JP2977297B2 - Crystal manufacturing method - Google Patents
Crystal manufacturing methodInfo
- Publication number
- JP2977297B2 JP2977297B2 JP3028817A JP2881791A JP2977297B2 JP 2977297 B2 JP2977297 B2 JP 2977297B2 JP 3028817 A JP3028817 A JP 3028817A JP 2881791 A JP2881791 A JP 2881791A JP 2977297 B2 JP2977297 B2 JP 2977297B2
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- crystal
- melt
- heat generation
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は単結晶製造方法に係り、
特に垂直に配置したるつぼ内で融液をそのまま固化させ
る垂直ブリッジマン法を用いて融解した原料と種結晶と
を接触させる操作を確実に行い、かつ成長界面位置の変
化を精密に制御することを可能とする単結晶製造方法に
関する。The present invention relates to a method for producing a single crystal,
In particular, use the vertical Bridgman method of solidifying the melt as it is in a vertically placed crucible to ensure that the molten raw material and the seed crystal are brought into contact, and that the change in the growth interface position is precisely controlled. The present invention relates to a method for producing a single crystal that can be used.
【0002】[0002]
【従来の技術】周期律表III b族およびVb族元素から
なる無機化合物半導体(以下「III −V族化合物半導
体」という)の単結晶、特にひ化ガリウム(GaAs)、り
ん化ガリウム(GaP)の単結晶は電界効果トランジスタ
(FET)、ショットキーバリアダイオード、集積回路(I
C)等の各種半導体素子の製造に広く用いられている。2. Description of the Related Art Single crystals of inorganic compound semiconductors (hereinafter referred to as "III-V compound semiconductors") comprising elements of groups IIIb and Vb of the periodic table, particularly gallium arsenide (GaAs) and gallium phosphide (GaP) Single crystals are field-effect transistors (FETs), Schottky barrier diodes, and integrated circuits (I
It is widely used for manufacturing various semiconductor devices such as C).
【0003】これらの半導体素子の基板に用いるIII −
V族化合物半導体、特にGaAsの単結晶の製造法として
は、融液からの結晶成長法が主に用いられている。[0003] III- used for the substrate of these semiconductor elements
As a method for producing a group V compound semiconductor, particularly a single crystal of GaAs, a crystal growth method from a melt is mainly used.
【0004】融液からの結晶成長法の一つである引上法
は結晶の大口径化に適しており、円形の(100)ウエハが
得られるという長所を有する。反面、大きな温度勾配の
下で結晶成長が行われるため、製造された結晶の転位密
度が高くなるという問題があった。The pulling method, which is one of the methods for growing crystals from a melt, is suitable for increasing the diameter of crystals, and has the advantage that a circular (100) wafer can be obtained. On the other hand, since crystal growth is performed under a large temperature gradient, there is a problem that the dislocation density of the manufactured crystal is increased.
【0005】融液からの他の結晶成長法としては、るつ
ぼ内で融液をそのまま固化させ単結晶を得る垂直ボート
法が有力である。垂直ボート成長法には垂直ブリッジマ
ン法(VB法)及び垂直温度勾配凝固法(VGF法)が
ある。このVB法あるいはVGF法によれば、低温度勾
配下で結晶成長を行うことができるので、結晶性の良い
単結晶を得ることができる。しかもこれらの方法は、円
形の(100)ウエハの製造に適しているという利点もあ
る。As another method for growing a crystal from a melt, a vertical boat method for solidifying the melt in a crucible as it is to obtain a single crystal is effective. The vertical boat growth method includes a vertical Bridgman method (VB method) and a vertical temperature gradient solidification method (VGF method). According to the VB method or the VGF method, since a crystal can be grown under a low temperature gradient, a single crystal having good crystallinity can be obtained. Moreover, these methods have an advantage that they are suitable for manufacturing circular (100) wafers.
