
の差は冷却空気の温度によって左右される。即ち、冷却
空気の冷却媒体の流量が少ないとロータはよく伸び、多
い程伸び量が小さいが、伸び差調節器14から送られる
空気の圧力により水の流量制御弁15または風量制御用
のダンパ13の開度が調節されて空気冷却器5へ流入す
る水量、風量が制御され、タービンへ流入する冷却空気
の温度が調節される。図3はガスタービンの起動後にお
ける回転体と静止体との軸方向の伸び量の差を示してお
り、本ガスタービンでは起動時のピークが消滅し、負荷
上昇時のピークも従来のガスタービンに比べて著しく減
少している。従って、本ガスタービンにおいては回転体
が静止体に接触するトラブルが防止されるとともに、ガ
スタービンのロータの長さが短縮されてコストが低減
し、またロータの耐振度が向上する。
The difference in elongation between the rotating body and the stationary body of the gas turbine depends on the temperature of the cooling air. That is, when the flow rate of the cooling medium of the cooling air is small, the rotor expands well, and when the flow rate of the cooling medium is large, the expansion amount is small, but the flow rate of the water flow control valve 15 or the damper 13 Is controlled, the amount of water and the amount of air flowing into the air cooler 5 are controlled, and the temperature of the cooling air flowing into the turbine is adjusted. FIG. 3 shows the difference in the amount of elongation between the rotating body and the stationary body in the axial direction after the start of the gas turbine. Significantly decreased. Therefore, in the present gas turbine, the trouble of the rotating body coming into contact with the stationary body is prevented, the length of the rotor of the gas turbine is shortened, the cost is reduced, and the vibration resistance of the rotor is improved.

【0009】[0009]

【発明の効果】本発明に係るガスタービンは前記のよう
に構成されており、ロータを短縮することができるので
コストが低減されるとともにロータの耐振度が向上す
る。
The gas turbine according to the present invention is constructed as described above, and the rotor can be shortened, so that the cost is reduced and the vibration resistance of the rotor is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施例に係るガスタービンの
制御系統図である。
FIG. 1 is a control system diagram of a gas turbine according to one embodiment of the present invention.

【図2】図2はその要部詳細図である。FIG. 2 is a detailed view of a main part thereof.

【図3】図3はその作用説明図である。FIG. 3 is an explanatory diagram of the operation.

【図4】図4は従来のガスタービンの制御系統図であ
る。
FIG. 4 is a control system diagram of a conventional gas turbine.

【符号の説明】[Explanation of symbols]

1 軸流空気圧縮機 5 空気冷却器 9 変位センサ 10 変位変換器 13 ダンパ 14 伸び差調節器 15 流量制御弁 DESCRIPTION OF SYMBOLS 1 Axial air compressor 5 Air cooler 9 Displacement sensor 10 Displacement converter 13 Damper 14 Differential expansion regulator 15 Flow control valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転体と静止体との熱による軸方向への
伸び量の差に見合う信号を出力する手段と、出力される
上記信号に応じてタービンディスク及び中空動翼の冷却
を行う気体の温度を制御する手段とを備えたことを特徴
とするガスタービン。
1. A means for outputting a signal corresponding to a difference in the amount of elongation in the axial direction due to heat between a rotating body and a stationary body, and gas for cooling a turbine disk and a hollow rotor blade in accordance with the output signal. Means for controlling the temperature of the gas turbine.
JP3263800A 1991-10-11 1991-10-11 gas turbine Expired - Fee Related JP2977340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3263800A JP2977340B2 (en) 1991-10-11 1991-10-11 gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3263800A JP2977340B2 (en) 1991-10-11 1991-10-11 gas turbine

Publications (2)

Publication Number Publication Date
JPH0598995A JPH0598995A (en) 1993-04-20
JP2977340B2 true JP2977340B2 (en) 1999-11-15

Family

ID=17394432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3263800A Expired - Fee Related JP2977340B2 (en) 1991-10-11 1991-10-11 gas turbine

Country Status (1)

Country Link
JP (1) JP2977340B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995019B1 (en) * 2012-09-06 2014-09-12 Snecma TURBOMACHINE COMPRISING A DEVICE FOR MEASURING THE AXIAL DISTANCE BETWEEN A STATOR PIECE AND A ROTOR PIECE OF THE TURBOMACHINE

Also Published As

Publication number Publication date
JPH0598995A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
KR100650095B1 (en) Method and apparatus for use in control and compensation of clearances in a gas turbine engine
US4825643A (en) Gas turbine propulsion unit with devices for branching off compressor air for cooling of hot parts
US4767259A (en) Cooling air flow controlling apparatus for gas turbine
US4967552A (en) Method and apparatus for controlling temperatures of turbine casing and turbine rotor
US6416279B1 (en) Cooled gas turbine component with adjustable cooling
US6272422B2 (en) Method and apparatus for use in control of clearances in a gas turbine engine
JP5193197B2 (en) Gas turbine operating method and gas turbine for carrying out the method
US20140131027A1 (en) Heat exchange arrangement
TW201525388A (en) Motor housing temperature control system
US4149826A (en) Gas turbine
US6481211B1 (en) Turbine engine cycling thermo-mechanical stress control
JP2977340B2 (en) gas turbine
KR950023838A (en) Engine cooling system with blade angle adjustable cooling fan
JPS5893903A (en) Variable inlet guide vane
US9121416B2 (en) Variable speed air blowing system
JPS63131844A (en) Revolving speed control device for internal combustion engine
US4117670A (en) Dual slope temperature differential shutdown control for gas turbines
RU2006593C1 (en) Method of control of radial clearance between rotor blade tips and housing of turbomachine of gas-turbine engine
JPH06159099A (en) Axial flow fluid machinery
JPH0559901A (en) Balance piston for turbine
JPH05171958A (en) Gas turbine cooling air control device
JPS611809A (en) Casing of steam turbine
JP2003106170A (en) Gas turbine, gas turbine combined plant and method for controlling cooling steam pressure
JP3059754B2 (en) Method of adjusting cooling air flow rate for turbine case of gas turbine engine
US5699267A (en) Hot gas expander power recovery and control

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990810

LAPS Cancellation because of no payment of annual fees