【0006】ところで、製品となる単結晶は所望の結晶
学的方位を持つことが必要であり、そのためには、結晶
成長の開始時に原料融液を種結晶と接触させ(以下「種
付け」という)所定の結晶方位を決定させなければなら
ない。しかしながら、これら垂直ボート法のように、垂
直にるつぼを配置し、その上方に原料を充填する方法で
は、種結晶が可動でなく種付け位置や結晶成長速度等の
精密制御が不可能であった。[0006] Incidentally, a single crystal to be a product must have a desired crystallographic orientation. For this purpose, a raw material melt is brought into contact with a seed crystal at the start of crystal growth (hereinafter referred to as "seed"). A predetermined crystal orientation must be determined. However, in the method in which the crucible is arranged vertically and the raw material is filled above the crucible as in the vertical boat method, the seed crystal is not movable, and precise control of the seeding position, the crystal growth rate, and the like is impossible.
【0007】図6は従来の液体封止垂直ブリッジマン法
によるGaAs単結晶成長を説明するための模式断面図であ
る。FIG. 6 is a schematic sectional view for explaining GaAs single crystal growth by the conventional liquid-sealed vertical Bridgman method.
【0008】図6において、1は種結晶、2は成長した
GaAs結晶、3はGaAs融液、4は液体封止剤、5は円形の
断面形状を有するるつぼ、6はるつぼホルダー、7はこ
のホルダー6を支持するるつぼ軸、8はこの軸7を介し
てるつぼ5を回転・移動させるためのるつぼ駆動機構、
9は発熱体、10は保温材、11は気密容器、21は発熱体9
の発熱パワーおよびるつぼ5の回転・位置などを変化さ
せるための制御装置である。(21は図示せず)In FIG. 6, 1 is a seed crystal and 2 is a grown crystal.
GaAs crystal, 3 is a GaAs melt, 4 is a liquid sealant, 5 is a crucible having a circular cross-sectional shape, 6 is a crucible holder, 7 is a crucible shaft supporting this holder 6, and 8 is a shaft A crucible driving mechanism for rotating and moving the crucible 5;
9 is a heating element, 10 is a heat insulating material, 11 is an airtight container, 21 is a heating element 9
This is a control device for changing the heat generation power of the crucible 5 and the rotation and position of the crucible 5. (21 is not shown)
【0009】このような装置構成において、従来の技術
は、まずるつぼ5内に種結晶1、原料のGaAs多結晶、個
体状の液体封止剤4を充填し、発熱体9により炉内を高
温に加熱して液体封止剤4およびGaAs多結晶を融解させ
た後、近傍に設置した熱電対により温度状況を把握しな
がら種付けを行って結晶成長を開始し、図6に示す如く
結晶成長を行っていた。In such an apparatus configuration, the conventional technique is as follows. First, a crucible 5 is filled with a seed crystal 1, a polycrystalline GaAs material, and a solid liquid sealing agent 4. To melt the liquid sealant 4 and the GaAs polycrystal, seeding is performed while grasping the temperature condition with a thermocouple installed in the vicinity, and crystal growth is started. As shown in FIG. I was going.
【0010】しかしながら、上記従来の方法では種結晶
が可動でなく、且つ外部からの観察が困難なため、「種
付け」操作が非常に困難であった。さらに、従来の方法
では、結晶の成長速度すなわち成長界面12の移動速度の
検出ができないため、正確な成長速度の制御や界面形状
の制御は行われていなかった。However, in the above-mentioned conventional method, the seeding operation is very difficult because the seed crystal is not movable and observation from the outside is difficult. Furthermore, since the conventional method cannot detect the crystal growth speed, that is, the moving speed of the growth interface 12, accurate control of the growth speed and control of the interface shape have not been performed.
【0011】[0011]
【発明が解決しようとする課題】現在、GaAs単結晶をは
じめとする化合物半導体結晶の製造法として実用化され
ている液体封止引上法(LEC法)、あるいは水平ブリ
ッジマン(HB法)などの結晶育成の場合、気密容器あ
るいは炉体に覗き窓を設け、成長状況を観測し、炉内の
結晶成長条件を制御している。The liquid sealing pulling method (LEC method) or the horizontal Bridgman (HB method) which is currently in practical use as a method for manufacturing compound semiconductor crystals such as GaAs single crystals. In the case of crystal growth, a viewing window is provided in an airtight container or a furnace body, a growth state is observed, and crystal growth conditions in the furnace are controlled.
【0012】これに対して、本発明に係る垂直ブリッジ
マン法のような結晶成長法の場合、成長界面位置や成長
速度さらには界面形状といった結晶成長条件の制御は行
われていなかった。On the other hand, in the case of the crystal growth method such as the vertical Bridgman method according to the present invention, the control of the crystal growth conditions such as the growth interface position, the growth rate, and the interface shape has not been performed.
【0013】ところで、結晶の成長速度は、製品となる
結晶の品質に重大な影響を与えるため、これを精密に制
御することは結晶成長の基本的な技術の一つである。ま
た、融液からの結晶成長においては、結晶の成長面を種
付け時より成長する結晶全長にわたって精密に制御する
ことが、均一で高品質な結晶を得るために不可欠であ
る。Incidentally, since the growth rate of a crystal has a significant effect on the quality of a crystal to be a product, it is one of the basic techniques for crystal growth to precisely control the crystal growth rate. In crystal growth from a melt, it is essential to precisely control the growth surface of the crystal over the entire length of the grown crystal from the time of seeding to obtain a uniform and high-quality crystal.
【0014】しかしながら従来の方法では上記問題点を
解決するのは困難であった。本発明は均一で高品質な単
結晶を製造するための単結晶製造方法を提供することを
目的とする。[0014] However, it is difficult to solve the above problem by the conventional method. An object of the present invention is to provide a single crystal manufacturing method for manufacturing a uniform and high quality single crystal.
【0015】[0015]
【課題を解決するための手段】上記課題は垂直に配置さ
れたるつぼの底部に種結晶を収容し、該種結晶の上方に
原料を充填し、該原料を加熱・融解して融液を形成し、
該融液を固化させ単結晶を得る垂直ブリッジマン法を用
いる結晶製造方法において、前記原料の加熱・融解を主
発熱体と補助発熱体を用いて行い、且つ該主発熱体の発
熱パワーと該補助発熱体の発熱パワーとの比を一定に保
持し、該主発熱体の温度を制御し、種結晶と融液を接触
させて種付け操作を行うことを特徴とする本発明の結晶
製造方法(1)によって解決される。The above object is achieved by placing a seed crystal in the bottom of a vertically arranged crucible, filling a raw material above the seed crystal, and heating and melting the raw material to form a melt. And
In a crystal manufacturing method using a vertical Bridgman method of solidifying the melt to obtain a single crystal, heating and melting of the raw material are performed using a main heating element and an auxiliary heating element, and the heat generation power of the main heating element and A method for producing a crystal according to the present invention, comprising: maintaining a constant ratio with the heat generation power of the auxiliary heating element; controlling the temperature of the main heating element; It is solved by 1).
【0016】なお本発明の上記方法では、種付け操作を
確実に行なえるように温度勾配を確保するため、前記主
発熱体の発熱パワーと前記補助発熱体の発熱パワーとの
比の値が0.5〜0.7であることが好ましい。In the above method of the present invention, in order to secure a temperature gradient so that the seeding operation can be reliably performed, the value of the ratio of the heat generation power of the main heat generation element to the heat generation power of the auxiliary heat generation element is set to 0.1. It is preferably from 5 to 0.7.
【0017】更に上記課題は、垂直に配置されたるつぼ
の底部に種結晶を収容し、その上方に原料を充填し、該
原料を加熱・融解して融液を形成し、この融液を固化さ
せ単結晶を得る垂直ブリッジマン法を用いる結晶製造方
法において、前記原料の加熱・融解を主発熱体と補助発
熱体を用いて行い、且つ該主発熱体の発熱パワーと該補
助発熱体の発熱パワーとの比の値を、種結晶と融液を接
触させる種付け操作時に0.5〜0.7とし、この種付け操
作後に徐々に増大させ、該主発熱体の温度を制御し、結
晶成長の終了時に、前記主発熱体の発熱パワーと前記補
助発熱体の発熱パワーとの比の値を1.0〜1.2とするこ
とを特徴とする本発明の結晶製造方法(2)によって解
決される。[0017] Further, the above-mentioned problem is that a seed crystal is accommodated in the bottom of a vertically arranged crucible, a raw material is filled above the crucible, and the raw material is heated and melted to form a melt, and the melt is solidified. In the crystal manufacturing method using the vertical Bridgman method for obtaining a single crystal, heating and melting of the raw material are performed using a main heating element and an auxiliary heating element, and the heat generation power of the main heating element and the heat generation of the auxiliary heating element The value of the ratio to the power is set to 0.5 to 0.7 during the seeding operation of bringing the seed crystal and the melt into contact with each other, and is gradually increased after the seeding operation to control the temperature of the main heating element to control the crystal growth. The crystal production method (2) of the present invention is characterized in that at the end, the ratio of the heat generation power of the main heat generation element to the heat generation power of the auxiliary heat generation element is set to 1.0 to 1.2. You.
【0018】[0018]
【0019】[0019]
【0020】[0020]
【作用】本発明によれば、原料を融解させる主発熱体の
他に、少なくとも一つ以上の補助発熱体を有し、主発熱
体と補助発熱体の発熱パワーを一定比に保ちつつ主発熱
体の温度を変化させることにより、炉内の温度勾配を正
確に制御することができる。そのため種付け操作を容易
にし、結晶の成長面形状と結晶の成長速度を成長する結
晶全長にわたって精密に制御することができる。According to the present invention, at least one or more auxiliary heating elements are provided in addition to the main heating element for melting the raw material, and the main heating element and the auxiliary heating element are maintained at a constant heating power while maintaining a constant ratio. By changing the temperature of the body, the temperature gradient in the furnace can be precisely controlled. Therefore, the seeding operation is facilitated, and the shape of the crystal growth surface and the crystal growth rate can be precisely controlled over the entire length of the crystal to be grown.
【0021】[0021]
【実施例】以下本発明の実施例を図面に基づいて詳細に
説明する。図1は本発明に係る単結晶製造方法に用いら
れる装置の模式断面図である。図1において、19は主発
熱体、20a及び20bは本発明に係わる補助発熱体を示し
ている。13はるつぼ下端の温度を測定するための熱電対
である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic sectional view of an apparatus used in the single crystal manufacturing method according to the present invention. In FIG. 1, 19 is a main heating element, and 20a and 20b are auxiliary heating elements according to the present invention. 13 is a thermocouple for measuring the temperature at the lower end of the crucible.
【0022】図1に示すように、本発明の単結晶製造装
置はグラファイトフェルト等の保温材10を有する気密容
器11内に設けられた、等方性グラファイト製のサセプタ
ー6内に、外形80mm、高さ 150mmのрBN製のるつぼ5
を設置し、支持軸7によりサセプター6とるつぼ5を保
持する。発熱体は等方性グラファイト製で主発熱体(メ
インヒータ)19の高さは20cm、補助発熱体(サブヒー
タ)20a,20bの高さは10cmのものを使用した。As shown in FIG. 1, the apparatus for producing a single crystal of the present invention has an outer shape of 80 mm in an isotropic graphite susceptor 6 provided in an airtight container 11 having a heat insulating material 10 such as graphite felt. 150mm high рBN crucible 5
And the susceptor 6 and the crucible 5 are held by the support shaft 7. The heating element was made of isotropic graphite, the main heating element (main heater) 19 was 20 cm in height, and the auxiliary heating elements (sub-heaters) 20a and 20b were 10 cm in height.
【0023】上記ホットゾーン中心軸上の温度分布の代
表例を図2に示す。気密容器上部より熱電対を挿入し、
ヒータを加熱し、気密容器内が定常状態になったところ
で熱電対の位置を変化させることで測定を行った。な
お、気密容器内は7気圧に制御されたアルゴン雰囲気で
満たされている。FIG. 2 shows a representative example of the temperature distribution on the center axis of the hot zone. Insert a thermocouple from the top of the airtight container,
The measurement was performed by heating the heater and changing the position of the thermocouple when the inside of the airtight container became a steady state. Note that the inside of the airtight container is filled with an argon atmosphere controlled to 7 atm.
【0024】図3は炉内中央の温度勾配が主発熱体と補
助発熱体の発熱パワーの比(補助発熱体の発熱パワー/
主発熱体の発熱パワー)によってどの様に変化するのか
を示したグラフである。図3から上記ホットゾーンの温
度勾配は主発熱体と補助発熱体の発熱パワーの比で決定
されることがわかる。FIG. 3 shows that the temperature gradient at the center of the furnace is the ratio of the heating power of the main heating element and the auxiliary heating element (the heating power of the auxiliary heating element /
It is a graph showing how it changes with the heat generation power of the main heating element). From FIG. 3, it can be seen that the temperature gradient of the hot zone is determined by the ratio of the heating power of the main heating element to that of the auxiliary heating element.
【0025】炉内中央の温度勾配は次式から導くことが
できる。 (炉内中央の温度勾配)=−17×(補助発熱体の発熱量
/主発熱体の発熱量)+24.5 また、るつぼ下端(=種結晶端)には熱電対が設置され
ており、るつぼ下端の温度の測定ができるので、この温
度と、上記主発熱体と補助発熱体の発熱パワーの比で決
定される炉内の温度勾配から炉内の温度分布を正確に把
握することができる。その結果、成長速度および界面形
状を精密に制御することができる。The temperature gradient at the center of the furnace can be derived from the following equation. (Temperature gradient at the center of the furnace) = -17 x (calorific value of auxiliary heating element / calorific value of main heating element) + 24.5 A thermocouple is installed at the lower end of the crucible (= seed crystal end). Since the temperature at the lower end of the crucible can be measured, the temperature distribution in the furnace can be accurately grasped from this temperature and the temperature gradient in the furnace determined by the ratio of the heating power of the main heating element and the auxiliary heating element. . As a result, the growth rate and the interface shape can be precisely controlled.
【0026】上記ホットゾーンを使用して結晶成長を行
った。原料は高純度のGaAs多結晶1.5kg、B2O3 300gを
用いた。Crystal growth was performed using the above hot zone. The raw materials used were 1.5 kg of high-purity GaAs polycrystal and 300 g of B 2 O 3 .
【0027】種結晶は、成長方向に垂直な断面が一辺5
mmの正方形で、長さが5cmのものを使用した。The cross section of the seed crystal perpendicular to the growth direction has a side of 5
mm square and 5 cm long were used.
【0028】原料融解後7気圧のアルゴン雰囲気で成長
速度3mm/hで3インチ径の結晶を成長させることがで
きた。After melting the raw materials, a crystal having a diameter of 3 inches could be grown at a growth rate of 3 mm / h in an argon atmosphere at 7 atm.
【0029】結晶成長開始時には種付け操作を行なわな
ければならないが、種付けが行えるためには、種結晶が
設置された領域の一点が融点になればよい。At the start of crystal growth, a seeding operation must be performed. In order to perform seeding, it is sufficient that one point of the region where the seed crystal is set has a melting point.
【0030】図4に種付けを可能にするるつぼ下端の温
度と、主発熱体と補助発熱体の発熱量の比のグラフを示
す。図中の斜線で示した領域が種付けを可能にする条件
である。図4中に示した点(×印)の条件で種付けを行
った後、るつぼ内部の温度分布、成長界面の位置を制御
し、結果として結晶成長速度および結晶形状を制御し
た。FIG. 4 is a graph showing the ratio between the temperature of the lower end of the crucible for enabling seeding and the heat generation amount of the main heating element and the auxiliary heating element. The shaded area in the figure is a condition that enables seeding. After seeding under the conditions of the points (x marks) shown in FIG. 4, the temperature distribution inside the crucible and the position of the growth interface were controlled, and as a result, the crystal growth rate and the crystal shape were controlled.
【0031】比較例 以下本発明の上記実施例において補助発熱体が無い場合
を比較例として上記実施例との比較データを示す。COMPARATIVE EXAMPLE Hereinafter, comparative data with the above embodiment of the present invention will be described using a case where there is no auxiliary heating element in the above embodiment as a comparative example.
【0032】(1)シーディング(種付け)の再現性 比較例:10ラン行なって再現性がなかった。すなわちシ
ーディング位置が±5mm変化した。10ラン中3ランはシ
ーディング失敗した。 本実施例:10ラン行なって再現性があった。すなわちシ
ーディング位置が±1.5mmだけの変化であった。10ラン
中シーディングの失敗がなかった。(1) Reproducibility of Seeding (Seeding) Comparative Example: No reproducibility was obtained after 10 runs. That is, the seeding position changed by ± 5 mm. 3 out of 10 runs failed to seed. This Example: Reproducibility was obtained after 10 runs. That is, the seeding position was changed by only ± 1.5 mm. There were no seeding failures during 10 runs.
【表1】 [Table 1]
【0033】(2)結晶の転位密度(EPD、単位は個
/cm2 ) 次に比較例として補助発熱体/主発熱体のパワー比(消
費電力比)が本発明からはずれる(パワー比)場合であ
る。(2) Dislocation density of crystal (EPD, unit: cm / cm 2 ) Next, as a comparative example, the case where the power ratio (power consumption ratio) of the auxiliary heating element / main heating element deviates from the present invention (power ratio) It is.
【表2】 [Table 2]
【0034】上記本発明の場合の方が転位密度が小さい
ことがわかる。図5はシーディング(種付け)から結晶
成長(育成)終了迄の補助発熱体/主発熱体のパワー比
の変化を示す1例であり、シーディング時は0.6でその
後徐々にパワー比を上げ1.2とした例である。その結果
は転位密度が全長にわたって1×104 個/cm2 以下であ
って良好であった。It can be seen that the dislocation density is smaller in the case of the present invention. FIG. 5 is an example showing a change in the power ratio of the auxiliary heating element / main heating element from seeding (seed) to completion of crystal growth (growing). This is an example of increasing the value to 1.2. As a result, the dislocation density was 1 × 10 4 / cm 2 or less over the entire length, which was good.
【0035】[0035]
【発明の効果】以上説明したように本発明によれば、従
来では困難であった種付け操作や成長界面位置の制御を
正確に行うことができる。これにより、成長速度や成長
界面形状を制御することができ、単結晶化率を大幅に向
上させることができる。また、結晶成長中および成長後
の結晶内部の温度分布の制御が可能になり、結晶に発生
する転位・欠陥の低減も可能となる。As described above, according to the present invention, the seeding operation and the control of the position of the growth interface, which have been difficult in the past, can be accurately performed. As a result, the growth rate and the shape of the growth interface can be controlled, and the single crystallization ratio can be greatly improved. Further, the temperature distribution inside the crystal during and after the crystal growth can be controlled, and dislocations and defects generated in the crystal can be reduced.
【図1】本発明の単結晶製造方法に用いられる装置の縦
断面模式図である。FIG. 1 is a schematic longitudinal sectional view of an apparatus used for a method for producing a single crystal of the present invention.
【図2】本発明の単結晶製造方法に用いられる装置の内
部の温度分布図である。FIG. 2 is a temperature distribution diagram inside an apparatus used in the method for producing a single crystal of the present invention.
【図3】本発明の単結晶製造方法に用いられる装置の内
部の温度勾配が主発熱体と補助発熱体の発熱量の比によ
ってどの様に変化するのかを示した図である。FIG. 3 is a diagram showing how the temperature gradient inside the apparatus used in the single crystal manufacturing method of the present invention changes depending on the ratio of the amount of heat generated between the main heating element and the auxiliary heating element.
【図4】種付けを可能にするるつぼ下端の温度と、主発
熱体と補助発熱体の発熱パワーの比を示した図である。FIG. 4 is a diagram showing a temperature of a lower end of a crucible enabling seeding and a ratio of heat generation power of a main heating element and an auxiliary heating element.
【図5】種付け(シーディング)から結晶成長(育成)
終了迄の主発熱体と補助発熱体とのパワー比変化を示す
図である。FIG. 5: Seeding and crystal growth (growing)
It is a figure which shows the power ratio change of the main heating element and an auxiliary heating element until completion | finish.
【図6】従来の単結晶製造装置の縦断面模式図である。FIG. 6 is a schematic longitudinal sectional view of a conventional single crystal manufacturing apparatus.
1…種結晶 2…成長したGaAs結晶 3…GaAs融液 4…液体封止剤 5…るつぼ 6…るつぼホルダー 9…発熱体 10…保温材 19…主発熱体 20a,20b…補助発熱体 DESCRIPTION OF SYMBOLS 1 ... Seed crystal 2 ... Grown GaAs crystal 3 ... GaAs melt 4 ... Liquid sealant 5 ... Crucible 6 ... Crucible holder 9 ... Heating element 10 ... Heat insulating material 19 ... Main heating element 20a, 20b ... Auxiliary heating element
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 紳一郎 茨城県牛久市東猯穴町1000番地 三菱化 成ポリテック株式会社 筑波工場内 (72)発明者 岡田 英夫 茨城県牛久市東猯穴町1000番地 三菱化 成ポリテック株式会社 筑波工場内 (56)参考文献 特開 平3−80181(JP,A) (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinichiro Kawabata 1000, Higashikiana-cho, Ushiku City, Ibaraki Prefecture Mitsubishi Kasei Polytech Co., Ltd. (56) References JP-A-3-80181 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C30B 1/00-35/00
Claims (3)
を収容し、該種結晶の上方に原料を充填し、該原料を加
熱・融解して融液を形成し、該融液を固化させ単結晶を
得る垂直ブリッジマン法を用いる結晶製造方法におい
て、 前記原料の加熱・融解を主発熱体と補助発熱体を用いて
行い、且つ該主発熱体の発熱パワーと該補助発熱体の発
熱パワーとの比を一定に保持し、該主発熱体の温度を制
御し、種結晶と融液を接触させて種付け操作を行うこと
を特徴とする結晶製造方法。1. A crucible vertically arranged to receive a seed crystal at a bottom thereof, filling a raw material above the seed crystal, heating and melting the raw material to form a melt, and solidifying the melt. In a crystal manufacturing method using a vertical Bridgman method for obtaining a single crystal, heating and melting of the raw material are performed using a main heating element and an auxiliary heating element, and heat generation power of the main heating element and heat generation of the auxiliary heating element A method for producing a crystal, comprising maintaining a constant ratio with power, controlling the temperature of the main heating element, and bringing a seed crystal into contact with a melt to perform a seeding operation.
熱体の発熱パワーとの比の値が0.5〜0.7であることを
特徴とする請求項1記載の方法。2. The method according to claim 1, wherein a value of a ratio of a heat generation power of the main heat generation element to a heat generation power of the auxiliary heat generation element is 0.5 to 0.7.
を収容し、その上方に原料を充填し、該原料を加熱・融
解して融液を形成し、この融液を固化させ単結晶を得る
垂直ブリッジマン法を用いる結晶製造方法において、 前記原料の加熱・融解を主発熱体と補助発熱体を用いて
行い、且つ該主発熱体の発熱パワーと該補助発熱体の発
熱パワーとの比の値を、種結晶と融液を接触させる種付
け操作時に0.5〜0.7とし、この種付け操作後に徐々に
増大させ、該主発熱体の温度を制御し、結晶成長の終了
時に、前記主発熱体の発熱パワーと前記補助発熱体の発
熱パワーとの比の値を1.0〜1.2とすることを特徴とす
る結晶製造方法。3. A crucible vertically arranged to accommodate a seed crystal at the bottom, filling a raw material above the seed crystal, heating and melting the raw material to form a melt, and solidifying the melt to form a single crystal In the crystal manufacturing method using the vertical Bridgman method, heating and melting of the raw material are performed using a main heating element and an auxiliary heating element, and a heating power of the main heating element and a heating power of the auxiliary heating element are obtained. The value of the ratio is set to 0.5 to 0.7 during the seeding operation of bringing the seed crystal into contact with the melt, and is gradually increased after the seeding operation to control the temperature of the main heating element. A crystal manufacturing method, wherein a value of a ratio of a heating power of the main heating element to a heating power of the auxiliary heating element is 1.0 to 1.2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3028817A JP2977297B2 (en) | 1991-02-22 | 1991-02-22 | Crystal manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3028817A JP2977297B2 (en) | 1991-02-22 | 1991-02-22 | Crystal manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04300278A JPH04300278A (en) | 1992-10-23 |
JP2977297B2 true JP2977297B2 (en) | 1999-11-15 |
Family
ID=12258959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3028817A Expired - Fee Related JP2977297B2 (en) | 1991-02-22 | 1991-02-22 | Crystal manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2977297B2 (en) |
-
1991
- 1991-02-22 JP JP3028817A patent/JP2977297B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04300278A (en) | 1992-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0173764A1 (en) | Single crystal growing method and apparatus | |
Hoshikawa et al. | Liquid encapsulated, vertical bridgman growth of large diameter, low dislocation density, semi-insulating GaAs | |
Deitch et al. | Bulk single crystal growth of silicon-germanium | |
WO1996015297A1 (en) | Process for bulk crystal growth | |
JP2009149452A (en) | Method for growing semiconductor crystal | |
JP2977297B2 (en) | Crystal manufacturing method | |
JPH0244798B2 (en) | ||
JP2758038B2 (en) | Single crystal manufacturing equipment | |
JP3018738B2 (en) | Single crystal manufacturing equipment | |
JP2690419B2 (en) | Single crystal growing method and apparatus | |
JP3042168B2 (en) | Single crystal manufacturing equipment | |
JP2542434B2 (en) | Compound semiconductor crystal manufacturing method and manufacturing apparatus | |
JPH0380180A (en) | Device for producing single crystal | |
JPH07165488A (en) | Apparatus for producing single crystal and method therefor | |
JPH03193689A (en) | Production of compound semiconductor crystal | |
JP3806793B2 (en) | Method for producing compound semiconductor single crystal | |
JPH10152393A (en) | Growth of bulk crystal and seed crystal for bulk crystal growth | |
JP4576571B2 (en) | Method for producing solid solution | |
JPH0867593A (en) | Method for growing single crystal | |
JPH0341432B2 (en) | ||
JPH10212192A (en) | Method for growing bulk crystal | |
JPH0316988A (en) | Production device of single crystal of compound semiconductor | |
JPH08333189A (en) | Apparatus for pulling up crystal | |
JPH0559873B2 (en) | ||
JP3125313B2 (en) | Single crystal growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070910 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |